

International Journal of Environmental Research and Public Health

Review

Factors Correlating to the Development of Hepatitis C Virus Infection among Drug Users—Findings from a Systematic Review and Meta-Analysis

Biao Zhou ^{1,†}, Gao Feng Cai ^{1,†}, Hua Kun Lv ^{1,2,†}, Shuang Fei Xu ¹, Zheng Ting Wang ¹, Zheng Gang Jiang¹, Chong Gao Hu^{1,*} and Yong Di Chen^{1,*}

- Department of Scientific Research and Information Management, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
- 2 Department of Immunization Planning, Zhejiang Provincial Key Laboratory of Infectious Disease Vaccine and Prevention and Control, 3399 Binsheng Road, Hangzhou 310051, China
- * Correspondence: chghu@cdc.zj.cn (C.G.H.); ydchen@cdc.zj.cn (Y.D.C.); Tel: +86-571-8711-5104 (Y.D.C.)
- + These authors contributed equally to the work.

Received: 23 June 2019; Accepted: 30 June 2019; Published: 2 July 2019

Abstract: Hepatitis C remains a significant public health threat. However, the main routes of transmission have changed since the early 1990s. Currently, drug use is the main source of hepatitis C virus (HCV) infection, and some measures have been successively implemented and additional studies have been published. However, the factors correlating with HCV infection failed to clearly define. Our study pooled the odds ratios (ORs) with 95% confidence intervals (CIs) and analyzed sensitivity by searching data in the PubMed, Elsevier, Springer, Wiley, and EBSCO databases. Publication bias was determined by Egger's test. In our meta-analysis, HCV-infected and non-HCV-infected patients from 49 studies were analyzed. The pooled ORs with 95% CIs for study factors were as follows: Injecting drug use 10.11 (8.54, 11.97); sharing needles and syringes 2.24 (1.78, 2.83); duration of drug use >5 years 2.39 (1.54, 3.71); unemployment 1.50 (1.22, 1.85); commercial sexual behavior 1.00 (0.73, 1.38); married or cohabiting with a regular partner 0.88 (0.79, 0.98), and sexual behavior without a condom 1.72 (1.07, 2.78). This study found that drug users with histories of injecting drug use, sharing needles and syringes, drug use duration of >5 years, and unemployment, were at increased risk of HCV infection. Our findings indicate that sterile needles and syringes should be made available to ensure safe injection. In view of that, methadone maintenance treatment can reduce or put an end to risky drug-use behaviors, and should be scaled up further, thereby reducing HCV infection.

Keywords: drug use; hepatitis C virus; risk factor; meta-analysis

1. Introduction

Hepatitis C is a viral infectious disease caused by the HCV, which is characterized by diffuse liver damage [1]. In 2003, the World Health Organization (WHO) estimated that the global prevalence of HCV infection was about 3.0%, with about 3-4 million new infections every year, about 130-150 million chronic infections worldwide, and about 672,000 deaths annually from acute viral hepatitis C infections and hepatitis C-related liver cancer and cirrhosis [2]. At present, the new curative treatment for HCV infection, e.g., directly acting antiviral, was available and convinced in safety, and tolerability [3–5].

However, the main route of HCV infection has changed since the early 1990s. Before the 1990s, blood transfusions and the use of contaminated blood products were the main sources of HCV infection [2–6]. Whereas currently, drug use is the main source of HCV infection in most developed and developing countries [2], and statistics have shown that over 50% of drug users are intravenous drug users [7–9], with an estimated 12 million injecting drug users worldwide [10]. HCV infection rates have

been increasing since 2006 in some areas, especially among the younger population [9]. In addition, in the last 10 years, the number of new drug users has been increasing and there are various ways of drug use [11–14]. Pan et al. also showed that the club drug users had a high prevalence of HCV infection, as well as people with high-frequency unprotected sexual behavior and less available intervention services [15]. These findings suggest that new drugs have become a new threat to human health.

In fact, in recent times, the number of global drug users has increased rapidly, from 185 million in 2004 to 250 million in 2015 [10,16]. Similarly, the number of registered drug users in China has risen rapidly, from 70,000 in 1990 to 3 million in 2015 [17]. In view of this significant population of drug users and the risk of cross infection with HCV among drug users, the impact of HCV infection among this population remains significant and constitutes a major health burden.

In recent years, some practical measures and strategies have been implemented to tackle the spread of infections among drug users, such as publicizing health information, making condoms available in public places, providing needle/syringe exchange centers, as well as opening methadone maintenance treatment clinics that help reduce risky drug-use behaviors thereby reducing the risk of transmission of blood-borne infections [8,18–25]. However, the rates of HCV infection remain high among drug users [25,26]. Many factors influence the development of HCV infection among drug users, such as injecting behavior, sharing needles and/or syringes, the duration of drug user, and high-risk sexual behavior [27–35].

In 2006, Xia et al. performed meta-analysis on data collected from drug users in China to determine factors that correlate with the occurrence of HCV infection [26], and Stone et al. performed another meta-analysis for incarceration history and risk of HCV acquisition among people who injected drugs in 2018 [36]. In another study, Hagan et al. collected data from published or released reports between January 1989 and December 2006 and data from scientific conferences between December 2006 April 2010, and meta-analyzed the effects of risk-reduction interventions [25]. They concluded that combined substance-use treatment and support for safe injection were the most effective interventions for reducing HCV seroconversion. These findings implied that appropriate intervention can prevent HCV infection among injection drug users. Studies have also demonstrated that the hazards posed by certain risk factors can be controlled. However, this meta-analysis was performed on a limited number of studies and limitations were imposed as a result of literature being unavailable. For example, in 2004, Lin et al. completed a quasi-experiment design in a controlled community intervention study that included a needle and syringe exchange program, peer education and health education, provision of free needles and syringes, and the collection of used needles, which was implemented for 10 months to injecting drug users in an intervention community, but no intervention measures were implemented in a control community for comparison [37]. A number of other studies investigating factors correlating to HCV infection in drug users have been published since 2006 [27,28,38–77]; however, the contribution of each of the factors identified in such studies remains unclear or in some cases is even contradictory.

2. Materials and Methods

2.1. Literature Search Strategy

Searches were performed in specified databases on the BoKu data service platform. We used the following search terms "Hepatitis C or HCV" and "drug use or drug addiction" in the search field "Title/Abstract," and searched six international databases, namely PubMed, OVID, Springer, Wiley, Elsevier, and EBSCO. We also used the search terms "Hepatitis C or "HCV" and "drug use or drug addiction" in the search field "Abstract," and searched the Chinese Medical Journal Database and Chinese National Knowledge Infrastructure. The searches were completed in the last week of March 2019.

2.2. Inclusion and Exclusion Criteria

The eligibility criteria for the studies included in this meta-analysis were: (1) The study is an original research; (2) the study was an observational study with specific temporal and geographic characteristics; (3) the study was published with the full text available; (4) all cases and controls were drug users and the source of research objects was clearly stated; (5) major influencing factors were reported; and (6) hepatitis C was diagnosed by the national diagnostic criteria that existed at that time [78].

Literature was excluded from the meta-analysis when: (1) Based on the data reported, the odds ratio (OR) with 95% confidence interval (CI) could not be achieved by calculating the major influencing factors; (2) the literature duplicated the same research; (3) according to the source of the research objects, the province (state) was used as the screening repeated research object analysis unit and for studies with the same or cross research objects, only one of the studies was included and the others were excluded; and (4) according to the declaration by Ebrahim et al., the literature satisfying the number of items in the corresponding research type declaration was less than half the total number of items [79,80].

2.3. Data Extraction

A pre-made form was used for data extraction. The literature was assessed one-by-one and the form was completed by two trained reviewers. The following data were extracted from the qualified studies: First author, year of the study, location, sample size, the number of drug users in the HCV-infected group and the non-HCV-infected group, the number of males and females or the male to female ratio, and age distribution among drug users.

Discrepancies between the assessment results acquired by the two reviewers were resolved by checking the original documents and discussing.

