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Many studies on the drift-diffusion model (DDM) explain decision-making based on

a unified analysis of both accuracy and response times. This review provides an in-

depth account of the recent advances in DDM research which ground different DDM

parameters on several brain areas, including the cortex and basal ganglia. Furthermore,

we discuss the changes in DDM parameters due to structural and functional impairments

in several clinical disorders, including Parkinson’s disease, Attention Deficit Hyperactivity

Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD),

and schizophrenia. This review thus uses DDM to provide a theoretical understanding of

different brain disorders.
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INTRODUCTION

In daily life, we make numerous decisions; some are less complex, such as choosing a lane in the
traffic. Others are very complex such as deciding which experiment to perform to investigate a
research question best. Various studies attempt to understand decision-making on formal grounds
using biophysical and abstract models. Biophysical models explore the interaction between the
neural areas and the changes in the neurotransmitters such as GABA and glutamate (Jocham
et al., 2012), while abstract models, such as the drift-diffusion model (DDM), attempt to explain
the observed behavior (Ratcliff and Childers, 2015). One of these models, the DDM of decision-
making, has gained significant attention. DDM estimates a number of model parameters such as
decision threshold, drift rate, and bias based on the observed responses and the response time.

Several studies attribute DDM parameters to several cortical structures (Kim and Shadlen, 1999;
Shadlen and Newsome, 2001; Kiani and Shadlen, 2009). These cortical areas work in conjunction
with the basal ganglia (a subcortical structure) that provides auxiliary information to facilitate
decisions and influence the DDM parameters. O’Connell et al. (2018) reviewed the link between
neural activity in cortical and subcortical areas to DDM parameters. Computationally, Purcell
and Palmeri (2017) show that based on neural activity, DDM parameters can be estimated, and
vice versa. Additionally, Mulder et al. (2014a) reviewed non-invasive fMRI studies in humans
to spotlight the role of various cortical and subcortical areas [prefrontal cortex, frontal eye
field, striatum (STR), and pre-supplementary motor area (pre-SMA)] in controlling the DDM
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parameters. Another review showed that the posterior parietal
cortex (PPC), frontal eye fields, dorsal STR, and lateral
intraparietal area activity correlate to DDM parameters in
humans and monkeys (Hanks and Summerfield, 2017). The
authors further showed that in rodents, the rat PPC and frontal
orienting fields (homologs of monkey PPC and frontal eye fields)
could be neural correlates of DDM parameters (Hanks and
Summerfield, 2017). These reviews corroborate the fact that these
cortical and subcortical areas are involved in decision-making
and are the sites for DDM parameters. A loss of structural
and functional connectivity severely impairs the decisions in
motor and cognitive tasks. One particular review focusing on
imaging studies on psychosis provides a detailed account of
the basal ganglia and the role of dopamine in explaining DDM
parameters (Horga and Abi-Dargham, 2019). While there are
many studies on DDM parameter changes in disorders, reviews
on the topic are almost non-existent (Horga and Abi-Dargham,
2019). This review summarizes electrophysiological, behavioral,
and imagining studies that correlate DDM parameters to
the cortico-basal ganglia (BG) structures. Furthermore, we
discuss DDM parameter changes in various disorders such
as Parkinson’s disease (PD), attention deficit hyperactivity
disorder (ADHD), autism spectrum disorders (ASD), obsessive-
compulsive disorder (OCD), and schizophrenia. Below, we first
discuss the standard parameters of classical DDM briefly (Section
TheDrift-DiffusionModel). Following that, we discuss the neural
substrates underlying each DDM parameter (Section Neural
Substrates of DDM). Subsequently, we discuss how different
brain disorders impact different DDM parameters (Section
Brain Disorders).

THE DRIFT-DIFFUSION MODEL

The drift-diffusion model (also known as the diffusion decision
model) was proposed by Ratcliff (1978) as an extension
of early random walk models (e.g., Wald and Wolfowitz,
1948; Stone, 1960). The proposed model suggested that two-
alternative forced-choice behavior can be modeled as a DDM,
accumulating noisy evidence in favor of one alternative over
another (Figure 1). The sequential addition of evidence enables
the model to reach either of the choice-associated thresholds,
terminate the evidence accumulation process, and select the
choice (for which the threshold is crossed) as the preferred
outcome (Ratcliff et al., 2016). The initial bias (or starting
point) for evidence accumulation can influence the choice
selection by moving the starting point closer to a decision
threshold/choice, thereby making it farther away from the
other threshold/choice. Bias toward a choice requires lesser
evidence accumulation for the choice closer to the bias
while requiring more evidence for the alternative choice
before reaching the threshold. The drift rate or the rate of
evidence accumulation determines how quickly the evidence
reaches the decision threshold. Thus, the three decision-related
parameters obtained fromDDM are decision threshold, bias, and
drift rate.

As with any computational model, the DDM also has several
limitations, as discussed in Ratcliff et al. (2016). These limitations
led to the development of many variants and alternatives of DDM
(Usher and McClelland, 2001; Palmer et al., 2005; Wagenmakers
et al., 2007; Ratcliff and McKoon, 2008; Vandekerckhove and
Tuerlinckx, 2008; Wiecki et al., 2013). In this review, we focus on
only the classical (standard) DDMmodel. The core parameters of
the conventional DDM, including decision threshold, drift rate,
bias, are discussed below.

