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Abstract

Background: The broad ecological distribution of L. casei makes it an insightful subject for research on genome
evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei,
we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and
human sources.

Results: Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and
4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2
times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other
bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles,
but evolution of dairy niche specialists also appears to involve gene decay.

Conclusions: Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign
genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of
unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene
decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome
and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically
flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome
Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei.

Keywords: Lactobacillus casei, Lactic acid bacteria, Comparative genomics, Pan-genome, Supragenome, Evolution,
Adaptation
Background
Lactic acid bacteria (LAB) constitute a group of Gram-
positive, non-sporulating, nutritionally fastidious, and
strictly fermentative bacteria that produce lactic acid as the
major end product from carbohydrate [1]. Lactobacillus,
which currently holds 177 species [http://www.bacterio.
cict.fr/], is by far the largest and most diverse genus of
LAB. Different species of lactobacilli are important
components of the oral cavity as well as the gastro-
intestinal and reproductive tracts of vertebrates,
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while others are indigenous to milk, plant material,
and meat environments [2]. Many play important
roles in both traditional and commercial-scale food
and feed fermentations, or food spoilage.
A few species of Lactobacillus show remarkable eco-

logical adaptability and may be recovered from a variety
of diverse habitats [2]. Lactobacillus casei, for example,
has been isolated from raw and fermented dairy (espe-
cially cheese, where they often emerge as the dominant
adventitious or “nonstarter” species during ripening [3])
and plant materials (e.g., wine, silage, pickles, and
kimchi), as well as the oral cavity and gastrointestinal
tracts of humans and animals [2]. As an aside, debate
over the taxonomy of L. casei in recent years has led to
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interchangeable use of L. casei and L. paracasei in the
literature. All of the strains included in this study
show >99% identity to the 16S rRNA sequence of L.
casei ATCC 334, which is the current type strain for
L. paracasei [4].
The broad ecological distribution of L. casei reflects a

metabolic flexibility that has fueled widespread applica-
tion of the species in the food and health industries;
different strains are employed as acid-producing starter
cultures for milk fermentation, as adjunct cultures to
accelerate or intensify flavor development in bacterial-
ripened cheeses, and as probiotics to enhance human
or animal health [5-7]. The Food and Agriculture
Organization and the World Health Organization of
the United Nations define probiotics as “live microorgan-
isms which when administered in adequate amounts con-
fer a health benefit on the host” [8]. Strains used as starter
cultures or probiotics must, of course, be nonpathogenic to
humans even when consumed in very high numbers (e.g.,
109-1010 cfu/dose). Thus, the wide ecological distribution
of L. casei makes this species a particularly interesting and
relevant subject for research on genetic diversity, genome
evolution, and lifestyle adaptation.
Bacterial genome evolution and adaptation are

thought to occur via three major processes: 1) modifi-
cation of existing genes by mutation with vertical in-
heritance [9-12]; 2) acquisition of exogenous genes or
gene clusters by bacteria through horizontal gene trans-
fer (HGT) that impart a fitness benefit [13-17]; and 3) de-
letion or decay of genes that no longer confer a fitness
benefit [18-20]. Comparative genome analysis of lactoba-
cilli and other LAB has shown that all three mechanisms
have contributed to the adaptation of these microbes to
new habitats and lifestyles, but gene decay and acquisi-
tion by HGT appear to be especially dominant forces
[21-28]. In L. casei and many other LAB, genome evolu-
tion is expected to reflect adaptation of the species to
dynamic, nutritionally variable and ancient environ-
ments, such as the gastrointestinal tract and plant mate-
rials, as well as relatively recent expansion into a more
constant and nutrient-rich milk-based niche. Not sur-
prisingly, comparative genome analysis between L. casei
ATCC 334 and other sequenced lactobacilli confirmed
L. casei has features, including a relatively high number
of carbohydrate-related genes and IS elements [21,28],
which are consistent with a metabolically and genetic-
ally versatile lifestyle [28,29].
The evolutionary history of L. casei has been viewed

through its population structure; multi-locus sequence
typing (MLST) of 40 L. casei strains isolated from differ-
ent niches indicated the species had diverged into three
lineages [30]. Separation of two major clusters occurred
approximately 1.5 million years ago; one large cluster
contained strains recovered from human, plant, and
dairy sources, while the second and smaller cluster was
predominantly comprised of corn silage isolates. In con-
trast, the third major cluster included 15 strains that
had been isolated from cheese in the United States,
Australia, and Europe, and was predicted to reflect recent
divergence of strains that were highly specialized for this
relatively new ecological niche (manufacture of cheese is
thought to have begun ~8,000 years ago) [30,31]. This
cluster of cheese specialists was also revealed in a follow
up study that explored L. casei genetic diversity by com-
parative genome hybridization (CGH) of 21 strains
against an ATCC 334 whole genome microarray [28].
That work further suggested that adaptation to the
cheese environment had been accompanied by extensive
decay of genes involved in carbohydrate utilization and
transcriptional regulation [28]. Metabolic simplification
via the loss of genes for carbohydrate metabolism has
been associated with adaptation of other LAB species to
the nutrient-rich milk environment [32-35]. Intriguingly,
many of the genes that L. casei cheese specialists lacked
were associated with genomic islands postulated to func-
tion in lifestyle adaptation of other L. casei strains [28].
CGH data for the 21 strains as well as comparative

genome analysis between strains ATCC 334 and BL23
identified numerous hypervariable regions and genomic
islands, respectively, some of which showed an atypical
base composition that is commonly associated with gene
acquisition by HGT [28]. The diversity and distribution
of these regions among different strains indicated that: i)
there was a large pool of accessory genes in the popula-
tion; ii) most L. casei strains were likely niche generalists
that could exploit a variety of habitats and tolerate a
wide range of environmental conditions; and iii) HGT
has played a significant role in the evolution, lifestyle
adaptation, and metabolic diversity of L. casei [28]. How-
ever, these conclusions were softened by the knowledge
that microarray-based CGH analysis cannot identify
genes that may be present in the test strain but absent
from the reference strain, and because the ecological ori-
gin of strain BL23 is unclear [36].
In recent years, the availability of multiple genome

sequences for a single species has demonstrated that a
number of pathogenic bacteria possess an extensive pan-
genome or “supragenome” that may be several fold larger
than the genome of any single strain [22,23,25,37-40].
This discovery has given rise to the Distributed Genome
Hypothesis (DGH), which postulates that access to a
supragenome through homologous recombination allows
individual strains to rapidly shuffle their genetic informa-
tion and overcome host defense responses [41]. Although
the DGH has been almost exclusively applied to describe
genome evolution in pathogens, the circumstances upon
which it is founded (i.e., cells aggregate into polyclonal or
polymicrobial biofilms which facilitates HGT) [41] are
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widespread in the microbial world. Baumdicker et al. [42]
recently showed the DGH extended to nonpathogenic
bacteria, and it was our hypothesis that a distributed
supragenome would drive genome evolution and lifestyle
adaptation in an ecologically flexible species such as
L. casei.
To test this hypothesis, we collected draft sequences

for 12 strains that had been isolated from dairy (n = 5),
plant (n = 5), or human (n = 2) sources that appear to
provide broad representation for the genetic diversity in
L. casei [28,30], and performed comparative genome
analysis between these strains plus the complete
sequences from 5 additional L. casei strains (ATCC 334,
BL23, Zhang, BD-II, and LC2W) in the public database
[21,43-46].