2.4. Sensitivity Analysis

In this meta-analysis, the studies with the maximum weight were omitted from the subgroup analysis. The remaining studies were pooled, and the pooled OR_{weight} values with 95% CIs for each study factor were obtained. The pooled OR_{weight} values were then compared with the pooled ORs before being omitted from the study.

2.5. Statistical Analysis

In this meta-analysis, the main indicators were the ORs with 95% CIs. Following a heterogeneity test, the fixed effects model was used to analyze factors without heterogeneity for the different studies and the random effect model was used to analyze factors with heterogeneity using the Review Manager 5.1 software. (Cochrane Collaboration, Rigshospitalet, Denmark). Heterogeneity was evaluated using Cochran's chi-square test with a significance level of $\alpha = 0.1$ and using I² statistics with heterogeneity accepted as I² \leq 50% [81]. In this meta-analysis, I² \leq 50% was accepted. The Egger's test was performed using the software Stata version 11.0 (Stata Corp., College Station, TX, USA), with a significance level of $\alpha = 0.05$.

3. Results

3.1. Literature Search

Based on the inclusive criteria and exclusive criteria, all articles were retrieved and carefully reviewed to assess the eligibility. Forty-nine eligible studies were identified after a screening of 1109. The selection of studies for the meta-analysis is shown in Figure 1 [82].

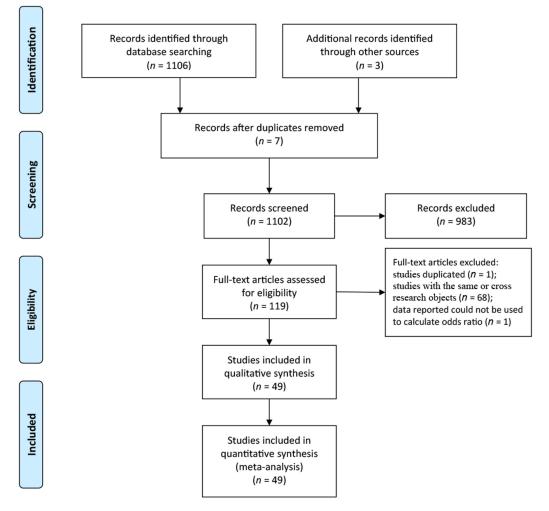


Figure 1. A flow chart of the studies selection process.

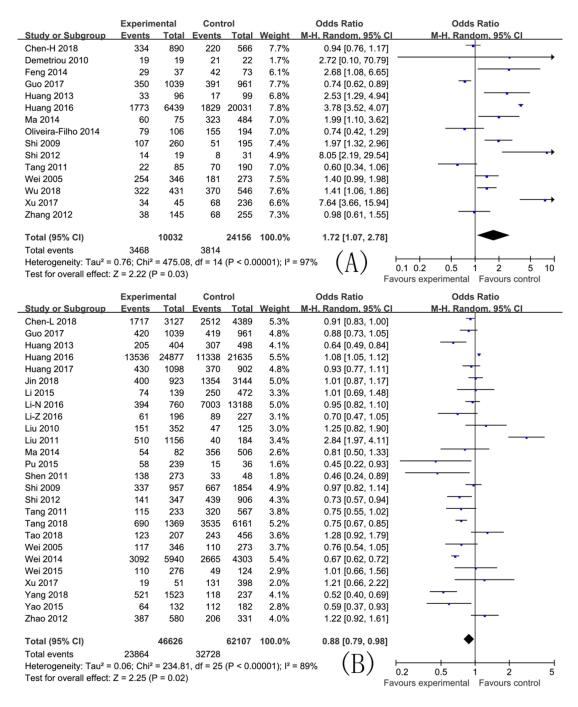
3.2. Characteristics of the Studies

Among the forty-nine studies, the 10 study factors used to pool ORs with 95% CIs were as follows: Injecting drug use (43 studies, 53,860 cases, 69,747 controls); sharing needles and syringes (33 studies, 40,777 cases, 23,361 controls); duration of drug use >5 years (12 studies, 10,282 cases, 8,794 controls); unemployment (6 studies, 8,361 cases, 5,420 controls); sex (male) (39 studies, 57,403 cases, 72,922 controls); education level \leq 9 years (29 studies, 46,931 cases, 61,841 controls); sexual behavior without a condom (15 studies, 10,032 cases, 24,156 controls); Han ethnic group (15 studies, 12,014 cases, 16,129 controls); married or cohabiting with a regular partner (26 studies, 46,626 cases, 62,107 controls); commercial sexual behavior (14 studies, 9,698 cases, 28,505 controls). Among the forty-nine studies, the proportion of 4 studies (injecting only) was 8.16%, the proportion of 2 studies (non-injecting) was 4.08%, and the proportion of 43 studies (injecting and non-injecting) was 87.76%.

The characteristics of all studies evaluated in this meta-analysis are shown in Table 1.

Reference Number	Author		Regions	Type of Drug Use	Participants Category (Case/Control)	Sample Size (Case/Control)	Male/Female	Age (Years) *
[38]	Chen Hua	2018	Sichuan, Mianyang	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1829; 977	2016; 790	39.0 ± 7. 5
[39]	Wu Zhen Xiang	2018	Shanghai, Baoshan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1199; 1604	2138; 665	39.7 ± 9.86
[40]	Jin Jie	2018	Zhejiang, Hangzhou	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	923; 3144	3329; 638	36.33 ± 8.98
[41]	Xu Wen Xin	2017	Zhejiang, Jiaxing	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	51; 398	356; 93	27.50 ± 12.28
[42]	Ye.y	2016	Xinjiang, Wulumuji	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	745; 979	1 679; 49	35-45
[35]	Yun Chang Yan	2016	Yunnan, Haike	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	823; 786	-	33.8 ± 4.8
[43]	Li Ze	2016	Yunnan, Dali	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	196; 227	400; 23	15-62
[44]	Tao Yi Xin	2018	Qinghai, Xining	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	207; 456	401; 262	>20
[45]	Zhang Tao	2012	Zhejiang, Jinhua	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	145; 255	331; 69	31.61 ± 6.80
[46]	Shen Han Ding	2011	Yunnan, Jinning	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	273; 48	290; 31	20-78
[47]	Liu Qun	2011	Hubei, Wuhan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1156; 184	1000; 340	32.5 ± 6.2
[30]	Bruno Galperim	2004	Porto Alegre, RS, Brazil	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	15; 45	50; 10	31 ± 7
[31]	Lisa Maher Aldemir B.	2006	Sydney, Australia	injecting only	HCV-infected drug uses/non-HCV-infected drug uses	68; 300	140; 228	>15
[48]	Oliveira-Filho	2014	Pará, Brazil	non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	106; 194	191; 109	32.5 ± 10.3
[49]	Wei Xiaoli	2014	Shanxi, Xian	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	5940; 4303	8653; 1590	37.4 ± 6.7
[50]	M. Zeremski	2012	New York, USA	non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	11; 46	48; 9	44 ± 7
[51]	Larry Keen II	2014	Florida, USA	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	274; 208	284; 198	32.66 ± 7.01
[52]	Jenny Iversen	2010	New South Wales, Australia	injecting only	HCV-infected drug uses/non-HCV-infected drug uses	8100; 7483	10162; 5421	31 ± 8.8
[53]	Victoria L. Demetriou	2010	Nicosia, Cyprus	injecting only	HCV-infected drug uses/non-HCV-infected drug uses	19; 22	35; 6	27 (25–31)
[27]	Fill MA	2018	Tennessee, USA	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	571; 821	66:100	>18
[28]	D. N. Aisyah	2017	London, UK	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	119; 422	1093; 110	>18
[29]	Lillebil Norden	2005	Huddinge, Sweden	injecting only	HCV-infected drug uses/non-HCV-infected drug uses	37;5	28; 14	-
[74]	Huang Dong Sheng	2013	Yunnan, Baoshan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	404; 498	874; 28	-
[75]	Zhao Hong	2012	Neimenggu, Wuhai	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	580; 331	856; 55	18-63
[35]	Cui Xiu Ling	2005	Shanxi, Baoji	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	23; 460	427; 56	19-52
[76]	Shi Wen Ya	2012	Beijing, Fengtai	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	347; 906	954; 299	-
[77]	Zhong Hai Rong	2010	Jiangxi, Ganzhou	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	106; 190	237; 59	16-51
[32]	Wei Da Yin	2005	Sichuan, Liangshan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	346; 273	519; 100	28.9 ± 6.4
[33]	Sun Yan	2007	Hunan, Changsha	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	662; 110	452; 320	15-53
[54]	Shi Ping	2009	Jiangsu, Nanjing	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	957; 1854	2305; 506	18-74
[55]	Fan Lin Jun	2010	Guangxi, Pingnan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	203; 47	245; 5	37 (15-68)
[56]	Tang Xue Qin	2011	Jiangxi, Nanchang	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	233; 567	768; 32	18–77
[57]	Liu Hui Bin	2010	Shanxi, Yulin	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	352; 125	440; 37	20-52
[58]	Li Guang Qing	2009	Hunan, Bingzhou	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	184; 65	185; 64	32.32 (17-54
[59]	Huang Dao Ping	2017	Hunan, Changde	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1098; 902	1868; 132	33 (16–63)
[60]	Yang Kai	2018	Hubei, Yichang	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1523; 288	1411; 400	44.78 ± 6.92
[61]	Chen Liang	2018	Fujian, Fuqing	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	3124; 4392	6630; 886	35.37 ± 8.92
[62]	Tang Ren Hai	2018	Yunnan, Dehong	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1369; 6161	7176; 354	35.14 ± 10.9
[62]	Guo Yan	2017	Tianjiin, China	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	1039; 961	1642; 358	33 (34.5 ± 8.6
[64]	Li Nin	2016	Henan, China	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	760; 13,195	11,224; 2724	37.32 ± 8.4
[65]	Huang Xi Ming	2016	Guangdong, China	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	24,877; 21,652	43,108; 3421	57.52 ± 0.4.
[66]	Yao Zhong	2015	Xinjiang, Wushi	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	132; 182	45,108, 5421	- 19–69
	Zheng		, 0.	, , , , ,	0			
[67]	Wei Li	2015	Guangxi, Liuzhou	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	276; 124	296; 104	-