Decision Threshold
The decision threshold limits the amount of evidence gathered
before decision finalization. While evaluating a stimulus to
two decision threshold hypotheses, the decision-making system
gathers evidence in favor of one hypothesis over the other
in light of the information received. The decision terminates
when one of the two decision thresholds, each representing a
different hypothesis, is reached. Further empirical evidence also
shows that these thresholds are dependent on multiple factors
such as instructions emphasizing speed vs. accuracy (Mulder
et al., 2013), task familiarity (Balci et al., 2011), and choice
certainty/confidence (Philiastides et al., 2014; Lim et al., 2017).

One of the central concepts of decision-making research is
the speed-accuracy tradeoff (SAT) paradigm, which shows that
faster decisions are less accurate while slower decisions are more
accurate. In a limited time-bound two alternate-forced-choice
task, where time is of critical importance, participants must
optimize the speed and accuracy to maximize rewards through
training (Wald and Wolfowitz, 1948; Bogacz et al., 2006; Balci
et al., 2011; Drugowitsch et al., 2012; Spieser et al., 2017; Desender
et al., 2019; Riesel et al., 2019). The SAT is modulated within
the framework of DDM by decision threshold setting (Mulder
et al., 2014a). Specifically, reducing the threshold reduces the
evidence required at the expense of task accuracy and vice versa.
Earlier work shows that human participants can learn to optimize
their decision by adopting the reward-rate maximizing decision
threshold (Balci et al., 2011; Desender et al., 2019; Stafford et al.,
2020).

In most time-constrained experiments, if a trial is not
completed within a predefined time, the trial is considered a
failure, and no rewards are obtained. In these time-constrained
conditions, movements are often executed before the decision
threshold is reached. The decision-making system accumulates
evidence to refine or modify the motor output even after motor
execution (Resulaj et al., 2009; Wong et al., 2015). The pre-
decision movement execution enables a reduction of movement
time while allowing for more online movement corrections.

The motor system prepares and executes the movement when
certain choice confidence is reached to maximize movement
execution and movement correction time. Even after movement
execution, the model accumulates evidence to revalidate the
selected choice (Krajbich and Rangel, 2011). Though many of
the studies suggest that the decision threshold is fixed/constant,
a few recent studies show that the threshold may not be
fixed (O’Connell et al., 2018). One study indicated that during
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FIGURE 1 | An illustration of the pure drift-diffusion model (DDM). The model accumulates evidence favoring two choices corresponding to correct choice (upper

threshold) and incorrect choice (lower threshold). After the non-decision time, which is unrelated to the choices, the DDM starts accumulating evidence in favor of

either choice (solid black line). When the evidence reaches either of the threshold (dashed black and red lines), the decision is terminated. The period between starting

the evidence accumulation and threshold first crossing time refers to the decision time. If the threshold is reduced (dotted black and red lines), accumulating evidence

may terminate the decision-making process earlier with incorrect choice selection modified from Wong et al. (2015).

task execution, the thresholds are dynamically determined
(Philiastides et al., 2014; Lim et al., 2017).

Drift Rate
Evidence accumulation is a noisy process. A random Gaussian
noise (with known mean and SD) is added at each step within
a trial during the evidence sampling process. The drift rate is
computed by averaging the rate of evidence accumulation from
the start of evidence accumulation to the decision threshold.
Averaging also serves the essential purpose of averaging out the
instantaneous noise added. Therefore, the DDM parameter, drift
rate, account for how quickly evidence is accumulated toward the
correct decision threshold. By controlling for other parameters,
higher drift rates mean shorter reaction times and higher
accuracy. While choosing between rewarded and neutral stimuli
(low conflict decisions), the drift rate was observed to be higher,
and consequently, RT was found to be shorter (Ratcliff and
Frank, 2012; Wiecki et al., 2013; Bond et al., 2018). Additionally,
choice-value influences the drift rate, with high payoff decisions
having higher drift rates (Starns et al., 2012; Bottemanne and
Dreher, 2019). Drift rates also depend on the reliability of sensory
evidence, with low-reliability evidence showing lower rates (Balci
et al., 2011; Hanks et al., 2011; Drugowitsch et al., 2012; Mulder

et al., 2012). In their study, Clay et al. (2017) showed that in
high loss aversion (defined as increased sensitivity to losses),
participants have a lower drift rate due to over fixation (which
is related to higher evidence accumulation) on the non-selected
choice even for easy trials (Clay et al., 2017). Additionally, with
additional training on a task due to an increase in drift rate, a
shorter RT is observed (Dutilh et al., 2009; Balci et al., 2011; Gur
et al., 2020). During the aging process in rodents and humans,
and/or lower accuracy is observed (Salthouse, 1996; Ratcliff et al.,
2007a; McGovern et al., 2018; Gur et al., 2020; Theisen et al.,
2020).

Together, these studies show that the drift rates are affected
by stimulus quality, stimulus value, training, and the separation
between choices.

Bias
The starting point of evidence accumulation, or bias, plays a
significant role in determining RT. A change in bias toward
a favored choice (mathematically equivalent to reducing the
threshold for the preferred choice) results in a lesser evidence
requirement for reaching the threshold for favored choice and
vice versa, thereby leading to faster RT and quicker decisions.
Additionally, the task difficulty of the trial modulates the bias by
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favoring a more familiar choice (Mulder et al., 2012). The prior
probability of associated payoffs is unknown in an unfamiliar
task, and no prior memory exists to estimate the trial properties
(Bogacz et al., 2006; Mulder et al., 2012). On repeating the trials,
the stimulus characteristics are obtained, stored, and recalled
for later trials (Simen et al., 2009; Leite and Ratcliff, 2011).
Reward associated with the stimulus also influences the bias with
higher value stimulus biasing the starting point (Mulder et al.,
2012, 2014b; Rao et al., 2012; Fan et al., 2018). While bias is
considered a static value predetermined before starting evidence
accumulation, Hanks et al. (2011) showed that bias is dynamically
altered in an ongoing trial to initiate faster RT.