Results and discussion
L. casei genome features
Genome features of the 17 L. casei strains included in
the study, which provide a broad representation of gen-
etic, ecological, and geographical diversity in the species,
are presented in Tables 1 and 2. The 12 new draft
sequences had a range of coverage between 17X and
133X (mean = 31.6X) and ranged in total contig number
from 28–167 (mean = 99 contigs) (Table 1). Using a set
of only three closed genome references (ATCC 334,
BL23, and Zhang), we were able to determine orienta-
tion and order the contigs of each draft. The contig
numbers listed in Table 1 were obtained after contigs
were ordered and oriented in Mauve and the draft was
Table 1 Genome features of the 17 L. casei strains used in the

Strain Origin Ave.
coverage

Number
contigs

Total bp
in contigs

% GC P

ATCC 334 Swiss cheese 8X 2 2,924,325 46.6

M36 Cheddar cheese 19X 78 3,152,126 46.3

UW1 Cheddar cheese 21X 143 2,865,538 46.4

UW4 Cheddar cheese 22X 122 2,758,298 46.4

Zhang Koumiss 6X 2 2,898,335 46.4

BD-II Koumiss 381X 2 3,127,288 46.3

LC2W Dairy product 98X 2 3,077,434 46.3

Lc-10 Dairy product 24X 76 2,951,397 46.4

Lpc-37 Dairy product 133X 150 3,075,253 46.3

BL23 Unknown 34X 1 3,079,196 46.3

12A Corn silage 23X 28 2,885,619 46.4

21/1 Corn silage 26X 75 3,215,878 46.2

32G Corn silage 17X 42 3,011,496 46.4

A2-362 Wine 24X 167 3,361,266 46.1

UCD174 Wine 25X 116 3,071,637 46.4

T71499 Human blood 30X 55 3,000,122 46.2

CRF28 Human blood 24X 57 3,036,548 46.3
1Determined for all genomes using the ASAP database (https://asap.ahabs.wisc.edu
aligned end-to-end based on the advanced order, which
reduced the number of contigs obtained from the de
novo assembly by an average of 20% (data not shown).
Each of the genomes was assembled into scaffolds based
on the placed and unplaced contigs from Mauve, with
the unplaced contigs being ordered by name at the end
of the scaffold.
Although the final contig order was not independently

validated for all 12 draft genomes, an optical restriction
map [47] was used as a reference to validate assembly of
the Lpc-37 genome by this approach (see Additional file
1: Figure S1 in supplementary online material). The
overall arrangement of the contig order for Lpc-37 was
done using progressive Mauve, and alignment of the
contigs to the optical map demonstrates that the method
of assembly and ordering yielded a well ordered draft,
with only a few major gaps. The optical map gave an
estimated genome size of 3,014,302 bp with a total con-
catenated ordered draft length of 2,916,119 bp (~97%
coverage). Based on the alignment between optical map
and draft assembly, the size difference is likely derived
from 3 major sequence gaps approximately 30, 70, and
10kb in size (Additional file 1: Figure S1).
The number of predicted CDS features in each gen-

ome ranged from 2,643 to 3,262, with an overall GC
content of 46.1-46.6% (Table 1). Comparative genomics
of the resulting architecture revealed synteny was rela-
tively high across the L. casei genomes, with several
large blocks of highly conserved gene content across all
17 L. casei strains (Figure 1). These data also indicate
study1

lasmid
DNA

GenBank accession number CDS
features

tRNAs Reference
or source

1 NC_008526 and NC_008502 2,643 59 [21]

AFYO00000000 3,001 57 [30]

AFYR00000000 2,826 54 [30]

AFYS00000000 2,689 57 [30]

1 NC_014334 and NC_011352 2,723 59 [44]

1 CP002618 and CP002619 3,069 59 [45]

1 CP002616 and CP002617 3,019 58 [46]

AFYT00000000 2,780 58 This study

AFYU00000000 2,861 58 This study

0 NC_010999 2,977 60 [43]

AFYJ00000000 2,702 57 [30]

AFYK00000000 3,080 57 [30]

AFYL00000000 2,920 57 [30]

AFYM00000000 3,262 58 [28]

AFYQ00000000 3,020 57 [28]

AFYP00000000 2,796 57 [30]

AFYN00000000 2,911 54 [30]

).

https://asap.ahabs.wisc.edu


Table 2 Orthologous clusters in the L. casei supragenome1

Strain Orthologous clusters

Total Core Pan Distributed Unique % Non-core % Unique

ATCC 334 2,511 796 54 32 2

M36 2,918 1,203 91 41 3

UW1 2,700 1,715 5,935 985 203 36 8

UW4 2,593 878 187 34 7

Zhang 2,649 934 49 35 2

BD-II 2,936 1,221 19 42 1

BL23 2,866 1,151 54 40 2

LC2W 2,893 1,178 29 41 1

Lc-10 2,715 1,000 104 37 4

Lpc-37 2,799 1,084 37 39 1

12A 2,651 936 47 35 2

21/1 2,958 1,243 183 42 6

32G 2,821 1,106 174 39 6

A2-362 3,108 1,393 326 45 10

UCD174 2,879 1,164 240 40 8

T71499 2,745 1,030 85 38 3

CRF28 2,851 1,136 148 40 5
1Downloaded from ASAP (www.asap.ahabs.wisc.edu) September 19, 2011.
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that genome size differences were not due to major
chromosomal insertions, deletions or re-arrangements.
Sequence homology was determined even more accur-

ately when strains were aligned based on gene content
(Figure 2), so that most of the diversity is observed as
indels. As expected, the number of Locally Collinear
Blocks (LCBs) detected using the progressive Mauve
alignment increased with the number of genomes com-
pared. Hierarchical clustering of strains based on overall
gene content yielded a dendrogram with 6 clusters,
designated A-F (Figure 2). When members of each clus-
ter were aligned to each other or to their closest refer-
ence genome, the number of LCBs was reduced, and the
overall sequence homology detected between the strains
was apparent based on the height of the similarity profile
within each LCB (Figure 2). No major genomic rearran-
gements were detected within any of the draft
sequences. Content conservation was even higher within
clusters (Figure 2), most notably for clusters E and F.
Even within clusters B and C, which contain 7 and 3
strains, respectively, overall synteny was high with
mostly localized polymorphic content (Figure 2).
Comparison of the gene content-based dendrogram

(Figure 2) to an MLST-based phylogenetic tree for the
17 L. casei strains examined in this study (Figure 3)
revealed similar clustering for strains in gene content
clusters A, E, F, and parts of B and C. However, MLST-
derived relationships among the remaining strains did
not resemble those derived from overall gene content.
The basis for this observation is well understood;
MLST-based phylogeny reflects relatively slow genome
evolution caused by point mutations and selective pres-
sure, whereas the gene content dendrogram captures
more rapid (and unpredictable) large-scale insertion and
deletion events. Thus, variations between gene content-
and MLST-based dendrograms are expected in bacterial
species like L. casei that display frequent intra-species
recombination [22,25,28,30].

