Molecular Cell, Volume 64

Supplemental Information

Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems

Adrian G. Patterson, Simon A. Jackson, Corinda Taylor, Gary B. Evans, George P.C. Salmond, Rita Przybilski, Raymond H.J. Staals, and Peter C. Fineran

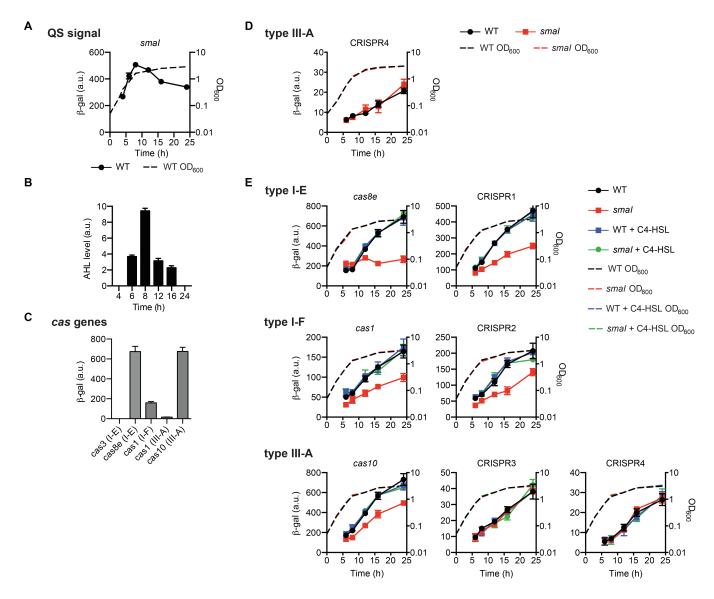


Figure S1. Production of C4-HSL signal via SmaI is responsible for upregulation of the I-E, I-F and III-A CRISPR-Cas systems at high cell density (related to Figure 1).

(A) Normalized smaI::lacZ reporter activity and cell growth of strain LC13. (B) AHL levels in the supernatant of WT cultures, measured using a bioassay. (C) Activity of the cas::lacZ reporters for the type I-E cas3 (strain PCF209) and cas8e (strain PCF210), type I-F cas1 (strain PCF211) and type III-A cas1 (strain PCF212) and cas10 (strain PCF213) promoters at 24 h post inoculation in the WT background. (D) Activity of CRISPR4::lacZ (solid lines) and growth (dashed lines) in the WT (strain PCF217) and smaI (strain PCF226) backgrounds. (E) Activity of cas::lacZ and CRISPR::lacZ for each of the type I-E, I-F and III-A CRISPR-Cas systems in the WT (strains PCF210, PCF211 and PCF213-PCF217) and smaI mutant backgrounds (PCF219, PCF220 and PCF222-PCF226) throughout growth \pm 0.5 μ M C4-HSL or DMSO (solvent control). Differences in activity between smaI + DMSO and smaI + C4-HSL beyond 12 h were statistically significant ($P \le 0.05$) for each reporter except CRISPR3 and CRISPR4 (two-way analysis of variance (ANOVA) with the Bonferroni's multiple comparisons test). Data shown are the mean \pm SD (n = 3).