NEURAL SUBSTRATES OF DDM

For a site to qualify as an evidence accumulation area, the
neuronal populations in the candidate brain area should increase
their neural activity after stimulus presentation. This activity
increase continues till a decision is reached, following which the
neural activity returns to baseline (Tremel and Wheeler, 2015;
Yartsev et al., 2018).

In this section, we discuss several cortical and subcortical basal
ganglia areas that may show characteristics of being correlated
with DDM parameters.

Cortical Areas
The prefrontal cortex (PFC), frontal eye fields (FEF), lateral
intraparietal area (LIP), superior colliculus (SC), fusiform,
occipital, and inferior frontal gyri are observed to be sites for
evidence accumulation (Ratcliff et al., 2003, 2007b; Tremel and
Wheeler, 2015; Peel et al., 2017; Reppert et al., 2018). This
neural activity indicating evidence accumulation in downstream
elements is not a surprising finding as it may only mean that the
upstream elements are involved in the ongoing decision-making
process (Selen et al., 2012). This review explicitly discusses PFC,
FEF, LIP, and SC in greater detail (see Table 1 for the summary).

Frontal Eye Fields
Many DDM studies are conducted in non-human primates
where monkeys indicate the choice using eye movements. The
FEF’s involvement in eye movement and cognitive tasks has
been widely studied. FEF receives inputs from PFC, LIP, middle
temporal area (MT) while it outputs to PFC, STN, and SC
(Purcell et al., 2010). Saccades showed longer latency with slow
velocity and higher errors upon inhibiting FEF using muscimol
(a GABA-A receptor agonist; Dias and Segraves, 1999). FEF
inhibition reduces SC activity and increases overall RT (Peel
et al., 2017). Neural activity in FEF and principal sulcus encodes
decisions and performs evidence accumulation, as evident from
persistent activity between 200 and 300ms after cue onset until
the saccade onset. Neural activity is modulated during movement
toward the response field for low conflict conditions, where the
evidence was mostly in favor of one of the two choices (Kim and
Shadlen, 1999). To test whether the FEF integrates choice-specific
outcomes or categorizes the evidence into discrete actions, Murd
et al. (2020) stimulated FEF using TMS. The authors found
that the task performance was affected through stimulation only

during the choice-specific integration phase and not during the
categorization phase. This study provides additional support for
the role of FEF in evidence accumulation (Ding and Gold, 2012;
Murd et al., 2020).

Lateral Intraparietal Area (LIP)
The LIP neuronal activity corresponds to sensory processing,
memory processing, saccade-related responses, direction
selectivity, and choices information (Shushruth et al., 2018).
During a random dot motion (RDM) decision, where the
participant indicates the direction of a cloud of dots motion,
LIP neurons’ firing rates were higher for correct choices when
the motion was toward the receptive field. Interestingly, this
activity increase was both before and during the motion
display, indicating that LIP neurons access stimulus history
for the decision-making process (Rao et al., 2012). The LIP
activity was in the intermediate range on selecting an opt-out
option (disbursing small yet guaranteed reward), suggesting the
presence of confidence encoding neurons (Kiani and Shadlen,
2009). As LIP neurons are involved in evidence accumulation,
these neurons combine both sensory and value information for
a decision. LIP neurons’ activity showed variations in response
to the strength of sensory input and the value of the target (both
in and outside the receptive field; Shadlen and Newsome, 2001;
Zhou and Freedman, 2019; Zoltowski et al., 2019). As contrary
to other reports showing that individual neurons are involved
in evidence accumulation, Meister et al. (2013) found that the
population-level activity in the LIP is more representative of the
evidence accumulation.

Superior Colliculus (SC)
As SC has reciprocal connections with LIP, LIP suppression
diminishes SC activity (Peel et al., 2017). Similar to LIP,
increasing the number of distractors decreased overall activity
in SC (Zylberberg et al., 2012). In decision-making, context
confidence can be correlated to the probability of correct
decisions. The confidence is measured through either opt-out
trials (as discussed earlier) or self-reporting. Population-level
activity shows that decision confidence and decision accuracy
covary and SC only encodes decision accuracy and not subjective
accuracy (Odegaard et al., 2018). Several studies implicate SC to
evidence accumulation (Ratcliff et al., 2003, 2007b; Peel et al.,
2017; Reppert et al., 2018; Schall, 2019).

Prefrontal Cortex
The ventromedial prefrontal cortex (vmPFC) plays a crucial
role in value processing and preparatory activity by predicting,
assigning, and dynamically updating the value to choices (Kable
and Glimcher, 2007; Tusche et al., 2010; Henri-Bhargava et al.,
2012; Selen et al., 2012; Bault et al., 2019; Shapiro and Grafton,
2020). The vmPFC also serves as an evidence accumulator and
tracks the decision confidence (Henri-Bhargava et al., 2012;
Vaidya and Fellows, 2015; Bang and Fleming, 2018; Shapiro
and Grafton, 2020). Damage to the vmPFC impairs the value
assignment to choices while comparing the choices remains
unaffected (Fellows, 2006; Lim et al., 2011; Vaidya and Fellows,
2015; Bault et al., 2019). A separate study also found that
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TABLE 1 | Frontal and basal ganglia areas, their connectivity, and effect on drift-diffusion model (DDM) parameters.