Characterization of the L. casei core and supragenome
Comparative genome analysis between the five complete
and 12 draft genomes provided new insights to the gen-
etic diversity of L. casei. The L. casei genome encodes an
average of 2,800 (±151) orthologous clusters, of which
1,715 were common to all 17 strains analyzed (“core
genome”). Graphing the numbers of core and total fea-
tures ("pan-genome", or total number of different genes
found within a species) as a function of the number of
strains sequenced revealed the slope for core gene num-
ber was approaching an asymptote, whereas the pan-
genome continued to expand even after compilation of
17 genomes (Figure 4A). Overall, differences in L. casei
genome inventory reveal an open pan-genome com-
prised of 1,715 core and 4,220 accessory orthologous
clusters identified to date, including a large number of
unique orthologous clusters in each strain (range = 19 to
326, with an average of 119) (Table 2 and Figure 4B). Ex-
trapolation of these data using the binomial mixture
model described by Snipen et al. [48] yields an estimated
core genome of 1,600 orthologous clusters and a pan-

http://www.asap.ahabs.wisc.edu


Figure 1 Alignment of L. casei genomes. Five closed and 12 new draft genomes were aligned using progressive Mauve. Three boxed areas
outline large highly collinear regions where the order of Locally Collinear Blocks is highly conserved among all 17 strains. The boxes are a fixed
length, so that all region size can be compared, and maps were adjusted to the left to reflect length differences. Vertical red lines indicate contig
boundaries, and unplaced contigs were sorted to the right end of each map.
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genome of 9,072 total orthologous clusters. These find-
ings indicate L. casei has a supragenome that is approxi-
mately 3.2 times larger than the average genome of
individual strains, and support the hypothesis that the
relative size and content of the pan-genome is an indica-
tor of genetic plasticity and potential for environmental
adaptation within a species [48].

Strain-specific features of the L. casei supragenome
Protein homology searches with strain-specific accessory
gene products (i.e., unique to a particular strain)
revealed 8-87% (mean = 54%) of these proteins had
highest similarity to gene products found in other strains
of L. casei or Lactobacillus paracasei (see Additional file
2: Table S1 in the online supplementary material). The
lowest fractions (<50%) were found in the two wine
isolates (A2-362 and UCD174) and three dairy strains
(Lc-10, ATCC 334, and Zhang). Expansion of the ana-
lysis to include gene products with greatest homology to
proteins from other species of lactobacilli accounted for
45-95% (mean = 77%) of the strain-specific accessory
genes products. For example, different proteins with very
high amino acid identity (E value < 1e-80) to orthologs in
the closely related species Lactobacillus rhamnosus were
found in all L. casei strains except three dairy isolates
(M36, BD-II, and BL23). Additionally, strain-specific
accessory genes encoding orthologs with high homology
to proteins from a broad range of other Lactobacillus
species including L. plantarum, L. fermentum, L. brevis, L.
buchneri, L. coryniformis, L. coleohominis, L. farciminis, L.
helveticus, L. hilgardii, L. jensenii, L. kefiranofaciens, L. ois,
L. pentosus, and L. salivarius were sporadically distributed
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Figure 2 Hierarchical clustering of 17 L. casei strains based on overall gene content. Members of each cluster were aligned using Mauve,
and vertical red lines indicate contig boundaries. Locally Collinear Blocks (LCBs) are colored to reveal harmonization within each cluster, but do
not have identity to LCBs of the same color outside a particular cluster. The Lactobacillus casei BL23 genome was used as a reference to order
and orientate contigs for strains included in all clusters except B, where strains 21/1, 32G, and Lc-10 were ordered using the L. casei Zhang
genome as a reference, and strains CRF28 and 12A were ordered based on L. casei ATCC 334. The BL23 alignment is shown with cluster B to
compare genomic similarity.
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among the 17 L. casei strains examined (Additional file 2:
Table S1). Many of these lactobacilli are only distantly
related to L. casei, but all share at least one ecological
niche with this species and theoretically might have con-
tributed to the diversity of the L. casei supragenome.
There were, for example, clear relationships between
ecological co-localization with particular Lactobacillus
species and the unique accessory gene content of indivi-
dual L. casei strains. L. coryniformis, for example, is com-
monly found in fermented plant material (e.g., silage) [2]
and accessory gene products with very high homology
scores to various proteins from this species were found
within each of the five silage and wine isolates, but not in
any of the human or dairy strains (Additional file 2: Table
S1). Similarly, L. casei strains of dairy origin had a greater
prevalence of accessory genes whose products gave very
high homology scores to different proteins from L. fermen-
tum (Additional file 2: Table S1), a species commonly found
in milk products [2].
Overall, L. casei plant isolates showed the most diverse

repertoire of strain-specific accessory genes. Genes en-
coding orthologs with high amino acid identity to differ-
ent proteins from L. plantarum, L. buchneri, and L.
pentosus, for example, were most prevalent in plant



Figure 3 Genetic relationships among 17 L. casei strains as
defined by multilocus sequence typing. Concatenated sequences
of 6 MLST loci (ftsZ, metRS, mutL, pgm, nrdD, and polA) were
analyzed as described previously [30].
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isolates, as were proteins with orthologs in distantly related
bacteria such as Enterococcus, Streptococcus, Bacillus, and
Clostridium species (Additional file 2: Table S1). Finally,
accessory genes with very high homology scores to vari-
ous proteins from Listeria sp. were detected in each of
the human L. casei isolates and in the three dairy
strains, but not in any of the plant isolates, even though
Listeria are commonly recovered from vegetation [49].
If niche-associated gene exchange contributes to the

composite nature of the L. casei supragenome, and this
process is important to L. casei strain evolution and life-
style adaptation, then one might expect to find evidence
of relatively recent events among different strains. In-
deed, several insertion sequence elements in L. casei strains
shared at least 99% nucleotide sequence identity
with elements that have been identified in the ge-
nomes of L. rhamnosus, L. brevis, L. buchneri, L.
fermentum, Oenococcus oeni and even Listeria innocua
(see Additional file 3: Table S2 in the online supple-
mentary material). More interestingly, L. casei strains
UCD174, BD-II, and UW1 each possess a unique
polycistronic region encoding features associated with
lifestyle adaptation [28] that share very high (98-99%)
nucleotide sequence identity with genomic regions in
L. plantarum or L. brevis (see Additional file 3: Table
S2 and Additional file 4: Figure S2 in the supplemen-
tary online material). Only one strain of L. brevis has
been sequenced to date, but nucleotide BLAST searches
showed each of the clusters with homology to L. plantarum
was common among sequenced strains of that species.
The four-gene cluster found in L. casei UW1 is virtu-

ally identical to a locus in L. brevis ATCC 367 that
encodes an ABC sugar transport system of unknown
specificity (Additional file 4: Figure S2A). Tests on sub-
set of nine stains, including UW1, for the ability to grow
in CDAA supplemented with one of 60 different sub-
strates did not reveal any capability that was unique to
strain UW1 (see Additional file 5: Figure S3 in supple-
mentary online material), so the function of this gene
cluster remains unclear. In both species, the cluster
is flanked on one side by a gene for transposase
(Additional file 4: Figure S2A), and the G+C content
of the cluster (ORFs range from 37-39%) is conside-
rably lower than that of either species' genome (46%)
(Table 1 and Additional file 3: Table S2), suggesting
the cluster may have been acquired by one or both
species from a third donor.
The polycistronic cluster identified in L. casei BD-II is