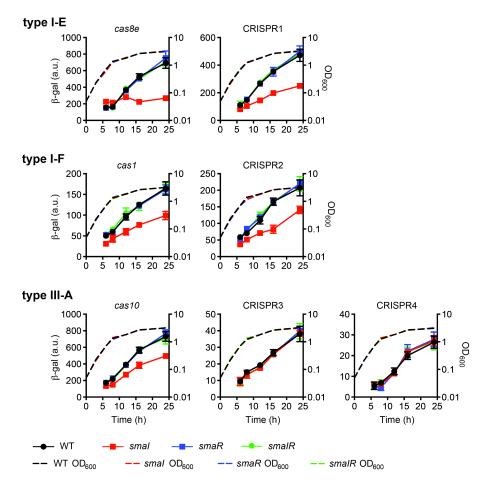


Figure S2. SmaR represses CRISPR-Cas expression in the absence of QS signals through growth (related to Figure 2). cas::lacZ and CRISPR::lacZ activity for each of the type I-E, type I-F and type III-A reporter strains in the WT (see Figure S1 for strain names), smaI mutant (see Figure S1 for strain names), smaR mutant (PCF228, PCF229 and PCF231-235) and smaIR mutant (PCF237, PCF238 and PCF240-244) backgrounds throughout growth. Differences in activity between smaI and all other strains beyond 12 h were statistically significant ($P \le 0.05$) for each reporter except CRISPR3 and CRISPR4 (two-way analysis of variance (ANOVA) with the Bonferroni's multiple comparisons test). Data shown are the mean \pm SD (n = 3).

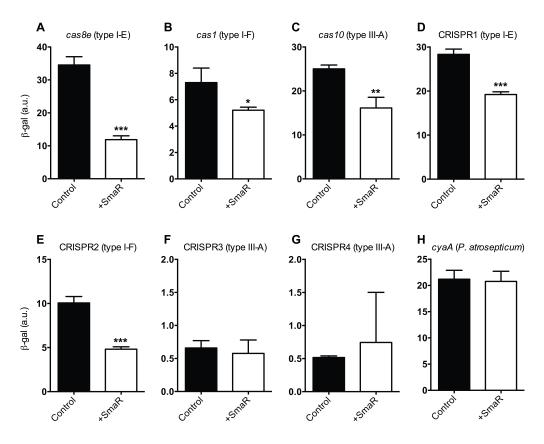


Figure S3. SmaR represses the type I-E, I-F and III-A CRISPR-Cas systems (related to Figure 2).

Normalized cas::lacZ activity in a heterologous system (E.~coli CC118 λpir) for each of the (A) type I-E cas8e (pPF714), (B) type I-F cas1 (pPF715), (C) type III-A cas10 (pPF717), (D) type I-E CRISPR1 (pPF861), (E) type I-F CRISPR2 (pPF862), (F) type III-A CRISPR3 (pPF863) and (G) type III-A CRISPR4 (pPF888) promoters \pm SmaR (pPF972), at 3 h post induction with 0.1 mM IPTG. (H) Activity of a P.~atrosepticum~cyaA::lacZ (control) reporter in E.~coli CC118 $\lambda pir \pm$ SmaR (pPF972), at 3 h post induction. Statistical significance was assessed by unpaired two-tailed t-test (* $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$). Data shown are the mean \pm SD (n = 3).

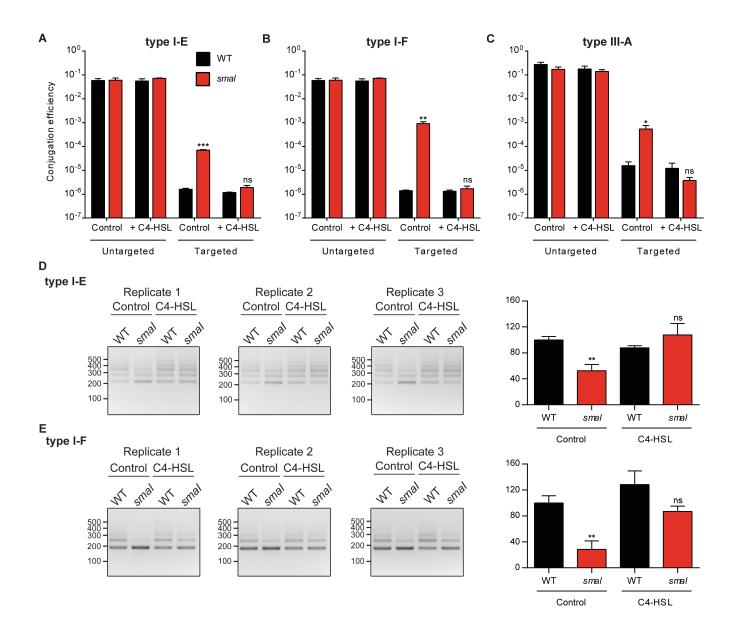


Figure S4. Addition of C4-HSL to the *smaI* mutant restores wild-type interference and adaptation for each CRISPR-Cas subtype (related to Figures 3 and 4).