T 1 1	1 1	0	
Tabl	PI	((nnt
Iuvi			1111.


Reference Number	Author	Year of Publication	Regions	Type of Drug Use	Participants Category (Case/Control)	Sample Size (Case/Control)	Male/Female	Age (Years) *
[68]	Jin Hui Ya	2015	Gansu, Lanzhou	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	41; 189	120; 110	39.7-9.1
[69]	Ma Ji Xiong	2014	Gansu, Baiying	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	82; 506	548; 40	30.06 ± 6.3
[70]	Pu Li Fang	2015	Yunnan, Kaiyuan	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	239; 36	209;66	41.6 ± 6.0
[71]	Li Feng	2015	Beeijing, Changping	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	139; 472	504; 107	>20
[72]	Han Xia	2014	Neimenggu, Huhehaote	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	52; 191	243; 0	>20
[73]	Feng Yan Jie	2014	Hebei, Qinhuangdao	injecting and non-injecting	HCV-infected drug uses/non-HCV-infected drug uses	332; 304	577; 59	>20

Note: *: mean ± standard deviation; mean (minimum–maximum); minimum–maximum; mean.

3.3. Results of Pooled ORs

In this meta-analysis, the pooled ORs with 95% CIs for study factors were as follows: Injecting drug use 10.11 (8.54, 11.97); sharing needles and syringes 2.24 (1.78, 2.83); duration of drug use >5 years 2.39 (1.54, 3.71); unemployment 1.50 (1.22, 1.85); commercial sexual behavior 1.00 (0.73, 1.38); sex (male) 1.04 (0.91, 1.18); married or cohabiting with a regular partner 0.88 (0.79, 0.98); Han ethnic group 0.94 (0.73, 1.20); sexual behavior without a condom 1.72 (1.07, 2.78); and education level \leq 9 years 1.05 (0.92, 1.21).

The pooled ORs with their 95% CIs for study factors are detailed in Figures 2-4, and the axes of the figures mean OR = 1.

Figure 2. Effects of pooled ORs for factors correlating to the development of HCV infection among drug users ((**A**) sexual behavior without a condom; and (**B**) married or cohabiting with a regular partner).

Study or Subgroup	Experim Events		Cont Events		Weight	Odds Ratio M-H. Random. 95% C	Odds Ratio M-H. Random. 95% Cl
Aisyah 2017	45	109	39	103	3.4%	1.15 [0.66, 2.00]	
Chen-H 2018	52	1829	10	977	3.1%	2.83 [1.43, 5.59]	— —
Chen-L 2018	417	3126	154	4390	4.1%	4.23 [3.50, 5.13]	-
Demetriou 2010	13	19	134	4390	1.8%	1.24 [0.34, 4.54]	
	115		9			3.15 [1.33, 7.45]	
Fan 2010	78	184 290		26 98	2.7%	0.58 [0.36, 0.94]	
Feng 2014			38		3.6%		
Guo 2017	141	1039	26	961	3.7%	5.65 [3.68, 8.66]	
Han 2015	14	52	21	191	2.9%	2.98 [1.39, 6.39]	
Huang 2016	6627	19935	1330	5863	4.2%	1.70 [1.59, 1.82]	
Huang 2017	279	1098	46	902	3.9%	6.34 [4.57, 8.78]	
Jin 2018	63	469	67	486	3.8%	0.97 [0.67, 1.40]	1
Li 2009	46	158	4	26	2.1%	2.26 [0.74, 6.92]	
Li 2015	15	107	8	114	2.6%	2.16 [0.88, 5.33]	
Li-N 2016	60	284	313	2055	3.9%	1.49 [1.09, 2.03]	
Li-Z 2016	39	152	1	26	1.0%	8.63 [1.13, 65.81]	
Liu 2010	172	352	26	125	3.6%	3.64 [2.25, 5.88]	
Ma 2014	13	28	17	42	2.4%	1.27 [0.49, 3.35]	
Maher 2006	21	68	50	284	3.3%	2.09 [1.15, 3.80]	
NORDEN 2005	24	37	2	5	1.1%	2.77 [0.41, 18.74]	
Pu 2015	67	239	4	36	2.2%	3.12 [1.06, 9.15]	
Shi 2012	157	231	66	116	3.6%	1.61 [1.01, 2.55]	
Sun 2007	407	603	15	41	3.2%	3.60 [1.86, 6.95]	
Tang 2011	50	183	262	441	3.8%	0.26 [0.18, 0.37]	
Tang 2018	141	688	58	373	3.9%	1.40 [1.00, 1.96]	
Wei 2005	75	158	106	206	3.7%	0.85 [0.56, 1.29]	-+
Wei 2014	130	346	27	273	3.6%	5.48 [3.49, 8.63]	· · · ·
Wei 2015	1161	5940	401	4303	4.2%	2.36 [2.09, 2.67]	-
Xu 2017	93	276	8	124	2.9%	7.37 [3.45, 15.74]	
Yan 2016	9	23	2	18	1.3%	5.14 [0.95, 27.92]	
Yang 2018	162	580	15	172	3.4%	4.06 [2.32, 7.10]	
Ye 2016	339	1523	9	237	3.1%	7.25 [3.69, 14.27]	
Zhong 2010	224	651	75	325	3.9%	1.75 [1.29, 2.37]	-
Total (95% CI)		40777		23361	100.0%	2.24 [1.78, 2.83]	•
Total events	11249		3223				
Heterogeneity: Tau ² =		= 411 45		(P < 0 ()0001)· l2	= 92% ((`)	
Test for overall effect:				(1 - 0.0	,0001),1	$\langle \mathbf{C} \rangle$	0.05 0.2 1 5 20 avours experimental Favours control
	Even	ontel	Cont	rol		Odds Ratio	Odds Ratio
Chudu an Culumanu	Experim		Cont		Mainh4		
Study or Subgroup	Events				Weight		M-H, Random, 95% Cl
Aisyah 2017	40	92	17	93	8.6%	3.44 [1.76, 6.71]	-
Iversen 2010	7134	8100	4880		10.7%	3.94 [3.63, 4.28]	
Jin 2015	31	42	94	188	8.2%	2.82 [1.34, 5.94]	
Li 2009	102	184	13	65	8.6%	4.98 [2.54, 9.76]	
Li-Z 2016	99	152	8	26	7.4%	4.20 [1.71, 10.31]	
Liu 2010	145	352	41	125	9.7%	1.44 [0.93, 2.21]	—
Maher 2006	20	67	148	250	9.0%	0.29 [0.16, 0.52]	
Oliveira-Filho 2014	88	106	111	194	9.0%	3.66 [2.04, 6.54]	
Pu 2015	216	239	28	36	7.4%	2.68 [1.10, 6.57]	
Shi 2012	119	231	45	116	9.6%	1.68 [1.06, 2.64]	 -
Sun 2007	35	585	0	36	2.0%	4.71 [0.28, 78.29]	
Yao 2015	74	132	59	182	9.6%	2.66 [1.67, 4.23]	
		10282		8794	100.0%	2.39 [1.54, 3.71]	•
Total (95% CI)							
Total (95% CI) Total events	8103		5444			(-)	
		= 107.88		(P < 0.	00001): l²	= 90% (D)	