plasmid borne, and carries five of the six genes that
comprise the L. plantarum lar operon [50] (Additional
file 4: Figure S2B). Goffin and coworkers [50] showed
lar is required for lactate racemization activity in L.
plantarum, but the function of most lar-encoded
proteins, or even whether all six genes are required
for this activity, remains unknown. D-lactate is a
component of the cell wall in L. plantarum and L.
casei, and Goffin et al. [50] suggested Lar activity
may provide the cell with a rescue pathway for D-
lactate production under conditions that inhibit D-
lactate dehydrogenase activity. The lar genes of L.
casei BD-II show 98-99% nucleotide sequence identity
to their counterparts in L. plantarum, and the BD-II
locus is flanked on each side by transposase genes
(Additional file 4: Figure S2B). There are no transpo-
sase genes in the immediate vicinity of the lar op-
eron in L. plantarum. Collectively, these observations
provide good evidence that the lar locus in L. casei
BD-II was acquired via HGT from L. plantarum, but
its role, if any, in lifestyle adaptation must yet be
determined.
The third and most compelling example of lifestyle

evolution via HGT was found in the wine isolate L. casei
UCD174. This bacterium contains a polycistronic cluster
for L(+)-tartrate catabolism and malate transport that
was previously thought to be one of three defined L.
plantarum-specific gene clusters [51]. Tartaric and malic
acids are the primary acids in grapes and therefore the
strongest acids in wine. Tartrate dehydratase allows cells
to convert tartrate to oxaloacetic acid, an important
metabolic intermediate, and malate transport and me-
tabolism are known to enhance acid tolerance in L. casei
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A2-362       21/1         32G      CRF28     Lc-10      12A        Zhang   ATCC 334    M36     Lpc-37    T71499   UCD174    UW1      UW4        BD-II      LC2W      BL23 

Figure 4 Feature numbers for the core and pan-genome across 17 L. casei strains. Panel A shows numbers of total features in the core
(blue) and pan-(red) genome as a function of the number of strains sequenced. The average of 500 random permutations of the genome order
is presented for the pan and core genome content; the error bars represent the standard deviation of these results. The heat map in panel B
illustrates the distribution of core and accessory genes (combined in red) across the 17 sequenced strains. New accessory genes that are
contributed to the pan-genome by each strain's sequence are depicted as a red cap at the top of each strain name. Black regions under that cap
indicate features missing in that strain but present in one or more of the other sequenced L. casei.
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and other lactic acid bacteria [52-54]. Thus, acquisition
of this cluster by UCD174 very likely promoted survival
and adaptation of this strain to the acid environment of
wine. Features of the UCD174 tartrate dehydratase clus-
ter, including 99% nucleotide sequence identity over the
cluster and associated aroAB genes with the correspond-
ing L. plantarum locus, and the presence of flanking
transposase genes in UCD174 (Additional file 4: Figure
S2C), provide strong evidence that the locus was
acquired by HGT from L. plantarum.
Finally, we have noted L. rhamnosus might be an im-

portant source of genetic diversity in L. casei, but also
found evidence that the reverse may be true. Of the nine
publicly available complete or draft genome sequences
for L. rhamnosus, only two strains, GG (ATCC 53103)
and LMS2-1, contain a genomic region that encodes
three secreted LPXTG-like pilin proteins (SpaCBA) plus
a dedicated sortase for their export [55]. Functional gen-
omic studies showed the SpaCBA pilus promotes adhe-
sion to intestinal epithelial cells, and may function to
modulate interleukin-8 expression that is induced by
lipoteichoic acid or other surface molecules [56]. While
the spaCBA locus and associated sortase are clearly un-
common among L. rhamnosus strains, it is fully con-
served in L. casei strains ATCC 334, BL23, Zhang, and
T71499, and present but probably inactive (due to
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frameshifts or deletions) in L. casei strains 21/1, M36,
CRF28, UW4, A2-362, 32G, Lc-10, and Lpc-37. Collect-
ively, these strains span the major MLST-defined genetic
lineages for L. casei [28,30], which suggests the genes
were not recently acquired. The spaCBA and sortase
genes of L. casei ATCC 334 show 95-99% nucleotide se-
quence identity to their counterparts in L. rhamnosus,
whose locus is also flanked by transposase genes that are
virtually identical to elements found in L. casei. There
are no transposase genes in the immediate vicinity of the
spaCBA cluster in the L. casei strains sequenced to date.
Collectively, these observations provide compelling evi-
dence that the spaCBA locus in L. rhamnosus GG and
LMS2-1 may have originally been acquired via HGT
from L. casei.
Overall, the composite nature of the L. casei strain-

specific accessory gene pool and the presence of gene
clusters in some strains that appear to have been re-
cently acquired support our hypothesis that evolution of
the L. casei supragenome has been heavily influenced by
ecological co-localization with other bacterial species.
Placed within the greater context of the DGH, we
propose that L. casei, and probably other ecologically
flexible species, have access to a supragenome whose
composition is not exclusive to the species, but instead
might be viewed as a subset of the microbial metagen-
ome within a particular niche. While the primary mech-
anism(s) for supragenome access by L. casei are
unknown, natural transformation has never been
demonstrated in lactobacilli, and the prevalence of IS
elements and plasmid-linked traits among genes that ap-
pear to have been recently acquired (see Additional file
3: Table S2) suggest that conjugation may be a key driver
of HGT in L. casei. However, the widespread distribution
of phage-related proteins among the L. casei accessory
gene pool (Additional file 2: Table S1) suggest transduc-
tion could also be an important mechanism for genome
evolution in this species.

Adaptive immunity against invasive DNA
Although conjugation and transduction may be important
mechanisms for HGT in L. casei, these and other bacteria
have also acquired sophisticated mechanisms to combat
invasive bacteriophage and plasmid DNA. One key ex-
ample is the CRISPR-Cas adaptive immunity system,
which consists of clustered regularly interspaced short pal-
indromic repeats (CRISPR) adjacent to cas (CRISPR-asso-
ciated) genes. The CRISPR loci are comprised of partially
palindromic repeats separated by short stretches of "spa-
cer" DNA that are acquired from invasive bacteriophage
or plasmid DNA. Once present, these spacer sequences
allow cells to recognize and cleave invasive DNA that con-
tains those sequences [57-60]. Two distinct types of
CRISPR loci were identified in the L. casei genomes. These
two loci are typically characterized by idiosyncratic
CRISPR repeats: 5’-GTCTCAGGTAGATGTCGAATCA
ATCAGTTCAAGAGC-3’ for the Type II-A (Lsal1 family)
locus, and 5’-GTTTTCCCCGCACATGCGGGGGTGAT
CCC-3’ for the Type I-E (Ldbu1 family) locus. Such
repeats have been previously identified in a variety of
lactobacilli, including L. salivarius, L. casei and L.
rhamnosus for Lsal1, and L. casei, L. delbrueckii, L.
fermentum, L. acidophilus and L. brevis for Ldbu1
[61]. Overall, CRISPR repeats were highly conserved,
with >97% typical repeats across Lsal1, and >96% typ-
ical repeats for Ldbu1 (data not shown).
Lsal1-type CRISPR loci were identified in 11 strains,