Conjugation efficiency of untargeted control and targeted plasmids for the (A) type I-E (pPF719 control and pPF724 targeted), (B) type I-F (pPF719 control and pPF722 targeted) or (C) type III-A (pPF781 control and pPF1043 targeted) systems in WT (LacA) or *smal* (LIS) mutant backgrounds. Conjugation efficiency was scored as transconjugants/recipients. Spacer acquisition (CRISPR expansion) for the WT or *smal* mutant strains for either the (D) type I-E (pPF1048 primed) or (E) type I-F (pPF1032 primed) systems. CRISPR arrays were amplified by PCR and analyzed on 3% agarose gels. CRISPR expansion was normalized relative to the expansion observed in the WT control (WT control mean set as 100%). C4-HSL was added at a final concentration of 0.5 μ M to the plates and bacterial cultures throughout the experiments and the controls included DMSO solvent. Statistical significance was assessed by unpaired t-test (* $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$). Data shown are the mean \pm SD (n = 3).

Table S1. Bacterial strains used in this study (related to Figures 1-4).

Name	Genotype/Phenotype	Reference
E. coli		
CC118 λ <i>pir</i>	araD, Δ (ara, leu), Δ lacZ74, phoA20, galK, thi-1, rspE, rpoB, argE, recA1, λ pir	(Herrero et al., 1990)
DH5 α	F', φ80Δd/acZM15, Δ(/acZYA–argF)U169, endA1, recA1, hsdR17 (rκ mκ ⁺), deoR, thi-1, supE44, λ', gyrA96, relA1	Gibco/BRL
S17-1 λ <i>pir</i>	recA, pro, hsdR, recA::RP4-2-Tc::Mu, λpir, Tmp ^R , Sp ^R , Sm ^R	(de Lorenzo et al., 1990)
ST18	S17-1 λpir ΔhemA	(Thoma and Schobert, 2009)
Serratia sp. A LacA	ATCC 39006 lac- mutant generated by EMS mutagenesis, denoted "wild-type (WT)"	(Thomson et
ISTSO4	smal::mini-Tn5Sm/Sp, pigX::mini-Tn5lacZ1, Sm ^R /Sp ^R , Km ^R	al., 2000) (Fineran et
LC13	smal∷mini-Tn5lacZ1, Km ^R	al., 2005) (Thomson et
LIS	<i>smal</i> ::mini-Tn <i>5</i> Sm/Sp, Sm ^R /Sp ^R	al., 2000) (Thomson et
MCR2000	smaR::cat, Cm ^R	al., 2000) (Slater et al., 2003)
PCF208	smal::mini-Tn5Sm/Sp, smaR::cat, Sm ^R /Sp ^R , Cm ^R	This study
PCF209	WT type I-E cas3pro::/acZ (pPF713 integrant), TcR	This study
PCF210	WT type I-E cas8epro::/acZ (pPF714 integrant), TcR	This study
PCF211	WT type I-F cas1pro::/acZ (pPF715 integrant), Tc ^R	This study
PCF212	WT type III-A cas1pro::/acZ (pPF716 integrant), TcR	This study
PCF213	WT type III-A cas10pro::/acZ (pPF717 integrant), TcR	This study
PCF214	WT type I-E CRISPR1pro::/acZ (pPF861 integrant), TcR	This study