Area Projections from Projections to Parameter controlled References

FEF LIP, MT, PFC SC, PFC, STN RT Purcell et al., 2012; Peel et al., 2017; Hauser et al., 2018

EA Kim and Shadlen, 1999; Murd et al., 2020

Decision commitment Ding and Gold, 2012

LIP SC SC, FEF Stimulus identity Shushruth et al., 2018

EA Shadlen and Newsome, 2001; Meister et al., 2013; Zhou and

Freedman, 2019; Zoltowski et al., 2019

Confidence Kiani and Shadlen, 2009

RT Zhou and Freedman, 2019

SC LIP LIP EA Ratcliff et al., 2003, 2007b; Peel et al., 2017; Reppert et al.,

2018

Confidence Ratcliff et al., 2003; Odegaard et al., 2018

PFC Thal, MT, FEF Thal, STN, MT, FEF EA Henri-Bhargava et al., 2012; Vaidya and Fellows, 2015

Confidence Bang and Fleming, 2018; Shapiro and Grafton, 2020

Stimulus valuation Bechara et al., 1999; Fellows, 2006; Lim et al., 2011; Vaidya

and Fellows, 2015; Bault et al., 2019; van Holstein and

Floresco, 2020

Cost of effort assignment Vaidya and Fellows, 2015; Harris and Lim, 2016

Drift rate Wittkuhn et al., 2018

Decision threshold Georgiev et al., 2016; Wittkuhn et al., 2018

Pre-SMA Sensory inputs STR, STN, Thal Decision threshold Forstmann et al., 2008, 2010; Tosun et al., 2017; Berkay

et al., 2018

Thal PFC, pre-SMA, GPi PFC, pre-SMA Drift rate Turner et al., 2015

STN PFC, FEF, primary motor

cortex, pre-SMA, GPe

GPi, GPe, PFC Decision threshold (early

termination)

Frank, 2006; Frank et al., 2007; Cavanagh et al., 2011; Tosun

et al., 2017

GP STR, STN STN, Thal Decision threshold Kohl et al., 2015

Drift rate Kohl et al., 2015

STR Sensory inputs, pre-SMA,

SNc (dopamine inputs)

GPi, GPe Value assignment Lim et al., 2011; Westbrook et al., 2019

Bias Mulder et al., 2012; Wang et al., 2018; Zhang et al., 2019

EA Yartsev et al., 2018; Zhang et al., 2019

RT Nakamura and Hikosaka, 2006a

SNc STR RT Frank and O’Reilly, 2006

Decision threshold See PD

Drift rate

Early terminations of

decisions

FEF, frontal eye fields; LIP, lateral intraparietal area; SC, superior colliculus; PFC, prefrontal cortex; SMA, supplementary motor area; STN, Subthalamic nucleus; GP, globus pallidus,

GPi, globus pallidus interna; GPe, globus pallidus externa; STR, Striatum; Thal, Thalamus; SNc, substantia nigra pars compacta; MT, Middle temporal area; RT, reaction time; EA,

evidence accumulation.

vmPFC inactivation selectively increased risky choices for poorly
rewarded outcomes (Bechara et al., 1999; van Holstein and
Floresco, 2020).

The dorsomedial prefrontal cortex (dmPFC) assigns
values and effort cost to unattended options for determining
better options during exploration (Vaidya and Fellows, 2015;
Harris and Lim, 2016; Bault et al., 2019). Additionally, the
dlPFC (dorsolateral prefrontal cortex) is involved in evidence
accumulation and associated with drift rate. Deactivation
of dlPFC neurons using rTMS resulted in lower drift rates
and impaired evidence accumulation (Wittkuhn et al., 2018).
Continuous theta-burst stimulation (cTBS) of dlPFC (with
inhibitory effect) decreased the drift rate only in high coherence
trials (Georgiev et al., 2016). All these studies suggest the diverse

roles of PFC neurons in processing different value-related
parameters and accumulating evidence.

Pre-Supplementary Motor Area (preSMA)
Premotor areas are associated with the decision threshold
modulation. For instance, Georgiev et al. (2016) found that
cTBS of preSMA reduced the thresholds on trials, emphasizing
accuracy. However, this was a counter-intuitive finding under the
cortico-striatal theory of threshold modulation (for review, see
Bogacz et al., 2010) since this manipulation would be expected to
increase the threshold by reducing the excitability of the dorsal
STR. The cortico-striatal theory of threshold modulation relies
on the idea of the activation of the dorsal STR by the consistent
cortical input coding for a particular action. The activation of
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the STR results in the disinhibition of globus pallidus interna
(GPi), which at its resting state inhibits the thalamus and thereby
cortex. The disinhibition of GPi results in the action execution
by releasing the cortical areas associated with the desired action
from inhibition while the other actions continue being inhibited
(Forstmann et al., 2008). This functional architecture implements
thresholdmodulation bymodulating the likelihood of the desired
action plan to be gated by basal ganglia. Thus, the inhibition of
preSMA by cTBS would be expected to increase the threshold
by reducing the excitability of the dorsal STR (Georgiev et al.,
2016). Consistent with the cortico-striatal theory of threshold
modulation, Tosun et al. (2017) and Berkay et al. (2018)
found that the inhibition of preSMA using cTBS resulted in
heightened decision thresholds in tasks where participants were
asked to be as fast and as accurate as possible. Berkay et al.
(2018) also found that increasing the excitability of the same
brain region (by intermittent theta-burst stimulation) resulted
in reduced decision thresholds. These findings were consistent
with the correlational evidence that showed a relationship
between pre-SMA and striatal activity and decision thresholds
(Forstmann et al., 2008) and the relationship between pre-
SMA-striatal connectivity and decision threshold modulation
(Forstmann et al., 2008, 2010). Importantly, these effects were not
observed with tDCS (Transcranial Direct-Current Stimulation)
(de Hollander et al., 2016), which suggests a weaker efficacy of
tDCS in modulating cortical excitability.