while Ldbu1-type loci were identified in 3 strains, with
both types present in the M36 genome (Figure 5A). Only
four strains (32G, A2-362, 12A, and UW4) did not pos-
sess CRISPR loci. The cas content for the Lsal1 loci is
typical of Type II-A systems [62], with the universal cas1
and cas2, in combination with the cas9 signature gene.
Also, a tracrRNA homologous to those found in Type II
systems [63] was identified in the intergenic region be-
tween cas9 and cas1. Though universal genes were
highly conserved, up to 19% nucleotide polymorphism
was observed for the cas9 signature gene. The genomic
location of these loci across the 13 strains was consist-
ent, and occurred immediately following LCABL_23790
homologs (Figure 5A). The cas content for Ldbu1 is typ-
ical of Type I-E systems [62], with the universal cas1
and cas2, in combination with the cas3 signature gene,
and Cascade-encoding genes, notably cas6e [62,64].
As expected, the spacer content was hypervariable

across CRISPR loci from different strains, with spacer
numbers ranging from 4 to 44 for Lsal1, and between 21
and 60 for Ldbu1 (Figure 5B). Of note, identical sets of
spacers were conserved across cluster F strains (BL23,
BD-II and LC2W) indicating very close genetic related-
ness, which is also reflected in strain clustering based
on overall gene content and MLST analysis (Figures 2
and 3). Several sets of contiguous spacers were also con-
served between cluster F strains and strains Lc-10 and
Zhang, which suggest common ancestry or HGT inheri-
tance of this CRISPR locus. In contrast, spacer content
showed more typical hypervariability across the other
strains, with only 1 spacer shared between UW1 and
UCD174 (Figure 5B). For Ldbu1, however, several sets of
contiguous spacers were conserved between the dairy
strains Lpc-37 and M36 (Figure 5B).
Analysis of spacer sequences revealed that numerous

spacers show homology to Lactobacillus phages (Lc-Nu,
A2, Lrm1, and J1) and plasmids (pYIT356, pREN, and
pLgLA39) (Figure 6). Analysis of sequence conservation
in the direct vicinity of proto-spacers that showed simi-
larity or identity to CRISPR spacers revealed the pres-
ence of proto-spacer associated motifs (PAM) [65-67],



A

B

Figure 5 Graphic representation of CRISPR elements in L. casei genomes. Panel A, graphic representation of CRISPR-cas loci. Top, Type II-A
CRISPR-Cas systems; Bottom, Type I-E CRISPR-Cas systems. cas genes are represented by colored arrows, while CRISPR repeat-spacer arrays are
represented as orange (top) and blue (bottom) boxes. IS elements are colored in green. Numbered genes represented by narrow box arrows
refer to previously published nomenclature. Homologous genes are represented using identical colors. Hashed elements represent gaps in the
genome draft sequence. Panel B, graphic representation of CRISPR spacers across the two CRISPR-Cas types found in L. casei. Each unique spacer
sequence is represented as a specific combination of two colors. Repeats are not included. Missing spacers are represented by crossed squares.
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namely, a conserved TGAAA immediately downstream
of the Lsal1 protospacers, and AAY immediately up-
stream of the Ldbu1 protospacers (Figure 6). The
TGAAA pentamer is homologous to the AGAAW PAM
previously identified downstream of protospacers in
Streptococcus thermophilus Type II systems [58,65,66].
Overall, CRISPR locus hypervariability across strains,

in terms of occurrence, locus type and spacer content
illustrates their functional value in response to environ-
mental pressure, notably in providing resistance against
phages. This polymorphism indicates CRISPR loci are
desirable targets for typing of L. casei strains, in
disagreement with a previous report [68]. The critical
role that CRISPR-Cas systems play in resistance to
viruses has been documented in dairy cultures
[57,58,65,66,69], as well as environmental samples
[60,70-74]. The occurrence of numerous L. casei CRISPR
spacers with homology to Lactobacillus phages (notably
Lc-Nu, Lrm1, A2 and phi AT3) that prey upon closely
related species (Figure 6) combined with the larger num-
bers of spacer sequences in strains isolated from com-
mercial cheese production environments (Lc-10, Lpc-37
and M36) further underscores the selective pressure
against phage infection that exists in industrial dairy



Figure 6 CRISPR spacer homology to genetic elements and proto-spacer associated motifs. Left, top 10 matches between CRISPR spacers
and corresponding proto-spacers in phages, plasmids and chromosomal sequences. Numbers indicate the spacer position from the leader end.
Levels of sequence similarity, location of the start and end of the match, and sequence immediately upstream (START-7) or immediately
downstream (END+7) are provided. Right, conservation of certain nucleotides in the immediate vicinity of the proto-spacer sequence.
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manufacturing environments. The propensity of hyper-
variable CRISPR loci for HGT [75] is also illustrated
within L. casei by the co-occurrence of various IS ele-
ments for both types of loci (Figure 5A), the sharing of
contiguous spacer sets across strains that belong to dif-
ferent phylogenetic clusters (Figures 2 and 5B), and the
skewed GC content of cas genes (50-63% for Ldbu1 cas
genes versus 46.5% genome-wide content). Overall, these
results highlight the reliance of L. casei strains on
CRISPR-Cas systems to provide immunity against inva-
sive elements, as previously shown in bacteria and ar-
chaea [57,59,60,76,77].

Evolution via genome decay
Our results and previous studies [21,28] have indicated
HGT is a dominant force in genome evolution of L.
casei, but a prior CGH experiment also provided evi-
dence for a genetically distinct and geographically dis-
tributed cluster of L. casei cheese specialists whose
evolution was accompanied by extensive decay of genes
involved in carbohydrate utilization and transcriptional
regulation [28]. This hypothesis is supported by the fact
that energy production in L. casei is primarily derived
from carbohydrate fermentation, so niche adaptation
should be heavily predicated by the ability of strains to
utilize available carbohydrate. Fermenting plant material,
for example, can contain a diverse array of simple and
complex carbohydrates as well as sugar alcohols [27],
and many of these substrates will also be encountered in
the GI tract as a consequence of diet. Thus, the ability
to utilize C5 sugars and certain C5 and C6 sugar alco-
hols is more prevalent in L. casei isolated from plant
material and the human GI tract than in cheese isolates
[30]. The overlap in carbohydrate availability and use by
L. casei associated with plants or the gastrointestinal
tract also supports the hypothesis that many strains from
these environments should be viewed as ecological gen-
eralists, whereas adaptation to cheese has been accom-
panied by extensive genome decay that, ultimately,
resulted in niche specialization [28].
To explore the role of genome decay in the relation-

ship between niche adaptation and substrate utilization,
we tested a subset of nine stains (ATCC 334, 21/1, 32G,
M36, CFR28, T71499, 12A, UW1 and UW4) distributed
across the major MLST-defined L. casei lineages [28,30]
for the ability to grow in CDAA supplemented with one
of 60 different substrates associated with plant, gut, or
dairy niches. Growth was detected on a total of 30 sub-
strates, with individual strains able to utilize as few as 17
to as many as 26 different substrates (Additional file 5:
Figure S3). Results showed the two cheese specialists
UW1 and UW4, which share the same MLST lineage
(Figure 3), had the most restricted substrate profile with
growth on 18 and 17 different substrates, respectively.
Each of the other strains was able to utilize at least 20
different carbohydrates, while two of the corn silage iso-
lates (32G and 12A) each grew on 26 substrates, al-
though their profiles were not identical (Additional file
5: Figure S3).
The genetic basis for utilization of many of these sub-