PCF215	WT type I-F CRISPR2pro::/acZ (pPF862 integrant), TcR	This study
PCF216	WT type III-A CRISPR3pro::/acZ (pPF863 integrant), TcR	This study
PCF217	WT type III-A CRISPR4pro::/acZ (pPF888 integrant), TcR	This study
PCF219	smal::mini-Tn5Sm/Sp, type I-E cas8epro::lacZ (pPF714 integrant), TcR, SmR/SpR	This study
PCF220	smal::mini-Tn5Sm/Sp, type I-F cas1pro::lacZ (pPF715 integrant), Tc ^R , Sm ^R /Sp ^R	This study
PCF222	smal::mini-Tn5Sm/Sp, type III-A cas10pro::lacZ (pPF717 integrant), TcR, SmR/SpR	This study
PCF223	smal::mini-Tn5Sm/Sp, type I-E CRISPR1pro::/acZ (pPF861 integrant), TcR, SmR/SpR	This study
PCF224	smal::mini-Tn5Sm/Sp, type I-F CRISPR2pro::lacZ (pPF862 integrant), Tc ^R , Sm ^R /Sp ^R	This study
PCF225	smal::mini-Tn5Sm/Sp, type III-A CRISPR3pro::lacZ (pPF863 integrant), TcR, SmR/SpR	This study
PCF226	smal::mini-Tn5Sm/Sp, type III-A CRISPR4pro::/acZ (pPF888 integrant), TcR, SmR/SpR	This study
PCF228	smaR::cat, type I-E cas8epro::/acZ (pPF714 integrant), Tc ^R , Cm ^R	This study
PCF229	smaR::cat, type I-F cas1pro::lacZ (pPF715 integrant), Tc ^R , Cm ^R	This study
PCF231	smaR::cat, type III-A cas10pro::lacZ (pPF717 integrant), Tc ^R , Cm ^R	This study
PCF232	smaR::cat, type I-E CRISPR1pro::/acZ (pPF861 integrant), TcR, CmR	This study
PCF233	smaR::cat, type I-F CRISPR2pro::/acZ (pPF862 integrant), TcR, CmR	This study
PCF234	smaR::cat, type III-A CRISPR3pro::/acZ (pPF863 integrant), TcR, CmR	This study
PCF235	smaR::cat, type III-A CRISPR4pro::lacZ (pPF888 integrant), TcR, CmR	This study
PCF237	smal::mini-Tn5Sm/Sp, smaR::cat, type I-E cas8epro::lacZ (pPF714 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study
PCF238	smal::mini-Tn5Sm/Sp, smaR::cat, type I-F cas1pro::lacZ (pPF715 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study
PCF240	smal::mini-Tn5Sm/Sp, smaR::cat, type III-A cas10pro::lacZ (pPF717 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study
PCF241	smal::mini-Tn5Sm/Sp, smaR::cat, type I-E CRISPR1pro::lacZ (pPF861 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study
PCF242	smal::mini-Tn5Sm/Sp, smaR::cat, type I-F CRISPR2pro::lacZ (pPF862 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study
PCF243	smal::mini-Tn5Sm/Sp, smaR::cat, type III-A CRISPR3pro::lacZ (pPF863 integrant), TcR, CmR, SmR/SpR	This study
PCF244	smal::mini-Tn5Sm/Sp, smaR::cat, type III-A CRISPR4pro::/acZ (pPF888 integrant), Tc ^R , Cm ^R , Sm ^R /Sp ^R	This study