Thalamus
We found only one study that correlated thalamic neural activity
to DDM parameters. In a two-alternative forced-choice RDM
(Turner et al., 2015), recorded fMRI activations and thalamus
neural activity corresponded to the drift rate. BOLD activations
were higher for the high drift rate trials compared to low drift
rate trials. Additionally, this study found that thalamus activity
was not indicative of the bias change (Turner et al., 2015).

The Basal Ganglia
Recent studies highlight the role of the BG on DDM
parameters. The BG (Figure 2) has several subregions, including
STR, subthalamic nucleus (STN), globus pallidus (interna
and externa), and substantia nigra (pars reticulata and pars
compacta). These nuclei interact via excitatory and inhibitory
connectivity, which result in a complex decision parameter
control [for review, see (Moustafa et al., 2016a,b)]. The relation
of BG onDDMparameters is presented below (for summary, also
see Table 1).

Subthalamic Nucleus
The subthalamic nucleus receives inputs from PFC, FEF,
primary motor cortex, and pre-SMA while it projects to ventral
pallidum and GPi; STN also has bidirectional connections with
the GPe (Benarroch, 2008). This connectivity pattern enables
the functional coupling of these areas and the execution of
sophisticated decision-making features. As the PFC and BG
are distinct areas, the interaction between them is primarily
controlled through the STN, which delays the BG gating to enable
PFC to make the correct decisions and non-impulsive decisions

(Frank, 2006; Frank et al., 2007). Additionally, during high
conflict decisions, STN and PFC are functionally coupled (Zavala
et al., 2013, 2014). The STN and vmPFC bias the decision toward
a more valuable choice (Mulder et al., 2014b), and stimulation of
STN lowers the decision threshold and terminates the decisions
prematurely (Cavanagh et al., 2011).

Globus Pallidus
A study compared the DDM parameters changes in healthy
controls, PDwith GPi-DBS (Deep Brain Stimulation) ON and PD
with GPi-DBS OFF. The authors suggested that the GPi controls
decision threshold and drift rate (Kohl et al., 2015). As the
decision threshold and drift rate changes were compared between
the three groups mentioned above, the exact DDM parameter
changes in healthy controls remain unknown. This is further
discussed in Section Parkinson’s Disease.

The Striatum
The STR is the primary input of the BG. A suppression of
the caudate nucleus using muscimol selectively impaired the
learning of new sequential motor procedures, while a suppression
of the putamen selectively impaired learned motor sequence
execution (Miyachi et al., 1997). Selectively inhibiting the D1
receptors in caudate increased saccadic RT for high reward
expectation, and D2 receptor inhibition increased RT for small
rewards (Nakamura and Hikosaka, 2006a). Interestingly, if
stimulation followed the correct response, learning was enhanced
(Nakamura and Hikosaka, 2006b). Optogenetic stimulation of
the STR in mice performing a visual change detection task
resulted in task performance changes by positively biasing the
expected or valued visual events (Wang et al., 2018; Zhang
et al., 2019). This bias is determined by the interactions
between frontoparietal and frontostriatal circuits (Mulder et al.,
2012). Another study involving behavioral, pharmacological,
optogenetic, electrophysiological, and computational methods
explored the role of the anterior dorsal STR in rodent auditory
evidence accumulation tasks. The authors found that the anterior
dorsal STR directly influences accumulation-based decisions
with its neurons encoding for accumulated evidence throughout
the decision process (Yartsev et al., 2018; Zhang et al., 2019).

The Substantia Nigra Pars Compacta
The substantia nigra pars compacta (SNc) is a critical area that
is involved in dopamine production. SNc projections to STR
enable dynamic modulation of DA-based switching between
Go and No-Go pathways of the BG during cognitive learning
(Frank and O’Reilly, 2006). D2 agonists enhanced the executive
performance in low working memory patients while in high
working memory participants, this effect was reversed (Gibbs
and D’Esposito, 2005). Notably, the D2 antagonist increased Go
learning while the opposite effect was seen for the D2 agonist.
The effect of D2 agonists on D2 post-synaptic receptors results
in the overall inhibition of the No-Go pathway leading to more
Go selections and hence, faster RTs (Frank and O’Reilly, 2006).
Additional indirect evidence for the SNc involvement comes
from the studies on PDwithmedications. These studies show that
the decision threshold, drift rate, early terminations of decisions
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FIGURE 2 | Interactions between the cortico-basal ganglia system showing the effect of an area on DDM parameters (in red). Based on the sensory inputs, the

pre-supplementary motor area (pre-SMA) determines competing motor commands. Together sensory and pre-SMA inputs are projected to the striatum (STR). The

pre-SMA also projects to subthalamic nucleus (STN) via a hyperdirect pathway. The action of dopamine from SNc modulates the Go and No-Go neurons in the STR.