strates is unknown, and efforts to detail the impact of gen-
ome decay on different substrate profiles is further
challenged by the fact that most of L. casei genome
sequences used for this study are incomplete. Nonetheless,
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evidence for genome decay in the evolution of the cheese
specialist strains UW1 and UW4 was observed in regard
to genes for inulin, sucrose and cellobiose utilization. In L.
casei, the ability to ferment sucrose and inulin is encoded
by an operon for fructooligosaccharide utilization (fos)
[78,79] that is present in the other seven strains tested,
which were all sucrose- and inulin-positive, but completely
absent in UW1 and UW4.
In contrast to the single fos operon, we identified nine

distinct gene clusters among the 17 L. casei genomes
studied here that may function in cellobiose utilization
(Figure 7). Cellobiose is a disaccharide formed by en-
zymatic or acid hydrolysis of cellulose that, like sucrose
and inulin, may be encountered in plant material or in
the human gastrointestinal tract but not in milk or
cheese. Each of the nine strains analyzed in this part of
the study possessed single copies of one (UW1) to eight
(21/1 and 12A) of these gene clusters (Figure 7), and all
but UW1 were able to ferment cellobiose (Additional file
5: Figure S3). While the function of each cluster in cello-
biose utilization (as opposed to other β-glucosides) has
not been demonstrated, data for strains ATCC 334 and
UW4 show at least two of these clusters must enable
Cluster 1:  
TR      Mem Prt                P- -Glu                   EIIA          EIIC        

Cluster 2:  
-Glu                            ABC-SB        ABC-SB         ABC-P  

Cluster 3:  
P- -Glu                     EIIABC                  AT                      Mem

Cluster 4:  TR               P- -Glu                   EIIC           Mem Prt     EIIA     E

Cluster 5:   TR             P- -Glu                     EIIABC                AT   ABC-ATP

Cluster 6:  
EIIA   EIIB            -Glu         N-AcM K  Hyp Prt      -Mannosida

Cluster 7:  
-Glu                     Sugar Phosphorylase  Hyp Prt   ABC-P 

Cluster 9:  AT            EIIABC                     P- -Glu                       Hyp Prt 

Cluster 8:  
EIIBC        EIIA       -Mannosidase         TR              -Glu          

Figure 7 L. casei gene clusters that may function in cellobiose uptake
nonfunctional in particular strains due to the presence of one or more pse
glucosidase; ABC-ATP, ABC-P, and ABC-SB represent ATP-binding, periplasm
transport system; EIIABC, EIIA, EIIB, EIIBC, or EIIC, represent sugar-specific en
transcriptional regulator; Mem Prt, predicted membrane protein of unknow
acetymannosamine kinase. Locus tags in L. casei ATCC 334 for the glucosid
and LSEI_2191, respectively. Locus tags in 21/1 for the glucosidase CDS in
respectively. The locus tag in T71499 for the glucosidase CDS in cluster 9 is
cellobiose fermentation in L. casei (Figures 7 and S3).
Cross comparison of the distribution of clusters 1 to 6
across the MLST lineages for the nine L. casei strains
tested (Figures 3 and 7) provides clear evidence of gen-
ome decay; many clusters are entirely absent, presum-
ably due to deletion events, and all but 12A contained at
least one cluster that was predicted to be nonfunctional
due to frameshift mutations (Figure 7). The single clus-
ter in the cellobiose-negative strain UW1, for example,
was predicted to be nonfunctional (Figure 7). Finally,
examination of all 17 genomes included in this study
confirmed the cheese specialists UW1 and UW4 had the
fewest total cellobiose clusters, and were the only strains
lacking cluster 5.

Conclusions
In bacteria, the concept of species is traditionally
anchored to features that are encoded by the core gen-
ome, but which often do not adequately describe the
genetic diversity that is characteristic of a particular spe-
cies [22,80]. Thus, there is increasing awareness that a
large number of strains, preferably of disparate origin,
must be sequenced to gain an accurate understanding of
Distribution: 

ATCC 334*, 21/1*, 12A, 32G, CRF28 

ATCC 334*, UW1*, UW4, M36*, 
21/1*, 12A, T71499*, CRF28* 

ATCC 334, UW4*, M36*, 21/1, 
T71499*, CRF28* 

ATCC 334*, UW4, M36, 21/1, 12A, 
32G*, T71499, CRF28* 

ATCC 334, M36, 21/1, 12A, 32G, 
T71499, CRF28 

M36, 21/1, 12A, 32G, CRF28 

21/1* 

21/1, 12A 

T71499 

   EIIB 

   ABC-ATP 

 Pr 

IIB 

  ABC-ATP   

se             EIIC           TR 

  ABC-P    ABC-P       TR 

 N-AcM K  

and hydrolysis. Asterisks identify clusters that are predicted to be
udogenes. Abbreviations: P-β-Glu, phospho-β-glucosidase; β-Glu, β-
ic, and substrate-binding components, respectively, of an ABC
zymes for a PTS transport system; AT, antiterminator protein; TR,
n function; Hyp Prt, hypothetical protein; N-AcM K, N-
ase CDS in clusters 1–5 are LSEI_0448, LSEI_0700, LSEI_1104, LSEI_1778,
clusters 6–8 are LCA211_0376, LCA211_0004, and LCA211_2196,
LCAT71499_1435.
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the evolution and biology of a particular bacterial spe-
cies. To our knowledge, this is the first study to explore
genome evolution and diversity in an ecologically flex-
ible lactic acid bacterium using genome sequences from
a large number of ecologically divergent strains.
As is depicted in Figure 4, the 17 L. casei genomes

included in the study were not sufficient to capture the
full pan-genome of this remarkable species. Indeed,
mathematical extrapolation of these data indicated only
2/3 of the actual L. casei pan-genome has been
sequenced to date (5,935 orthologous clusters found ver-
sus an estimated 9,072 total). Evidence for a much larger,
open pan-genome was also provided by hierarchical
clustering of strains based on overall gene content, since
2 of the 6 clusters (A and D) currently contain single
isolates. Overall, our findings indicate L. casei has an
open and distributed supragenome that is approximately
3.2 times larger than the average genome size for indi-
vidual strains.
Characterization of the L. casei supragenome sug-

gested its composition has been influenced by ecological
co-localization with other bacterial species, especially
lactobacilli. These findings provide additional confirm-
ation that the DGH extends to non-pathogenic species
[42], and indicate ecologically flexible bacteria like L.
casei have access to a supragenome whose composition
might be viewed as a subset of the microbial metagen-
ome within a particular ecological niche. Finally, our
results also provide support for the hypothesis that HGT
has been a dominant force in adaptation of L. casei to
new habitats and lifestyles, and that evolution of a genet-
ically distinct and geographically distributed cluster of L.
casei cheese specialists has been accompanied by exten-
sive decay of genes associated with carbohydrate
utilization [28].