Figure 3. Effects of pooled ORs for factors correlating to the development of HCV infection among drug users ((**C**) Sharing needles and syringes; and (**D**) Duration of drug use >5 years).

	Experim		Cont			Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events		Weight	M-H, Random, 95% C	
Aisyah 2017	109	119	103	410	2.0%	32.49 [16.38, 64.45]	
Chen-H 2018	1625	1829	264	977	2.8%	21.51 [17.56, 26.35]	
Chen-L 2018	2460	3099	1223	4368	2.9%	9.90 [8.88, 11.04]	
Cui 2005	4	23	31	460	1.3%	2.91 [0.93, 9.09]	
Fan 2010	184	203	26	47	1.9%	7.82 [3.72, 16.46]	
Feng 2014	290	332	98	304	2.5%	14.51 [9.70, 21.72]	
Fill-MA 2018	276	571	149	821	2.7%	4.22 [3.31, 5.37]	
Galperim 2004	14	15	2	45	0.4%	301.00 [25.33, 3576.60]	
Guo 2017	836	1039	168	961	2.8%	19.44 [15.50, 24.38]	
Han 2015	42	52	21	191	1.7%	34.00 [14.90, 77.61]	
Huang 2013	287	404	97	498	2.7%	10.14 [7.45, 13.81]	
Huang 2016	19973	24877		21635	2.9%	11.05 [10.59, 11.54]	
Huang 2017	792	1098	214	902	2.8%	8.32 [6.80, 10.19]	
Jin 2015	1	42	9	188	0.5%	0.49 [0.06, 3.94]	
Jin 2018	472	919	489	3133	2.8%	5.71 [4.86, 6.71]	
Keen-II 2014	204	248	67	234	2.4%	11.56 [7.50, 17.80]	
Li 2009	158	184	26	65	2.0%	9.12 [4.77, 17.40]	
Li 2015	107	139	114	472	2.4%	10.50 [6.71, 16.43]	
Li-N 2016	285	758	2039	13165	2.8%	3.29 [2.82, 3.84]	-
Li-Z 2016	152	196	26	227	2.3%	26.71 [15.74, 45.31]	
Liu 2010	213	352	53	125	2.5%	2.08 [1.38, 3.15]	
Liu 2011	1074	1156	58	184	2.5%	28.45 [19.39, 41.76]	
Ma 2014	28	82	42	506	2.2%	5.73 [3.29, 9.98]	
Pu 2015	216	239	15	36	1.8%	13.15 [5.97, 28.96]	
Shen 2011	267	273	38	48	1.3%	11.71 [4.03, 34.06]	
Shi 2009	798	957	564	1854	2.8%	11.48 [9.43, 13.98]	-
Shi 2012	231	347	116	906	2.7%	13.56 [10.09, 18.24]	-
Sun 2007	473	662	19	110	2.3%	11.99 [7.11, 20.21]	
Tang 2011	50	232	126	567	2.6%	0.96 [0.66, 1.39]	-
Tang 2018	688	1369	373	6161	2.8%	15.68 [13.51, 18.19]	-
Tao 2018	158	207	206	456	2.6%	3.91 [2.70, 5.66]	· · · ·
Wei 2005	235	346	92	273	2.6%	4.17 [2.97, 5.84]	
Wei 2014	5385	5940	2097	4303	2.9%	10.21 [9.18, 11.35]	
Wei 2015	262	276	48	124	2.0%	29.63 [15.50, 56.63]	
Wu 2018	779	1199	352	1604	2.8%	6.60 [5.58, 7.80]	
Xu 2017	23	51	18	398	1.9%	17.34 [8.39, 35.86]	
Yan 2016	580	794	172	815	2.8%	10.13 [8.05, 12.75]	
Yang 2018	1396	1523	104	237	2.6%	14.06 [10.27, 19.25]	
Yao 2015	112	132	45	182	2.2%	17.05 [9.52, 30.54]	
Ye 2016	651	745	325	979	2.7%	13.94 [10.81, 17.96]	
Zhang 2012	73	145	42	255	2.4%	5.14 [3.23, 8.18]	
Zhao 2012	553	580	145	331	2.4%	26.27 [16.87, 40.92]	
Zhong 2010	94	106	33	190	1.9%	37.27 [18.35, 75.68]	
Total (95% CI)		53860		69747	100.0%	10.11 [8.54, 11.97]	•
Total events	42610		16074			feren [eren, riner]	.
Heterogeneity: Tau ² =		= 887 90		(P < 0.0	0001)- 12	= 95%	
Test for overall effect:				1 - 0.0	500 I), I ⁻	- 5576	0.05 0.2 1 5 20

Figure 4. Effects of pooled ORs for injecting drug use correlating to the development of HCV infection among drug users.

3.4. Results of Heterogeneity Evaluation

A heterogeneity test showed that variations among studies for the pooled ORs with 95% CIs for factors including injecting drug use, sharing needles and syringes, drug use duration of >5 years, unemployment, commercial sexual behavior, sex (male), married or cohabiting with a regular partner, Han ethnic group, sexual behavior without a condom, and an education level of \leq 9 years were statistically significant (*p* < 0.10). The effects of these factors were then pooled using the random effect model. These results are detailed in Figures 2–4.

3.5. Publication Bias

In this meta-analysis, a funnel plot for the duration of drug use was symmetrical, with the axis of symmetry (OR = 1) being to the right of center, as detailed in Figure 5. The results of Egger's test for study factors were all p > 0.05, as detailed in Table 2.

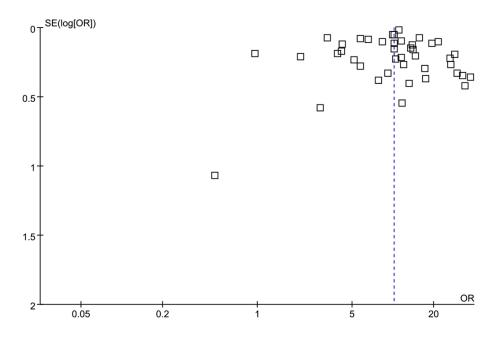


Figure 5. A funnel plot of the articles publication for the duration of drug use.

Table 2. The subgroup characteristics of the study factors associated with HCV infection among drug users after omitting the studies with the maximum weight value for the ORs in the subgroup analysis and the results of Egger's test.