Table S2. Plasmids used in this study (related to Figures 1-4).

Name	Genotype/Phenotype	Reference
Priming/interference		
pBAD30	Arabinose inducible expression vector, Ap ^R	(Guzman et al., 1995)
pQE-80LoriT-GFP	pQE-80LoriT derivative containing GFP, Ap ^R	Josh Ramsay; unpublished
pQE-80LoriT- mCherry	pQE-80LoriT derivative containing mCherry, Ap ^R	(Richter et al., 2014)
pPF719	Unprimed/naïve control pQE-80LoriT-GFP, TcR	This study
pPF1048	Primed type I-E CRISPR1 spacer 1 (TCA PAM) pQE-80LoriT-GFP- derivative, Tc ^R	This study
pPF1032	Primed type I-F CRISPR2 spacer 2 containing a single nucleotide deletion at position 23 (GA PAM) pQE-80LoriT-GFP-derivative, Tc ^R	This study
pPF724	Targeted type I-E CRISPR1 spacer 1 (CTT PAM) pQE-80LoriT-GFP- derivative. Tc ^R	This study
pPF722	Targeted type I-F CRISPR2 spacer 1 (GG PAM) pQE-80LoriT-GFP-derivative, Tc ^R	This study
pPF781	Untargeted/naïve control for the type III-A system, pBAD30 derivative, Cm ^R	This study
pPF1043	Targeted type III-A pPF781 derivative containing a protospacer complementary to CRISPR3 spacer 1, Cm ^R	This study
Serratia sp. ATCC 39		
pVIK107-Tc	pVIK107-derivative, integrative <i>lacZ</i> reporter plasmid, RP4 oriT, oriR6K, Tc ^R	(Patterson et al., 2015)
pPF713	type I-E cas3pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF714	type I-E cas8epro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF715	type I-F cas1pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF716	type III-A cas1pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF717	type III-A cas10pro::lacZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF861	type I-E CRISPR1pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF862	type I-F CRISPR2pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
pPF863	type III-A CRISPR3pro::/acZ reporter, pVIK107-Tc-derivative, TcR	This study
pPF888	type III-A CRISPR4pro::/acZ reporter, pVIK107-Tc-derivative, Tc ^R	This study
	septicum lacZ reporters	
pPF1008	<i>cyaA∷lacZ</i> reporter, pVIK107-Tc-derivative, Tc ^R	This study
SmaR expression	-	
pQE-80LoriT	pQE-80L (Qiagen) derivative containing RP4 oriT, Ap ^R	(Richter et al., 2014)
pPF972	His ₆ -SmaR in pQE-80L-oriT, Ap ^R	This study