Methods
Genome sequencing and assembly
Genomic DNA was extracted using a MasterPure Gram-
Positive DNA Purification Kit (Epicentre Biotechnolo-
gies, Madison, WI). All 12 of the genome drafts were
sequenced using a whole-genome shotgun strategy by
pyrosequencing (GS FLX Titaninum 454 Life Sciences).
The Lpc-37 and Lc-10 genomes were sequenced by Uni-
versity of Illinois-Urbana Champaign under contract ser-
vices. The remaining 10 genomes were sequenced as a
contract service by the Génome Québec Innovation
Centre at McGill University (Montreal, Canada). Result-
ing sequences were assembled de novo using NGen Seq-
Man 2.0 (DNAstar, Madison, WI). The draft contigs for
each genome assembly were compared to all five pub-
lished genomes (Table 1) using progressive Mauve gen-
ome alignment software [81] and visually inspected for
the best overall matching Local Collinear Blocks (LCBs).
Based on the best matches, each draft was individually
ordered and contigs oriented, but unlocated contigs
were not scaffolded. Using the new contig orientation
and order, the drafts assemblies were improved by hand
curation in silico using SeqMan 8.1.2 (DNAstar). For
strain Lpc-37, the draft genome assembly was also vali-
dated by comparison to a NheI optical restriction map
(OpGen Inc, Gaithersburg MD) (see Additional file 1:
Figure S1 in supplementary online material).
Initial annotations were generated using the RAST an-

notation server (http://rast.nmpdr.org/) with subsequent
manual inspection and curation, including comparative
analyses to improve consistency among orthologous
groups. Pseudogene assignments were not exhaustive
and were based on the available sequence; they may be
influenced by sequencing artifacts due to the draft na-
ture of the genomes.

Ortholog predictions
Ortholog predictions were made based on reciprocal-
best Basic Local Alignment Search Tool (BLAST; http://
blast.ncbi.nlm.nih.gov/Blast.cgi) hits using a cutoff of
80% identity over 80% of the length. Confirmation of the
reciprocal BLAST data and additional ortholog predic-
tions were generated from whole-genome Mauve align-
ment data using a custom script and the A Systematic
Annotation Package (ASAP) for Community Analysis of
Genomes database (https://asap.ahabs.wisc.edu) [82].
This script uses synteny to determine whether features
should be confirmed as orthologs, and can add orthologs
based on genome context in cases where the BLAST
results are ambiguous (e.g. paralogs) or that fail the cut-
offs. This allows the initial BLAST assessment to be
more strict, preventing the inclusion of homologs in the
ortholog table and providing a one-to-one ortholog rela-
tionship between genomes.

CDS and MLST dendrograms
A present/absent matrix of the CDS in all 17 strains of
L. casei was created by a custom script and used to gen-
erate a dendrogram by the Ward method of hierarchical
clustering (JMP version 9). Multiple sequence align-
ments were performed using molecular evolutionary
genetic analysis (MEGA) software version 4 (http://
www.megasoftware.net). A minimum evolution (ME)
tree for all 17 L. casei strains was constructed using
MEGA 4 based on the results of a bootstrapping test
(1000 replicates) of strain phylogeny [83]. The phylogen-
etic tree was linearized assuming equal evolutionary
rates in all lineages [84]. The evolutionary distances
were computed using the modified Nei-Gojobori
method [85] and are presented in the units of the
number of synonymous substitutions per synonymous
site. All positions containing gaps and missing data

http://rast.nmpdr.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://asap.ahabs.wisc.edu
http://www.megasoftware.net
http://www.megasoftware.net
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were eliminated from the dataset (complete deletion
option).
To estimate the divergence time among different L.

casei clusters, the concatenated sequences of 6 MLST
loci (ftsZ, metRS, mutL, pgm, nrdD, and polA) were ana-
lyzed as described previously [30]. Divergence times be-
tween different clusters were indicated in a scale of
millions of years. Calculations were based on the num-
ber of single nucleotide substitutions in each strain, and
the estimated rate of single nucleotide substitutions be-
tween Escherichia coli and Salmonella enterica of 4.7 ×
10-9 per site per year [86,87].

Estimation of the L. casei core and pan-genome size
Protein coding features in each genome were grouped
using OrthoMCL [88] with default settings and the
resulting data were uploaded to the ASAP database.
These data were retrieved from the database with a cus-
tom script that organized the feature IDs into a tab-
delimited matrix allowing for identification of accessory
genes (all features not included in the core genome) and
strain-specific genes (unique to a single isolate) by in-
spection of this table. The best hits of the strain-specific
features from a BLAST [89] analysis against the nr data-
base using default parameters were collected and are
presented in Additional file 2: Table S1. Graphical depic-
tions of L. casei pan and core genome data, including
the heat map, were generated using a custom php-based
script that polls these data from the ASAP database and
builds a present/absent matrix. Pan and core genome
size estimates were derived with an R-package using a
binomial mixture model [48].

CRISPR identification and characterization
CRISPR loci were identified using a combination of
homology to previously indentified repeats [61], de novo
identification using CRISPRFinder [90] and repeat region
identification using Dotter [91]. Spacers were visualized
as previously described [66], and homologies to foreign
genetic elements were assessed using BLAST [92].
CRISPR loci sequences were independently confirmed
by Sanger sequencing of PCR amplicons. Nucleotide
conservation between CRISPR spacers and correspond-
ing proto-spacers in phages, plasmids and chromosomal
sequences were visualized using WebLogo [93].

Carbohydrate utilization
L. casei strains 21/1, 12A, M36, UCD174, A2-362, 32G,
T71499, CRF28, UW1, UW4, and ATCC 334 were trans-
ferred from -80C freezer stocks into MRS broth (Difco
Laboratories, Detroit, MI) and grown overnight (16–18 h)
at 37°C. Strains were inoculated at 1% (v/v) into a filter-
sterilized chemically defined amino acid medium (CDAA)
with 25 mM galactose and incubated 16–18 h at 37°C.
The CDAA was comprised of 114 mg sodium acetate,
171 mg sodium citrate, 171 mg ammonium chloride,
343 mg potassium phosphate (monobasic), 343 mg po-
tassium phosphate (dibasic), 114 mg magnesium sulfate
tetrahydrate, 6 mg iron sulfate hexahydrate, 6 mg man-
ganese sulfate tetrahydrate, 4 g sodium chloride, 228 mg
L-phenylalanine, 455 mg L-tyrosine, 6 mg L-adenine, 6
mg L-guanine, 6 mg L-uracil, 6 mg L-xanthine, 351 mg
DL-aspartate, 245 mg L-glutamate, 545 mg L-trypto-
phan, 443 mg L-alanine, 312 mg L-arginine, 746 mg L-
asparagine, 857 mg L-cysteine, 816 mg L-glutamine, 341
mg glycine, 900 mg L-histidine, 923 mg L-isoleucine,
326 mg L-leucine, 428 mg L-lysine, 148 mg DL-methio-
nine, 93 mg L-proline, 946 mg DL-serine, 404 mg DL-
threonine, 651 mg L-valine, 24 mg L-cystine, 1 mL trace
elements solution [94], 0.4 mL Tween 80, 0.4 mL Tween
20, 0.4 mL Tween 60, plus 10 mL RPMI 1640 vitamin
solution (100X; added prior to experimentation), and
pH adjusted to 5.5.
Cells were collected by centrifugation at 13,000 x g for