Subgroup Analyses by Study Factors (1) *	Pooled OR with 95% CI	Pooled OR with 95% CI after	Qualitative Comparison:	Quantitative Comparison: Similar	Reference	Egger's Test	
	before Reference Omitted (2)	Reference Omitted (3)	Reversal of Pooled OR with 95% CI ((2) and (3) Compared)	Values of Pooled OR with 95% CI ((2) and (3) Compared)	Omitted	t	<i>p</i> -Value
Education level ≤9 years	1.05 (0.92, 1.21)	1.05 (0.91, 1.21)	No	Yes	[49]	-0.77	0.450
Sexual behavior without a condom	1.72 (1.07, 2.78)	1.50 (1.10, 2.03)	No	Yes	[65]	-1.79	0.097
Sharing needles and syringes	2.244 (1.78, 2.83)	2.31 (1.66, 3.23)	No	Yes	[65,67]	0.86	0.395
Han ethnic group	0.94 (0.73, 1.20)	0.96 (0.70, 1.30)	No	Yes	[62]	0.27	0.788
Married or cohabiting with a regular partner	0.88 (0.79, 0.98)	0.87 (0.78, 0.97)	No	Yes	[65]	-1.53	0.139
Sex (male)	1.04 (0.91, 1.18)	1.02 (0.90, 1.15)	No	Yes	[52,65]	-1.01	0.319
Commercial sexual behavior	1.00 (0.73, 1.38)	0.95 (0.61, 1.47)	No	Yes	[39,40,64]	-0.79	0.446
Unemployment	1.50 (1.22, 1.85)	1.48 (1.07, 2.06)	No	Yes	[49]	-0.23	0.831
Duration of drug use >5 years	3.49 (3.24, 3.75)	3.47 (3.22, 3.74)	No	Yes	[58]	-1.78	0.106
Injecting drug use	10.11 (8.54, 11.97)	10.21 (8.03, 12.97)	No	Yes	[49,61,65]	-0.35	0.731

Note: *: (1)-means Subgroup Analyses by Study Factors; (2)-means Pooled OR with 95% CI before Reference Omitted; (3)-means Pooled OR with 95% CI after Reference Omitted.

3.6. Sensitivity Analysis

In view of the reliability of the pooled ORs using the random effect model for terms including injecting drug use, drug use duration of >5 years, unemployment, commercial sexual behavior, sex (male), married or cohabiting with a regular partner, Han ethnic group, sharing needles and syringes, sexual behavior without a condom, and an education level of ≤ 9 years, we omitted studies with the highest weights, pooled the remaining studies, and acquired the OR_{weight} values with 95% CIs. These pooled values were compared with those obtained before the studies were omitted for qualitative and quantitative comparisons and no major changes in the pooled ORs with 95% CIs were observed for any of the study factors, as detailed in Table 2.

4. Discussion

This study found that drug users with a history of injecting drug use, and/or sharing needles/syringes, drug use duration of >5 years, and/or unemployment, and/or sexual behavior without a condom, were at increased risk of HCV infection, whereas drug users who were married or cohabiting with a regular partner were at decreased risk of developing HCV infection. This study also found that, for drug users (male), commercial sexual behavior, Han ethnicity, an education level of ≤ 9 years, did not affect the risk of developing HCV infection.

In general, exposure to HCV-contaminated needles and syringes increases the risk of HCV infection, and such exposure may be common among injecting drug users [83,84]. The findings of our meta-analysis confirmed that drug users with histories of injecting drug use were at increased risk of HCV infection, and this result was consistent with those of Xia et al. [26]. However, the findings of this meta-analysis that injecting drug users with a history of sharing needles/syringes were at increased risk of developing HCV infection was not consistent with the results reported in the meta-analysis by Xia et al. in 2008, and this may be related to the fact that only three studies on sharing needles were pooled in Xia et al.'s study and that this small sample size led to low test efficiency and unreliable results [26].

The findings of this meta-analysis also showed that drug use duration of >5 years was a risk factor for developing HCV infection, which may relate to the longer the duration of drug use, the greater the opportunity to be exposed to HCV-contaminated needles or goods, potentially leading to an infection. This result was consistent with the findings of a previous meta-analysis report [26].

In view of that, methadone maintenance treatment can reduce or put an end to risky drug-use behaviors. This discovery suggests methadone maintenance treatment should be scaled up further so as to shorten the duration of drug use and reduce the risk of HCV infections [24].

The findings of this meta-analysis also showed that sexual behavior without a condom was a risk factor for developing HCV infection. The results of the meta-analysis by Xia et al. in 2008's meta-analysis reported that high-risk sexual practices were strongly associated with injecting drug behavior [26], but the magnitude of high-risk sexual behavior or the correlation between high-risk sexual behavior and drug-injecting behavior and their contribution to the occurrence of HCV infection could not be determined, thus requiring further study. In our study, there was a high proportion of injecting drug behavior and high-risk sexual behavior among the drug users, but related information on individual cases was not available.

The use of amphetamine-type stimulants is currently on the rise, as is unprotected sexual behavior becoming more common and leads to a high prevalence of HCV infection among the club drug user [17,85–87], strategies therefore need to be implemented to try to reduce such behaviors and to help to reduce the progression of HCV infection. In addition, further meta-analyses for club drug use will be done when there is enough literature.

The findings of this meta-analysis also showed that unemployment among drug users increased the risk of developing HCV infection, and this finding was consistent with the results of meta-analysis of human immunodeficiency virus (HIV) infection, which has a similar transmission route, among drug users [88].

The findings of our meta-analysis showed that drug users who were married or cohabiting with a regular partner were at decreased risk of developing HCV infection, and this finding was consistent with the results of meta-analysis published by Hagan et al. [27], and this may be related to the fact that these drug users had fewer sexual partners and fewer opportunities to be exposed to HCV-infected bodily fluids. However, the findings of this meta-analysis also showed that drug users with commercial sexual behavior, namely having multiple sexual partners, were not at increased risk of developing HCV infection, and this may be related to using club drug use with a shorter duration of drug use [15], although this requires further investigation.

The findings of this meta-analysis also showed that those of Han ethnicity, compared with those of other minority ethnic groups, were not at increased or decreased risk of developing HCV infection, and this finding was consistent with the results of meta-analysis published by Xia et al. [26]. Our findings also showed that drug users with an education level of ≤ 9 years were not at increased or decreased risk of developing HCV infection; however, this finding was inconsistent with that of a previous meta-analysis of HIV infection, which has a similar transmission route among drug users [88].

The limitations of this study were that even though the ORs of the study factors were pooled using a random–effect method, heterogeneity among studies might have influenced the findings. In addition, some study factors, for example, some racial classifications (white or black) were not available to be pooled. Lastly, few studies could be unavailable because of language limitations, in view of that, this meta-analysis' publication bias was not statistically significant, and thus, this aspect influenced findings slightly.

5. Conclusions

This study found that drug users with histories of injecting drug use, sharing needles and syringes, drug use duration of >5 years, and unemployment, were confirmed to be at increased risk of HCV infection. Our findings indicate that high-risk drug users should be closely monitored and sterile needles and syringes should be made available to ensure safe injection. In view of that, methadone maintenance treatment can reduce or put an end to risky drug-use behaviors and should be scaled up further so as to shorten the duration of drug use, thereby reducing HCV infection.

Author Contributions: Study design: C.G.H., B.Z., G.F.C., H.K.L., Y.D.C. Statistical analysis and interpretation: H.K.L., Y.D.C. Manuscript preparation: G.F.C., S.F.X., Z.G.J., Z.T.W., Y.D.C. Critical review of manuscript: B.Z., Y.D.C., C.G.H. All authors read and approved the final manuscript.

Funding: This work was supported by National Health and Family Planning Commission of the People's Republic of China (No. WKJ-ZJ-1917).

Acknowledgments: The authors appreciate the collaboration of staff from our public opinion monitoring and health communication research team.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

- HCV Hepatitis C Virus
- CI Confidence Interval
- OR Odds Ratio
- M-H Mantel-Haenszel
- WHO World Health Organization

References

- 1. Li, J.; Chen, J.; Zhuang, H. Epidemiology of Hepatitis C. J. Pract. Liver Dis. 2012, 15, 376–379.
- 2. WHO. *Guidelines for the Screening Care and Treatment of Persons with Hepatitis C Infection;* World Health Organization: Geneva, Switzerland, 2003.