Table S3. Oligonucleotides used in this study (related to Figures 1-4).

Name	Sequence (5'-3')	Notes	Restriction site(s)
PF209	TCGTCTTCACCTCGAGAAATC	F pQE-80L-oriT MCS	
PF210	GTCATTACTGGATCTATCAACAGG	R pQE-80L-oriT MCS	
PF565	CATAACACTGACAGAGGATCC	type I-E CRISPR1 sequencing	
PF575	GAACCCTTCAAAAATTGTCG	type I-F CRISPR2 sequencing	
PF610	CCTGGCAGTTCCCTACTCTC	R pBAD30 post-MCR	
PF633	GTGGATCTGGATGGACTGC	type I-E CRISPR1 sequencing	
PF1451	GCCACCTCGACCTGAAT	Targeted/primed construct sequencing	
PF1615	TTTTCCATGGGAATTGATTGGCTCCAATTC	F untargeted (no protospacer)	Ncol
PF1616	TTTTCCATGGCNCTGCAAAAATGCAGTAATATCAAGAAGTTTTAC	F type I-F CRISPR2	Ncol
	GAATTGATTGGCTCCAATTC	protospacer 1 (variable PAM)	
PF1617	TTTTCCATGG ANG TAAACAATTGCAGGACCAGCAAAATCTGTGG	F type I-E CRISPR1	Ncol
	CGAATTGATTGGCTCCAATTC	protospacer 1 (variable PAM)	
PF1623	TTTTCTAGAGGAATATAATTAACCTGATAATAAATG	F type I-E <i>cas3</i> pro	Xbal
PF1624	TTT <u>CTGCAG</u> CATCGCTTATTTTTAGAATAGAAC	R type I-E cas3pro	Pstl
PF1625	TTTTCTAGATTTATCGGTGCGGGAAAGC	F type I-E cas8epro	Xbal
PF1626	TTTCTGCAGCATGGATCTATCTCCTCAGTTA	R type I-E <i>cas8e</i> pro	Pstl
PF1627	TTTTCTAGATCGTGTGCCAAACCCTTTTTTC	F type I-F cas1pro	Xbal
PF1628	TTTCTGCAGCATAATATTCTCTGCTATCGCG	R type I-F <i>cas1</i> pro	Pstl
PF1629	TTTTCTAGAATCCGCTCTCAGGGCTTTATG	F type III-A cas1pro	Xbal
PF1630	TTTCTGCAGCATGGTATCGATGTTCACTATGAAG	R type III-A <i>cas1</i> pro	Pstl
PF1631	TTTTCTAGAAGTAGGTACTATTCTTTGGTCC	F type III-A cas10pro	Xbal
PF1632	TTTCTGCAGCATTGACATCTCCTTGTGCC	R type III-A <i>cas10</i> pro	Pstl
PF1642	CAGTCTAATTTGTTGACG	F screening type I-E <i>cas3</i> pro	1 30
PF1643	GAGGTCGATATCTTTACC	F screening type I-E casspio	
PF1644	CCATTTCTAAGCTGCCTG	F screening type I-E casepio	
PF1645	CCATGTTCTAAGCTGCCTG	F screening type III-A <i>cas1</i> pro	
PF1646	CATTACAGAATCATTGTCC	F screening type III-A cas10pro	
PF1666	CTTGACCCGGGCGCTAGCGGAGTGTATACTGGCTTACTATGTTG GCAC	F pBAD30 AraC	Xmal
PF1668	TTTTCTAGACTGGCAACAGATTGTGGAAC	F type I-E CRISPR1pro	Xbal
PF1669	TTT <u>CTGCAG</u> CATAGCTGTTTCCTTCTAAAAATATATACCTGTTTTA	R type I-E CRISPR1pro	Pstl
PF1670	TTTTCTAGAAAATCGTAGACTAATTATTTAATAGCG	F type I-F CRISPR2pro	Xbal
PF1671	TTT <u>CTGCAG</u> CATAGCTGTTTCCTAGTAACATTTCCACTTTAACGA	R type I-F CRISPR2pro	Pstl
PF1672	TTTTCTAGACACACCACCGGCACACTC	F type III-A CRISPR3pro	Xbal
PF1673	TTTCTGCAGCATAGCTGTTTCCTAATGAAAATTTATAACCCATTG	R type III-A CRISPR3pro	Pstl
PF1674	TTTTCTAGACCCATTCAGGCACAGATTTTG	F type III-A CRISPR4pro	Xbal
PF1675	TTTCTGCAGCATAGCTGTTTCCTAATGAAAATTTATAACCCATTG	R type III-A CRISPR4pro	Pstl
PF1698	CTCGGTACCATGGCATGCTGCAGTGGATGACCTTTTGAATGACC	F T4:Cm ^R :T7 cassette	Kpnl/Ncol/Sphl /Pstl
PF1699 PF1700	GAGGGGTTTTTTGGGCCAGCCTCGCAGAGCAG GAGGCTGGCCCAAAAAACCCCTCAAGACCCG	F OriT, overlaps PF1700 R T4:Cm ^R :T7 cassette,	
		overlaps PF1699	
PF1701	TTTGCCCGGGAGCGCTTTTCCGCTGC	R OriT	Xmal
PF1789	GATCCCGGGGTTTCAGGAAGGCGGCAAG	F primer cyaA pro	Smal
PF1790	TTTTCTAGACAAGACGTTTCGCCTGATTTATC	R primer cyaA pro	Xbal
PF1834	GTTGGTGGTCGTGACGG	F screening type I-E	
		CRISPR1pro and sequencing	
PF1835	GAATACGGCAGTGCTGGAG	F screening type I-F	
PF1836	CCCAGAGGAAGACCGTC	CRISPR2pro and sequencing F screening type III-A	
PF1837	CATCGTTCCATCATGCG	CRISPR3pro F screening type III-A	
PF1874	GGTCAATCAAGAATTTCACCAG	CRISPR4pro type I-E CRISPR1 sequencing	
PF1875	GGACAATACTTTTTGAGGATGAC	type I-E CRISPR1 sequencing	
PF1876	GTTTAGCTACTCCGCGCAGC	type I-F CRISPR2 sequencing	
PF1887	GTTAAGTCAGCAGGCGTTTAGTCG	R type I-E CRISPR1 spacer 2	
1 1 1007	31770707007000011770100	Trape i E Ordor IVI Spacer 2	

Table S3 (continued). Oligonucleotides used in this study (related to Figures 1-4).