5 min at 4°C, then suspended in CDAA lacking carbohy-
drate. Samples of each strain were then added to a final
absorbance at 595nm (A595) of 0.1 into 1 mL CDAA
adjusted to pH 5.5 that contained 2 mM galactose as a
growth booster plus one of the following substrates: 25
mM meso-erythritol, D-xylose, D-ribose, D-arabinose, D-
adonitol, D-arabitol, D-xylitol, D-glucose, D-mannose,
D-galactose, D-fructose, lactone, D-mannitol, D-galacti-
tol, D-sorbitol, myo-inositol, D-glucosamine, n-acetyl D-
glucosamine, sialic acid (Indofine Chemical Company,
Inc., Hillsborough, NJ), lactulose, D-lactose, D-sucrose,
D-turanose, D-maltose, D-cellobiose, D-trehalose, D-
maltitol, D-lactitol, D-raffinose, or D-melezitose; or 4.5
mg/mL (which is equivalent to 25 mM glucose) of hep-
arin, N-acetyl-D-galactosamine, fucose, panose, galact-
osamine, amylopectin, high methylated pectin, stachyose,
pectin, arabinogalactan, rhamnose, inulin, mucin, or phy-
tic acid; or 12.5 mg/mL isomaltose, galacturonic acid,
polydextrose, glucuronic acid, amygdalin, maltotriose,
pullulan, amylopectin, carboxymethyl cellulose, xylan,
lignin, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin,
dextrin, or amylose. Unless noted, substrates were pur-
chased from Sigma-Aldrich Co. (St. Louis, MO). Strains
A2-362 and UCD174 were not included in these studies
because they were unable to grow well in CDAA.
Inoculated mixtures were incubated at 37°C under

static conditions. Aliquots (50 μl) were periodically col-
lected over a 48 h period, placed in a 96-well microtiter
plate, and A595 was determined using a 96 well plate-
reader (Bio-Rad, Hercules, CA). Uninnoculated mixtures
containing individual substrates were used as blanks for
the plate reader. Carbohydrates that produced a turbid
sample at time 0 (amylopectin, mucin, carboxymethyl
cellulose, xylan, lignin, α-cyclodextrin, γ-cyclodextrin,
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β-cyclodextrin, dextrin, and amylose) were diluted in a
0.9% sterile saline solution and plated on MRS agar
(Difco Laboratories) using the drop plate method [95].
Plates were incubated at 37°C for 48 h prior to colony
enumeration.
All growth experiments were performed in triplicate,

and the ability to utilize a particular substrate was deter-
mined by two-tailed student’s t-test comparison (α =
0.05) between the mean A595 values from cells incubated
in CDAA containing no carbohydrate versus CDAA
containing the substrate of interest. A dendrogram
showing the relationships between strains in regard to
substrate utilization was created using the Ward method
in hierarchical clustering (JMP version 9, SAS Institute
Inc., Cary, NC).

Identification of cellobiose gene clusters
Putative gene clusters for cellobiose utilization were
identified by keyword screening of gene annotations for
“β-glucosidase”, and by BLAST homology searches of
each genome using β-glucosidase protein sequences
from the Carbohydrate-Active enZYmes database (www.
cazy.org). Neighboring genes were then examined for
support functions such as cellobiose transport and tran-
scription activators or terminators.

Additional files

Additional file 1: Figure S1. Comparative analysis of the L. casei Lpc-37
chromosome Optical Map with its in silico equivalent. Shown are: (a) in
silico Optical Map contigs were ordered in an alternating pattern to
demonstrate the boundaries of the current ordered draft, without
unplaced contigs; (b) The NheI Optical Map of Lpc-37 used as a reference
to independently validate the assembly and order of the contig draft.
Orange shaded regions indicate where alignment match more than once
and blue regions indicate a single alignment match. Green boxes
highlight the regions that have no coverage in the ordered draft. Site 1
is approximately 30kb, site2 is approximately 70kb and site 3 is
approximately 10kb. Part (c) depicts the concatenated sequence of the
ordered contigs in the draft of Lpc-37, without the unplaced contigs; and
(d) shows the remaining unplaced contigs were very small and could not
be ordered based on Optical Map alignment.

Additional file 2: Table S1. Protein homology data for predicted strain-
specific accessory gene products in L. casei strains.

Additional file 3: Table S2. Evidence for recent intraspecific and niche-
associated horizontal gene transfer in L. casei.

Additional file 4: Figure S2. Polycistronic clusters that may reflect
recent intraspecific and niche-associated horizontal gene transfer in L.
casei. Panel A, graphic representation of an ABC sugar transport system
found in L. casei UW1 and L. brevis ATCC 367. Abbreviations: lacL = β-
galactosidase large subunit; lacM = β-galactosidase small subunit;
LVIS_2257 = ABC-type sugar transport system, ATPase component;
LVIS_2256 = multiple sugar ABC transporter, substrate-binding protein;
LVIS_2254 and LVIS_2255 = multiple sugar ABC transporter, membrane-
spanning permease protein; LVIS_2252 = oxidoreductase; reg =
transcriptional regulator; hyp = hypothetical protein; tn = transposase.
Panel B, graphic representation of the plasmid-coded partial lar operon
present in L. casei BD-II and its alignment with a corresponding region of
the L. plantarum genome. Abbreviations: cbiM = cobalt ABC transporter,
substrate-binding protein; lp_0103 = transcriptional regulator; larA =
phosphoribosylcarboxy-aminoimidazole (NCAIR) mutase; larB = unknown
function; larC1 and larC2 = unknown function; glpF1 = glycerol uptake
facilitator protein; larE = unknown function; lp_0111 = quinone
oxidoreductase; thiM = hydroxyethylthiazole kinase. Panel C, graphic
representation of the tartrate dehydratase operon and flanking genes
found in L. casei UCD174 and their alignment with a corresponding
region in the L. plantarum genome. Abbreviations: mtsA = manganese
transport system, ATP binding protein; citG = 2'-(5''-triphosphoribosyl)-3-
dephospho-CoA synthase; ttdR = transcription regulator tartrate operon;
ttdA = tartrate dehydratase α subunit; ttdB = tartrate dehydratase β
subunit; ttdP = 2-oxoglutarate /malate translocator protein; aroB = 3-
dehydroquinate synthetase; aroA = 3-deoxy-7-phosphoheptulonase
synthase; aroD1 = shikimate 5-dehydrogenase; tkt2 = transketolase.
Vertical lines in each panel denote the region that displays 98-99%
nucleotide sequence identity between each paired comparison (see text).

Additional file 5: Figure S3. Variable growth among nine L. casei
strains on selected substrates. Blue indicates growth and yellow indicates
negligible growth within 48 hours. Hierarchical clustering of strains
based on substrate utilization profile is also depicted. Carbohydrates
which were utilized for growth by all strains tested include D-glucose
(shown), as well as D-mannose, D-galactose, D-fructose, D-mannitol, D-
turanose, and D-melezitose galactosamine (not depicted). Growth was
not observed with meso-erythritol, D-arabinose, D-adonitol, D-arabitol, D-
xylitol, D-galactitol, myo-inositol, sialic acid, heparin, fucose, amylopectin,
rhamnosemucin, phytic acid, galacturonic acid, glucuronic acid,
amylopectin, carboxymethyl cellulose, xylan, lignin, α-cyclodextrin, β-
cyclodextrin, γ-cyclodextrin, dextrin, and amylose.
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