STR inhibits globus pallidus externa (GPe), which in turn inhibits globus pallidus interna (GPi). STR also inhibits GPi and STN has hyperdirect projections to GPi. GPi

inhibits the thalamus. The STR-GPi pathways have an overall disinhibiting effect on the thalamus, while the STR-GPe-GPi has an overall inhibitory effect on the

thalamus. PFC, Prefrontal Cortex; preSMA, pre-supplementary motor area; FEF, Frontal eye field; LIP, Lateral intraparietal area; MT, Middle temporal area; EA,

Evidence accumulation; Conf, Confidence; SV, Stimulus valuation; Thr, Threshold; DR, Drift rate; AV, Action valuation; RT, Reaction time; selection; DC, Decision

commitment; SI, Stimulus identity. Modified from Ratcliff and Frank (2012).

are impacted by PD medications and are further discussed in
Parkinson’s Disease.

BRAIN DISORDERS

In this section, we discuss how several brain disorders, including
Parkinson’s disease (PD), ADHD, ASD, OCD, and schizophrenia,
and their associated neural damage impact DDM parameters.
These diseases were selected as they impact the BG and PFC
regions, and prior DDM studies on these patient population
groups exist (see Table 2 for the summary).

Parkinson’s Disease
Parkinson’s disease (PD) is a BG motor disorder characterized by
the loss of dopaminergic cells in the SNc. Though the primary
impairment in PD is motor dysfunction (Moustafa et al., 2016a),
several studies also show cognitive impairments in the disease
(Moustafa et al., 2016b). When making decisions, utilizing the
prior history of the stimulus to change the bias adequately
is essential. Patients with PD are unable to use the previous

information to make bias changes (Herz et al., 2016; Perugini
et al., 2016). The patients with PDwith hallucinations show lower
drift rates, higher decision threshold, shorter non-decision time,
along with inefficient and inflexible context-dependent evidence
accumulation modulation (O’Callaghan et al., 2017). Levodopa
medication shortens the premotor time and the motor time,
enabling patients with PD to make faster yet inaccurate decisions
(Rihet et al., 2002; Hasbroucq et al., 2003).

Huang et al. (2015) studied DDM parameter changes,
particularly the drift rate and evidence accumulation in SAT, in
medicated and non-medicated patients with PD. The authors
presented participants with two versions of the moving-dots
task for SAT and task difficulty. By changing the coherence
between the moving dots, the task difficulty was altered. RT in
all participant groups (healthy control and patients with PD)
also increased when the task difficulty was increased. Although
patients with PD had more performance errors, patients with
PD on medication had more errors and lower drift rates than
patients with PD off medication. This suggests that dopamine
influences sensory information processing. In the SAT, PD
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TABLE 2 | Drift-diffusion model parameters in different brain disorders.

Disorder Observed findings‡

PD ↓ bias changes, ↓ drift rate, ↑decision threshold, ↓ non-decision time

PD on medication ↑ decision thresholdand ↓ drift rates, Early termination of decisions (impulsivity), ↔ RT, ↓ premotor + motor timings

PD off medication ↓ RT

PD on STN-DBS ↓ premotor + motor timings, Early termination of evidence during STN-DBS

PD on GPi-DBS ↑RT, ↓ drift rate, ↑threshold, ↔ in conflict resolution

Schizophrenia ↓RT, ↓drift rate during punishment trials, ↔ bias, ↔ decision threshold, ↓ stimulus history utilization, ↑non-decision time, ↑ Working memory

use

ASD ↔ RT, ↔ drift rate, ↔ accuracy, ↑ decision threshold, ↓ post-error RT

OCD ↑ decision threshold, ↑ drift rate with signal strength, ↓ drift rate in high signal-to-noise coherence, and ↓ threshold after a penalty compared to

controls. ↓drift rate which ↑ with coherence. ↓drift rate in children. ↑ RT

ADHD ↓ drift rate which is ↔ after stimulant medication

↓ decision threshold in accuracy trials, ↑ decision threshold in speed trials.

↑ RT in accuracy trials, ↔ RT in speed trials.

↑, increased; ↓, decreased; ↔, no change.

patients off medication showed more errors in speed trials than
accuracy trials and had slower RTs when compared to controls.
No difference in the RT and errors was observed for patients
with PD on medication and controls. A comparison of the
DDM parameters revealed that both medicated and unmedicated
patients with PD had lower drift rates and higher decision
thresholds (Huang et al., 2015).

As discussed above (in section Subthalamic nucleus), STN
delays BG gating until PFC makes the correct decision, and
STN-DBS forces the decision to terminate early. Similar findings
are also reported in patients with PD where STN-DBS and
medication led to faster yet inaccurate decisions (Fluchère et al.,
2018). RT fractionation showed that DBS reduced both premotor
(stimulus onset to EMG onset) and motor time (EMG onset
to movement onset; Fluchère et al., 2018). Herz et al. (2018)
performed continuous and closed-loop DBS to STN. Patients
with PD could adjust the decision threshold for difficult (high
conflict) trials only when DBS was performed 400–500ms
after cue onset. Stimulation during this time window also
enabled participants to make trial-to-trial adjustments and faster
RT. However, for stimulation after 500ms, the response time
remained unaffected (Herz et al., 2018).