- Falade-Nwulia, O.; Suarez-Cuervo, C.; Nelson, D.R.; Fried, M.W.; Segal, J.B.; Sulkowski, M.S. Oral Direct-Acting Agent Therapy for Hepatitis C Virus Infection: A Systematic Review. *Ann. Intern. Med.* 2017, 166, 637–648. [CrossRef] [PubMed]
- Millman, A.J.; Nelson, N.P.; Vellozzi, C. Hepatitis C: Review of the Epidemiology, Clinical Care, and Continued Challenges in the Direct Acting Antiviral Era. *Curr. Epidemiol. Rep.* 2017, *4*, 174–185. [CrossRef] [PubMed]
- Jakobsen, J.C.; Nielsen, E.E.; Feinberg, J.; Katakam, K.K.; Fobian, K.; Hauser, G.; Poropat, G.; Djurisic, S.; Weiss, K.H.; Bjelakovic, M. Direct-acting antivirals for chronic hepatitis C. *Cochrane Database Syst. Rev.* 2017. [CrossRef] [PubMed]
- 6. WHO. Guidelines for the Screening, Care and Treatment of Persons with Hepatitis C Infection. 2014. Available online: https://www.who.int/hepatitis/publications/hepatitis-c-guidelines/en/ (accessed on 20 August 2017).
- 7. Jia, Z.S. Review and reflection: 30 years of research on prevention and treatment of hepatitis C. J. Clin. *Hepatobiliary Dis.* **2015**, *31*, 1803–1807.
- Zheng, E.D.; Gao, L.M.; Peng, X.; Xie, T.S.; Liu, H.Y.; Sun, Y.Q.; Huang, J.; Li, H. HIV and HCV infection situation and associated risk factors among injecting drug users: A meta-analysis. *Chin. J. Dis. Control. Prev.* 2017, 21, 1271–1277.
- Zhuang, X.; Liang, Y.; Chow, E.P.F.; Wang, Y.F.; Wilson, D.P.; Zhang, L. HIV and HCV prevalence among entrants to methadone treatment clinics in China: A systematic review and meta-analysis. *BMC Lnfect. Dis.* 2012, 12, 130–134. [CrossRef] [PubMed]
- Zibbell, J.; Iqbal, K.; Patel, R.; Suryaprasad, A.; Sanders, K.; Moore-Moravian, L.; Serrecchia, J.; Blankenship, S.; Ward, J.; Holtzman, D.; et al. Increases in hepatitis C virus infection related to injection drug use among persons aged ≤30 years-Kentucky, Tennessee, Virginia, and West Virginia, 2006–2012. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 453–459. [PubMed]
- 11. United Nations Office on Drugs and Crime. World Drug Report 2017. Available online: http://www.nncc626. com/2018-06/11/c_129892175.htm (accessed on 21 August 2017).
- 12. Degenhardt, L.; Copeland, J.; Dillion, P. Recent trends in the use of "club drugs": All Australian review. *Subst. Use Misuse* **2005**, *40*, 1241–1257. [CrossRef]
- 13. United Nations Officeon Drugs and Crime (UNODC). 2011 Patterns and Trends of Amphetamine-Type Stimulants and Other Drugs: Asia and the Pacific [EB/OL]. (2012-10-18) (2014-12-21). Available online: http://www.unode.org/documents/scientific/Asia_and_the_Pacific_2011_Regional_ATS_Report.pdf (accessed on 25 August 2017).
- 14. Fernández, M.; Bowen, G.; Varga, L.; Collazo, J.; Hernandez, N.; Perrino, T.; Rehbein, A. High rates of club drug use and risky sexual practices among Hispanic men who have sex with men in Miami, Florida. *Subst. Use Misuse* **2005**, *40*, 1347–1363. [CrossRef]
- 15. Parsons, J.; Kelly, B.; Wells, B. Difierences in club drug use between heterosexual and lesbian/bisexual females. *Addict. Behav.* **2006**, *31*, 2344–2350. [CrossRef]
- Pan, X.H.; Jiang, J.; He, H.; Chen, L.; Yang, J.Z.; Zhang, H.B.; Wang, N. Survey of prevalence of HIV infection, syphilis and HCV infection and related risk behaviors among club drug users in Zhejiang, 2011. *Chin. J. Epidemiol.* 2015, *36*, 934–11.
- 17. Liu, H.M. World Drug Report 2004. Available online: http://www.people.com.cn/GB/guandian/183/2281/327 6/2607166.html (accessed on 23 August 2017).
- Legal Daily. Nearly 3 Million Drug Addicts Have Been Registered in China. Available online: http: //legal.people.eom.en/n/2015/0619/el88502-27184718.htm (accessed on 19 December 2015).
- 19. Puente, M.T.; Cuevas, J.; Jimenez-Hernandez, N.; Bracho, M.; García-Robles, I.; Wrobel, B.; Carnicer, F.; Olmo, J.D.; Ortega, E.; Moya, A.; et al. Genetic variability in hepatitis C virus and its rule in antiviral treatment response. *J. Viral Hepat.* **2008**, *15*, 188–200. [CrossRef] [PubMed]
- 20. Tan, Y.; Wei, Q.H.; Chen, L.J.; Chan, P.C.; Lai, W.S.; He, M.L.; Kung, H.F.; Lee, S.S. Molecular epidemiology of HCV monoinfection and HIV/HCV eoinfection in injection drug users in Liuzhou, Southern China. *PLoS ONE* **2008**, *3*, e3608. [CrossRef] [PubMed]
- 21. Yang, Y.; Guan, Q.Z.; Xu, Y.; Chen, S.D.; Wu, B.W. Serum epidemiology of hepatitis c and b virus infection in drug users. *Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi* **1999**, *13*, 247–251. [PubMed]
- 22. Pang, L.; Mi, G.D.; Wang, C.H.; Luo, W.; Rou, K.M.; Li, J.H.; Wu, Z.Y. Evaluation of first 8 pilot methadone maintenance treatment clinics in China. *Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi* 2007, 21, 2–5.