Name	Sequence (5'-3')	Notes	Restriction site(s)
PF1888	CATCTGATGCTGACGACACTG	R type I-F CRISPR2 spacer 2	
PF1903	GTTGTTCCGCGAGACTATCGAC	type I-F CRISPR2 sequencing	
PF1904	CCAGGAATCACTATATCTGGCAAG	type I-F CRISPR2 sequencing	
PF1905	GCACTGAATGTTCGATATCATTAC	type I-E CRISPR1 sequencing	
PF1958	CTGGGATCCGTGTCTAATTCATTCTTTAAT	F smaR	BamHI
PF1959	GAT <u>CTGCAG</u> TCATTCTGCGTCAGGGAG	R smaR	PstI
PF1989	TAAGTTAGTGTTCTTTAACAAGCAGGA	F type I-E CRISPR1 leader	
PF1990	CACGAAAATGATAATTGATGCTGAT	F type I-F CRISPR2 leader	
PF2034	TTTT <u>CCATGG</u> NC <i>TGGAAGCCGCCAGTGTCGTCAGATCAGATGT</i> GAATTGATTGGCTCCAATTC	F type I-F CRISPR2 protospacer 2 containing a single nucleotide deletion at position 23 (variable PAM)	Ncol
PF2085	TTTT <u>CCATGG</u> NSW TAAACAATTGCAGGACCAGCAAAATCTGTGGCGAATTGATTG	F type I-E CRISPR1 protospacer (variable PAM)	Ncol
PF2086	CTTGGAAAAAAACCGACACGTAGTGTGAAAGAAATTAGGATGAG CATG	type III-A CRÌSPR3 protospacer 1, anneals to PF2087	Kpnl/Sphl compatible
PF2087	CTCATCCTAATTTCTTTCACACTACGTGTCGGTTTTTTTCCAAGG TAC	type III-A CRISPR3 protospacer 1, anneals to PF2086	Kpnl/Sphl compatible

Note: In the oligonucleotide sequences, protospacers are in italics and restriction sites are underlined.

Supplemental Experimental Procedures.

CRISPR array sequencing

The Serratia sp. ATCC39006 genome has previously been sequenced (Fineran et al., 2013), but gaps existed at type I-E and I-F CRISPR arrays (CRISPR1 and CRISPR2). The CRISPR1 and CRISPR2 arrays were amplified by PCR from the LacA strain using primer pairs PF565 + PF1834 and PF565 + PF1835, respectively. The products were gel extracted and sequenced by primer walking using primers PF565, PF633, PF1874, PF1875 or PF1905 for CRISPR1 and PF575, PF1835, PF1876, PF1903 or PF1904 for CRISPR2. Assembled reads were mapped to the existing genome (NZ_AWXH00000000) using Geneious v9 (Kearse et al., 2012). The sequenced arrays were verified by aligning short (36 nt), single-end Illumina reads from the original de novo genome assembly dataset (Fineran et al., 2013). The CRISPR3 and CRISPR4 arrays were fully assembled in the existing draft sequence.

Construction of cas and CRISPR reporter strains

The *cas* and CRISPR promoter regions for the type I-E, I-F and III-A systems were each cloned into an integrative *lacZ* reporter plasmid, pVIK107-Tc (Table S2). The promoter regions were amplified by PCR and cloned into pVIK107-Tc using the primers and their respective restriction endonucleases listed in Table S3. The integrative vectors were introduced into the various *Serratia* backgrounds by conjugation from the donor strain *E. coli* S17-1 λpir. Counter-selection for the *E. coli* donor was achieved using either growth on minimal medium or on LB containing appropriate antibiotics for the *Serratia* backgrounds. All integrant reporter strains were confirmed by appropriate antibiotic resistance, PCR and sequencing.

Construction of SmaR expression plasmid and heterologous repression assays

A plasmid for heterologous expression of SmaR was generated by PCR amplification of the *smaR* gene using primers PF1958 and PF1959. The product was digested with BamHI and PstI and cloned into pQE-80LoriT that was cut with the same enzymes, resulting in plasmid pPF972. *E. coli* CC118 λpir was transformed with either the vector control (pQE-80LoriT) or the construct for SmaR expression (pPF972) and with either the control reporter plasmid (pVIK107-Tc) or reporter plasmids for the different *cas* and CRISPR promoter-*lacZ* fusions (Table S2). Transformants were confirmed by PCR and their antibiotic-resistance profile, and grown at 37°C for β -galactosidase assays as described above.