Globus pallidus interna -DBS significantly increased RT
during response initiation, but the stop signal RT remained
unchanged. Compared with controls, the drift rate was lower
in both ON and OFF GPi-DBS groups. DBS stimulation also
reduced the decision threshold (Kohl et al., 2015). For stop trials
utilizing the No-Go pathway, the GPi-DBS-ON condition had
a lower response delay. Still, DBS OFF was comparable to that
of controls, and GPi-DBS did not affect the speed of conflict
resolution (Kohl et al., 2015).

Patients with PD with hallucinations show a lower drift
rate, increased decision threshold, and inflexible evidence
accumulation modulation (O’Callaghan et al., 2017).
Medications increase the speed but at the cost of accuracy.
For speed favoring trials, the non-medicated patients with
PD show a lower RT. Furthermore, medicated patients show
decreased drift rate when compared to the non-medicated

patients with PD. In both the medicated and non-medicated
patients, the decision threshold is higher compared to controls.
Like medication, STN-DBS resulted in faster and inaccurate
decisions. PD participants could change the decision threshold
when the stimulation was performed within a specific time range.
GPi-DBS selectively increased RT for response initiation but not
for response termination and reduced the decision threshold. At
the same time, the GPi-DBS (both on and off groups) showed a
reduced drift rate.

Schizophrenia
Schizophrenia is characterized by altered sensory perceptions,
cognitive impairments, and emotional dysregulation (Moustafa
et al., 2016c, 2017; Ganguly et al., 2018). These symptoms
originated from the dysfunction in the basal ganglia, frontal
lobes, and temporal lobes (Buchsbaum, 1990). Post mortem
studies in humans unveil increased striatal and globus pallidus
volume in basal ganglia in paranoid hallucinatory schizophrenics.
At the same time, no such changes were observed in the
cortex and white matter (Heckers et al., 1991; Mamah
et al., 2007). The higher volumes of these areas result from
abnormal maturation that reduces basal ganglia volume during
adolescence. Neuroleptic medications differing in their D2

receptor affinity also affect the striatal (caudate and STR) and
globus pallidus volume. Therapeutic interventions using typical
neuroleptics increased the BG volume. Treatment with atypical
neuroleptic (such as clozapine) reduced the BG volumes over 2
years of treatment (Corson et al., 1999).

The drift-diffusion model fits show that patients with
schizophrenia favored the accuracy over the speed with impaired
learning on negative feedback (Moustafa et al., 2015). Using
the reward vs. punishment learning task (in which participants
learn to maximize the reward and minimize the punishments in
different trials), Moustafa et al. (2015) showed that patients with
schizophrenia had a slower RT due to slower encoding and slower
motor time. Furthermore, a slower drift rate in punishment
trials may be attributed to favoring accuracy, whereby patients
were more cautious toward punishments. The authors also

Frontiers in Computational Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 678232

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gupta et al. Drift-Diffusion Model in Brain Disorders

demonstrated that the initial bias in patients with schizophrenia
and controls was similar, but participants failed to modify the
bias based on the prior history of the stimulus (Moustafa et al.,
2015). Further elaborating on this study, Fish et al. (2018) showed
that the drift rate was lower and non-decision time was higher
for patients with schizophrenia and their unaffected siblings.
No significant difference in the initial bias and the decision
threshold was observed for controls, patients with schizophrenia,
and siblings (Fish et al., 2018).

Hierarchical (Bayesian) drift-diffusion model fit for billiard-
ball collision timing reporting task suggests that the bias and
not the drift rate was the main reason for premature response
and impaired response inhibition that led to increased temporal
estimation error (Limongi et al., 2018). The tradeoff favoring
speed over accuracy conflicts withMoustafa et al. (2015); thismay
be due to the stricter time constraints imposed by Limongi et al.
(2018).

People with schizophrenia favor the accuracy over the
speed with slower RT and slower motor time. Additionally,
participants showed impaired bias modulation and a lower
drift rate for the punishment trials while the decision
threshold remained unaffected. Incidentally, stricter timings
cause premature response initiation, which may be related to bias
but not drift rate.

Autism Spectrum Disorders (ASD)
In ASD, the communication and behavioral impairment
symptoms appear early during development. Some of the
cognitive deficits in ASD persistently selecting the same choices,
sensory hypersensitivity, and impaired interactions with dynamic
objects (Sinha et al., 2014). These deficits arise due to abnormal
sensory processing, spanning the superior temporal sulcus,
fusiform face area, inferior parietal lobe, amygdala (AMY), extra
striate body area in the lateral occipitotemporal cortex, PFC, and
even BG (Gilbert et al., 2008; McPartland et al., 2011; Prat et al.,
2016; Subramanian et al., 2017). It was demonstrated using a
small sample study (comprising of only 7 ASD and six controls)
that ASD children had 67% more PFC neurons with 79% more
neurons in dlPFC and 29%more mPFC neurons when compared
to neurotypical controls (Courchesne et al., 2011).