- 23. Dole, V.P.; Nyswander, M. A medical treatment for diacetylmorphine (heroin) addiction. *JAMA* **1965**, *193*, 646. [CrossRef]
- 24. Wu, Z. Landmark Government Methadone Maintenance Program in Mainland China. In Proceedings of the 15th International AIDS Conference, Bangkok, Thailand, 13 July 2004.
- 25. Wu, Z. Methadone maintenance program in mainland China: From pilot to scale-up. In Proceedings of the International Conference on the Reduction of Drug Related Harm, Belfast, Northern Ireland, UK, 20 March 2005.
- 26. Hagan, H.; Pouget, E.R.; Jarlais, D.C.D. Meta-Analysis of HCV Prevention for PWID. *JID* 2011, 204, 74–83. [CrossRef]
- 27. Xia, X.; Luo, J.; Bai, J.L.; Yu, R.B. Epidemiology of hepatitis C virus infection among injection drug users in China: Systematic review and meta-analysis. *Public Health* **2008**, *122*, 990–1004. [CrossRef]
- 28. Fill, M.A.; Sizemore, L.A.; Rickles, M.; Cooper, K.C.; Buecker, C.M.; Mullins, H.L.; Hofmeister, M.G.; Abara, W.E.; Foster, M.A.; Asher, A.K.; et al. Epidemiology and risk factors for hepatitis C virus infection in a high-prevalence population. *Epidemiol. Infect.* **2018**, *146*, 508–515. [CrossRef]
- Aisyah, D.N.; Shallcross, L.; Hayward, A.; Aldridge, R.W.; Hemming, S.; Yates, S.; Ferenando, G.; Possas, L.; Garber, E.; Watson, J.M.; et al. Hepatitis C among vulnerable populations: A seroprevalence study of homeless, people who inject drugs and prisoners in London. *J. Viral Hepat.* 2018, 25, 1260–1270. [CrossRef] [PubMed]
- 30. Nordén, L.; Lidman, C. Differentiated risk behaviour for HIV and hepatitis among injecting drug users (IDUs). *Scand. J. Infect. Dis.* **2005**, *37*, 493–497. [CrossRef] [PubMed]
- 31. Galperim, B.; Cheinquer, H.; Stein, A.; Fonseca, A.; Lunge, V.; Ikuta, N. Intranasal cocaine use does not appear to be an independent risk factor for HCV infection. *Addiction* **2004**, *99*, 497–502. [CrossRef] [PubMed]
- Maher, L.; Jalaludin, B.; Chant, K.G.; Jayasuriya, R.; Sladden, T.; Kaldor, J.M.; Sargent, P.L. Incidence and risk factors for hepatitis C seroconversion in injecting drug users in Australia. *Addiction* 2006, 101, 1499–1509. [CrossRef]
- Wei, D.Y.; Yang, Y.; Ruan, Y.H.; Zeng, G.H.; Han, L.; Liang, S.; Zhang, J.H.; Yin, L.; Zhang, L.; Qin, G.M.; et al. HCV Prevalence and Risk Factors among Drug Users in Xichang County of Sichuan, China. *J. Prev. Med. Inf.* 2005, 21, 135–140.
- 34. Sun, Y.; Zhang, Y.; Chen, W.; Guan, L.; Liu, H.; Tan, M.J.; Li, D.Q.; Dai, W.P.; Huang, M.S. Hepatitis C Virus Infection among Drug Users. *Occup. Health* **2007**, *23*, 881–884.
- 35. Yun, C.Y.; Wu, J.C.; Liu, J.C. Investigation on HCV infection and influencing factors among drug users in haikou area. *Hainan Med. J.* **2016**, *27*, 1878–1880.
- 36. Cui, X.L.; Li, Z. Investigation on the infection status of HBV, HCV, HIV and syphilis among 483 drug addicts in baoji city in 2005. *Prev. Med. Trib.* **2005**, *11*, 169–171.
- 37. Stone, J.; Fraser, H.; Lim, A.G.; Walker, J.G.; Ward, Z.; Mac Gregor, L.; Trickey, A.; Abbott, S.; Strathdee, S.A.; Abramovitz, D.; et al. Incarceration history and risk of HIV and hepatitis C virus acquisition among people who inject drugs: A systematic review and meta-analysis. *Lancet Infect. Dis.* **2018**, *18*, 1397–1440. [CrossRef]
- 38. Lin, P.; Fan, Z.F.; Yang, F.; Wu, Z.Y.; Wang, Y.; Liu, Y.Y.; Ming, Z.Q.; Li, W.J.; Luo, W.; Fu, X.B.; et al. Effect evaluation of needle exchange project for community drug users in Guangdong. *Chin. J. Prev. Med.* **2004**, *38*, 305–309.
- 39. Chen, H.; Zhao, X.H.; Liao, K.K.; Zhang, J.Y. Analysis of current situation of HCV infection among drug users in Mianyang City. *Chin. J. Health Educ.* **2018**, *34*, 258–261.
- 40. Wu, Z.Q.; Liu, X.F.; Wang, N.; Yang, X.T.; Cao, G.W. Seroprevalence of human immunodeficiency virus, hepatitis c virus, and syphilis infection their influencing factors among drug users in baoshan district of Shanghai from 2010 to 2016. *Shanghai J. Prev. Med.* **2018**, *30*, 223–229.
- 41. Jin, J.; Luo, Y.; Chen, J.F.; Li, X.T.; Zhang, X.L.; Xu, K. Prevalence of HIV, syphilis and HCV and their risk factors among drug users in Hangzhou. *Prev. Med.* **2018**, *30*, 248–257.
- 42. Xian, X.W.; Tong, Z.W.; Rui, G.; Qian, Z.Q. analysis on the status of syphilis and HCV infection and influencing factors among community drug addicts in Jiaxing City. *Prev. Med.* **2017**, *29*, 135–139.
- 43. Ye, Y.; Zhang, Z.; Zhao, X.L.; Tian, T.; Cai, A.; Dai, J. HIV, HCV, syphilis and their co-infection and risk factors analysis among drug users in Urumqi from 2010 to 2014. *J. Xinjiang Med. Univ.* **2016**, *39*, 1447–1452.
- 44. Li, Z.; Liu, J.Z.; Shen, Y.Y. Investigation on the Infection of HIV, HCV and Association High Risk Factors among Drug Users. *J. Dali Univ.* **2016**, *1*, 77–81.

- 45. Tao, Y.X.; Zhao, C.; Gao, X.Y. ChengCurrent situation and influencing factors of HCV infection among drug users in xining city. *Guangxi Med. J.* **2018**, *40*, 2855–2858.
- 46. Zhang, T.; Ji, J.F.; Qiu, Y.W. Analysis of monitoring results of AIDS, syphilis and hepatitis c among drug addicts. *Zhejiang Prev. Med.* **2012**, *24*, 29–32.
- 47. Shen, H.D.; Tang, J.F.; Yang, W.; Zhao, Y. Investigation and analysis of HCV infection among methadone patients in jining county. *Soft Sci. Health* **2011**, *25*, 867–870.
- 48. Liu, Q. Prevalence of HCV, HIV and Syphilis Infection among Drug Addicts at the Methadone Treatment Clinic in Wuhan and Analysis of Risk Factors. *Chin. J. Rehabil.* **2011**, *26*, 356–358.
- 49. Oliveira-Filho, A.B.; Sawada, L.; Pinto, L.C.; Locks, D.; Bahia, S.L.; Castro, J.A.A.; Hermes, R.B.; Brasil-Costa, I.; Amaral, C.E.M.; Lemos, J.A.R. Epidemiological aspects of HCV infection in non-injecting drug users in the Brazilian state of Pará, eastern Amazon. *Virol. J.* **2014**, *11*, 38–46. [CrossRef] [PubMed]
- Wei, X.L.; Wang, L.R.; Wang, X.L.; Li, J.S.; Li, H.X.; Jia, W. Risk Factors of Hepatitis C Virus Infection in Drug Users from Eleven Methadone Maintenance Treatment Clinics in Xi'an, China. *Hepat. Mon.* 2014, 14, e19061. [CrossRef] [PubMed]
- 51. Zeremski, M.; Makeyeva, J.; Arasteh, K.; Jarlais, D.C.D.; Talal, A.H. Hepatitis C virus-specific immune responses in noninjecting drug users. *J. Viral Hepat.* **2012**, *19*, 554–559. [CrossRef] [PubMed]
- Keen, L., II; Khan, M.; Clifford, L.; Harrell, P.T.; Latimer, W.W. Injection and non-injection drug use and infectious disease in Baltimore City: Differences by race. *Addict. Behav.* 2014, *39*, 1325–1333. [CrossRef] [PubMed]
- 53. Iversen, J.; Wand, H.; Gonnermann, A.; Maher, L.; On Behalf of the Collaboration of Australian Needle and Syringe Programs. Gender differences in hepatitis C antibody prevalence and risk behaviours amongst people who inject drugs in Australia 1998–2008. *Int. J. Drug Policy* **2010**, *21*, 471–477. [CrossRef]
- 54. Demetriou, V.L.; van de Vijver, D.A.; Hezka, J.; Kostrikis, L.G.; Cyprus IVDU Network. Hepatitis C Infection Among Intravenous Drug Users Attending Therapy Programs in Cyprus. *J. Med Virol.* **2010**, *82*, 263–271. [CrossRef] [PubMed]
- 55. Shi, P.; Li, L. Survey and analysis on the HCV infection among drug users. *Jiangsu Prev. Med.* 2009, 20, 10–13.
- 56. Fan, L.J. Analysis of HIV, HCV and syphilis infection among 250 drug addicts in pingnan county. *Health Heaven*. *Earth-Health Insp. Prev.* **2010**, *4*, 113–115.
- 57. Qin, T.X. Results Analysis of HIV Sentinel Surveillance among Drug Addicts in Detention in Nanchang Area. *Occup. Health* **2011**, 27, 2180–2184.
- 58. Liu, H.B.; Zhe, X.L. Study on HCV Co-infection in Yulin Drug Users. J. Med. Pest. Control. 2010, 26, 731–733.
- 59. Li, G.Q.; Wu, M.Q.; Yuan, S.R. Analysis of HBV, HCV infection and liver function in 249 cases of heroin addicts. *Chin. J. Drug Abuse Prev. Treat.* 2009, *15*, 80–84.
- 60. Huang, D.P.; Li, Y.J.; Zhou, Y.Y.; Guan, H.J. Prevalence of HCV infection and related risk factors among drug users in Changde City. *Pract. Prev. Med.* **2017**, *24*, 330–332.
- Yang, K.; Yang, Y.L.; Peng, G.P.; Jiang, H.L.; Li, L.L.; Tang, H. Analysis of HIV, HCV and TP Infection in Patients under Maintenance Treatment Methadone with in Yichang Urban City. *Chin. J. Derm. Venereol.* 2018, 32, 302–306.
- 62. Chen, L.; Lin, X.; Lian, Q.L.; Zhang, M.Y.; Zheng, W.X. HCV infection and related factors among drug users in Fujian Province, 2010–2015. *Chin. J. AIDS STD* **2018**, *24*, 48–52.
- 63. Tang, R.H.; Gao, Y.; Yang, Y.C.; Cao, Y.F.; Yang, S.J.; Ye, R.H.; Wang, J.B.; Wang, Y.K.; Duan, S.; He, N. Analysis of HCV infection rate and its influence factors among drug users in Dehong Prefecture, Yunnan Province. *Chin. J. Prev. Med.* **2018**, *52*, 87–91.
- 64. Guo, Y.; Ning, T.L.; Zhou, N. HCV inaction status and associated factors among drug users in Tianjin from 2011 to 2015. *Int. J. Virol.* **2017**, *24*, 178–184.
- Li, N.; Wang, X.W.; Nie, Y.G.; Ma, Y.M.; Wen, J.; Fan, P.Y.; Sun, D.Y.; Zhu, Q. HCV infection status and related risk factors in drug users under HIV sentinel surveillance in Henan province, 2011–2015. *Chin. J. Epidemiol.* 2016, *37*, 821–826.
- 66. Huang, X.M.; Lin, P.; Li, Y.; Fu, X.B. Analysis on HCV seroprevalence and related risk factors among drug users, Guangdong province, 2011—2013. *Prev. Med. Trib.* **2016**, *22*, 88–94.
- 67. Yao, Z.Z.; Xu, X.R.; Lei, L.J. Investigation and analysis of hepatitis c infection among drug users in usu city. *Bull. Dis. Control. Prev.* **2015**, *30*, 3–9.