Construction of interference and priming plasmids

Plasmids that would be targeted or primed by the type I-E and I-F systems were generated as follows. The gene encoding GFPmut3.1 was amplified from pGREENTIR and cloned into the EcoRI and HindIII sites of pQE-80LoriT, to generate pQE-80LoriT-GFP. The gene encoding Tc^R and either no protospacer (PF1615), a type I-E protospacer (PF1617) or a type I-F protospacer containing a single nucleotide deletion at position 23 (PF1616 and PF2034) was amplified from pTRB31 (Richter et al., 2014) with the reverse primer PF210. Primers PF1617, PF1616 and PF2034 had a variable nucleotide in the type I-E and I-F PAM, respectively, which allowed for cloning of targeted and primed plasmids (see Table S3). The PCR products were digested with NcoI and XhoI and ligated into pQE-80L-oriT-GFP cut with BspHI (compatible with NcoI) and XhoI. Plasmids were sequenced and the resulting plasmids were pPF719 (no protospacer control), pPF724 (type I-E targeted), pPF722 (type I-F targeted), pPF1048 (type I-E primed), pPF1032 (type I-F primed), (Table S3). To construct the type III-A targeted plasmid, we cloned a protospacer complementary to the CRISPR3 spacer 1 into the multiple cloning region a pBAD30 expression vector derivative (pPF781). The pPF781 (naïve control) plasmid was constructed by joining a Cm^R cassette with the RP4 OriT from pQE-80LoriT (using overlap PCR with primers PF1698 + PF1700 and PF1699 + PF1701 for the first round, followed by PF1698 + PF1701 in the second round), digesting the product with KpnI and XmaI, and subsequently ligating this with a KpnI/XmaI-digested AraC/P_{BAD} fragment of pBAD30 (generated by PCR using the primers PF1666 + PF610). The protospacer fragment corresponding to CRISPR3 spacer 1 was formed by annealing primers PF2086 and PF2087, which resulted in overlapping sticky ends compatible with the KpnI and SphI sites in the multiple cloning region of pPF781. The resulting construct (pPF1043) encodes the III-A targeted protospacer on the sense strand of the transcript produced from the araBAD promoter.

Supplemental References

Fineran, P.C., Slater, H., Everson, L., Hughes, K., and Salmond, G.P.C. (2005). Biosynthesis of tripyrrole and beta-lactam secondary metabolites in *Serratia*: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol. Microbiol. *56*, 1495–1517.

Fineran, P.C., Iglesias Cans, M.C., Ramsay, J.P., Wilf, N.M., Cossyleon, D., McNeil, M.B., Williamson, N.R., Monson, R.E., Becher, S.A., Stanton, J.-A.L., et al. (2013). Draft Genome Sequence of *Serratia* sp. strain ATCC 39006, a Model Bacterium for Analysis of the Biosynthesis and Regulation of Prodigiosin, a Carbapenem, and Gas Vesicles. Genome Announc. *1*, e01039-13.

Guzman, L.L.M., Belin, D., Carson, M.J., Beckwith, J., Luz-Maria Guzman Michael J. Carson, and Jon Beckwith, D.B. (1995). Tight Regulation, Modulation, and High-Level Expression by Vectors Containing the Arabinose PBAD Promoter. J. Bacteriol. *177*, 4121–4130.

Herrero, M., De Lorenzo, V., and Timmis, K.N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. *172*, 6557–6567

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.

de Lorenzo, V., Herrero, M., Jakubzik, U., and Timmis, K.N. (1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. *172*, 6568–6572.

Patterson, A.G., Chang, J.T., Taylor, C., and Fineran, P.C. (2015). Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Res. 43, 6038–6048.

Richter, C., Dy, R.L., McKenzie, R.E., Watson, B.N.J., Taylor, C., Chang, J.T., McNeil, M.B., Staals, R.H.J., and Fineran, P.C. (2014). Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 8516–8526.

Slater, H., Crow, M., Everson, L., and Salmond, G.P.C. (2003). Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in *Serratia* via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. *47*, 303–320.

Thoma, S., and Schobert, M. (2009). An improved *Escherichia coli* donor strain for diparental mating. FEMS Microbiol. Lett. *294*, 127–132.

Thomson, N.R., Crow, M. a., McGowan, S.J., Cox, A., and Salmond, G.P.C. (2000). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in *Serratia* is under quorum sensing control. Mol. Microbiol. *36*, 539–556.