- 68. Wei, L.; Zhang, Y.J. Prevalence and associated risk factors of HIV, HCV and TP in drug users in Liuzhou City. *Chin. J. Dis. Control. Prev.* **2015**, *19*, 1248–1253.
- 69. Jin, H.Y.; Li, W.T.; Yan, L.; Fu, X.Y.; Xu, M.M.; Pu, S.D.; Liu, X.J.; He, J.C. Analysis of infection of HBV, HCV and TP and relative factors among drug addicts under compulsory rehabilitation in Lanzhou. *J. Lanzhou Univ. (Med. Sci.)* **2015**, *41*, 44–49.
- Ma, J.X.; Liu, S.J.; Wang, Y.B.; Yang, C. Analysis of hepatitis c infection and its influencing factors among methadone addicts in baiyin outpatient clinic. *Chin. J. PHM* 2014, *30*, 531–533.
- 71. Pu, L.F.; Su, Y.Y.; Wang, G.X.; Bai, J. Prevalence of HIV and HCV infections in patients receiving methadone maintenance treatment in Kaiyuan. *Chin. J. Epidemiol.* **2015**, *36*, 29–32.
- 72. Li, F.; Wang, H. s.; Liu, H.X.; Guo, S.Y.; Hao, Z. Hepatitis C infection and its influencing factors among drug users in Changping district of Beij ing in 2009–2013. *Chin. Prev. Med.* **2015**, *16*, 105–108.
- 73. Han, X.; Hou, X.Y.; Li, H.J. The present situation of AIDS, syphilis and hepatitis c among drug users in Hohhot in 2011. *J. Dis. Surveill. Control.* **2014**, *8*, 494–496.
- 74. Feng, Y.J.; Wang, L.; Liang, L.; Cao, N.X. The Infectious Status of HIV, HCV and Treponema pallidum Infection and Related Risk Factor in 636 Drug Users in Qinhuangdao City. *Chin. J. Derm. Venereol.* **2014**, *18*, 600–604.
- 75. Huang, D.S.; Zheng, W.B.; Yang, J.F.; Li, Y.P.; Hu, A.Y.; Guo, J.H.; Peng, J.Y.; Xu, Z.C.; Liu, L.; Ding, Y.; et al. Analysis of HCV ser0preValence and related influencing factors among drug users in HIV sentinel points, Baoshan City. *Chin. J. AIDS STD* 2013, *19*, 279–283.
- 76. Zhao, H.; Ban, H.; Gao, L. Investigation on infection of hepatitis C virus among IDUs in Wuhai City from 2010 to 2011. *J. Dis. Monit. Control.* **2012**, *6*, 705–707.
- 77. Shi, W.Y.; Xie, Y.Y.; Liu, C. An epidemiological survey On hepatitis C virus infection among drug users in Beijing. *Chin. J. AIDS STD* **2012**, *18*, 184–188.
- 78. Zhong, H.R. Analysis of HIV, HCV and syphilis infection in 296 drug addicts in ganzhou city. *South China J. Prev. Med.* **2010**, *36*, 31–33.
- 79. National Health and Family Planning Commission of the People's Republic of China. WS 213–018 Diagnosis for hepatitis C. J. Clin. Hepatol. 2018, 34, 3–6.
- 80. Ebrahim, S.; Clarke, M. STROBE: New standards for reporting observational epidemiology, a chance to improve. *Intern. J. Epidemiol.* **2007**, *36*, 946–949. [CrossRef] [PubMed]
- 81. Strobe Statement: Strengthening the Reporting of Observational Studies in Epidemiology [EB/OL]. Available online: http://www.strobe-statement.org/index.php?id=strobe-translations (accessed on 1 May 2013).
- 82. Ades, A.E.; Lu, G.; Higgins, J.P. The interpretation of random-effects meta-analysis in decision models. *Med. Decis. Mak.* **2005**, *25*, 646–654. [CrossRef]
- 83. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* **2009**, *6*, e1000097. [CrossRef]
- 84. Schaefer, M.; Mauss, S. Hepatitis C treatment in patients with drug addiction: Clinical management of interferon-alpha-associated psychiatric side effects. *Curr. Drug Abus. Rev.* **2008**, *1*, 177–188. [CrossRef]
- 85. Dolan, K.A.; Shearer, J.; White, B.; Zhou, J.; Kaldor, J.; Wodak, A.D. Four-year follow-up of imprisoned male heroin users and methadone treatment:mortality, re-incarceration and hepatitis C infection. *Addiction* **2005**, *100*, 820–829. [CrossRef] [PubMed]
- Hao, W.; Xiao, S.; Liu, T.; Young, D.; Chen, S.; Zhang, D.; Li, C.; Shi, J.; Chen, G.; Yang, K. The second National Epidemiological Survey on illicit drug use at six high-prevalence areas in China: Prevalence rates and use patterns. *Addiction* 2002, *97*, 1305–1316. [CrossRef]
- 87. Zhao, M.; Du, J.; Lu, G.H.; Wang, Q.Y.; Xu, H.; Zhu, M.; McCoy, C.B. HIV sexual risk behaviors among injection drug users in Shanghai. *Drug Alcohol Depend.* **2006**, *82* (Suppl. S1), s43–s48. [CrossRef]
- Xing, J.N.; Qian, S.S.; Guo, W.; Li, Y.G.; Ding, Z.W.; Wang, L. Meta-analysis on risk factors of HIV infection among drug users in China. *Dis. Surveill.* 2013, 28, 823–828.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).