In numerical cognition tasks that involved indicating if an
arithmetic equation is valid (2 + 3 = 5) or invalid (2 + 3 =

6), a positive correlation between fMRI activation in DLPFC and
dmPFC, and numerical abilities was observed in ASD. At the
same time, the healthy controls showed a negative correlation.
In this study, accuracy and RT remained unchanged in ASD and
controls while the decision thresholds were significantly higher
(Karalunas et al., 2018; Iuculano et al., 2020). Pirrone et al. (2017)
found that ASD participants showed higher thresholds while
accuracy and drift rate were unaffected. Perhaps ASD participants
follow a cautious approach by prioritizing accuracy over speed
(Pirrone et al., 2017, 2020; Powell et al., 2019). After an error is
encountered, RT for subsequent trials was slower. Comparing the
post-error RT in 8–12-year-old children with high-functioning
autism with controls revealed that the post-error RT is not
impaired in high-functioning autism. fMRI analysis revealed that
anterior medial PFC showed higher activation for error trials

while the controls showed decreased activation (Goldberg et al.,
2011). Overall, in ASD, the decision thresholds are higher, and
the drift rate and RT remain unchanged.

Obsessive-Compulsive Disorder (OCD)
Obsessive-compulsive disorder is a neuropsychiatric
condition characterized by obsessions, intrusive thoughts,
and compulsions, which are mental or behavioral acts that
are hard to abstain from performing. The symptom profile
in patients with OCD has a very diverse range. Therefore,
the dimensional approach suggests four different symptom
dimensions for OCD, namely symmetry/ordering, hoarding,
contamination/cleaning, and obsessions/checking (Mataix-Cols
et al., 2005). The literature is limited for studies investigating
the decision-making processes of patients with OCD using
DDMs. There are two studies conducted with subclinical OCD
populations and four studies with patients with OCD. The
response times of patients with OCD were found to be longer
than healthy controls (Banca et al., 2015; Erhan et al., 2017;
Mandali et al., 2019; Marton et al., 2019). The studies were
conducted with subclinical OCD populations using the RDM
and self-report questionnaires to assess participants’ OCD-like
features. The positive correlation between the scores gathered
by the self-report questionnaire assessing OCD-like features and
threshold was reported by both the studies (Erhan and Balci,
2017). The interaction between questionnaire score and drift
rate increase with increased stimulus strength was also reported
(Hauser et al., 2017).

One study compared patients with OCD and healthy controls
using different coherence levels using the random-dot motion
tasks (RDM) (Banca et al., 2015). Compared to healthy controls,
the patients with OCD had a higher threshold in low signal-
to-noise ratio conditions (coherence levels of 0.025 and 0.005)
and lower drift rate in high signal-to-noise ratio conditions
(coherence levels of 0.45 and 0.7). By using a similar experimental
paradigm, Banca et al. (2015) and Marton et al. (2019) reported
that patients with OCD show a lesser increase in drift rates
as coherence increases (Marton et al., 2019). This finding
implies that patients with OCD cannot fully utilize the signal
in the stimulus. This study also does not report any significant
difference in threshold settings between patients with OCD and
healthy controls (Marton et al., 2019). The only research on
the pediatric OCD population that used the DDM reported
lower drift rates in children with OCD (Erhan et al., 2017). For
post-error responses, patients with OCD have higher thresholds
than healthy controls. On the other hand, the more pronounced
decrease in decision threshold of patients with OCD compared
to healthy volunteers was reported in the speed favoring (slow
responses were penalized) SAT trials (Banca et al., 2015).

To our knowledge, the only study which does not use the RDM
task but uses DDM utilizes the sequential learning task (Mandali
et al., 2019). In this task, participants learned to differentiate
the stimulus pairs associated with different reward rates. By
considering the discrepancies in reward rates between pairs
and distance of reward rate from chance levels, the conditions
were segregated into conflict and certainty conditions. Patients
with OCD performed poorly only in high conflict and high
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uncertainty conditions. Patients with OCD compared to healthy
controls showed a lower drift rate only when the trials are
complex, and reward probability is uncertain. In this condition,
healthy controls responded quickly and randomly, but patients
with OCD required more effort to find the correct answer.

To summarize, patients with OCD show increased RT, lower
drift rate in high signal-to-noise ratio conditions, and higher
decision threshold for low signal-to-noise ratio conditions.
Though patients with OCD can modulate the drift rate for
stimulus strength and coherence increase, they are unable to
modulate it like controls. In children, lower drift rates and higher
decision thresholds for post-error trials are observed.

Attention-Deficit Hyperactivity Disorder
(ADHD)
Attention-deficit hyperactivity disorder is a neuropsychiatric
condition characterized by the symptom domains of inattention,
hyperactivity-impulsivity, or both (American Psychiatric
Association, 2013). ADHD is no longer perceived as a childhood
disease, as the symptoms persist into adulthood for many
patients. Some meta-analyses estimated the prevalence of ADHD
among children as 7.2% and among adults as 2.5% (Simon
et al., 2009; Thomas et al., 2015). The current theories for
a neurobiological understanding of ADHD have a common
suggestion for core issues in ADHD as dopamine (DA)
alterations (Ziegler et al., 2016). The dopamine deficiency
in ADHD is also compatible with the efficacy of stimulant
medication (Wilens, 2008). A meta-analysis for functional
neuroimaging studies of patients with ADHD reported a
hypoactivity in the frontal areas (dorsolateral prefrontal,
inferior prefrontal, and orbitofrontal cortex), dorsal anterior
midcingulate cortex, superior parietal regions, caudate nucleus,
and thalamus (Dickstein et al., 2006). These changes persist into
adulthood except for a tendency for the improvement of caudate
nucleus pathology (Kasparek et al., 2015).

The majority of studies reviewed by Ziegler et al. (2016) show
a reduced drift rate and lower threshold in ADHD (Ziegler et al.,
2016). The application of stimulant medication eliminated the
differences in drift rates between ADHD and typically developing
individuals (Fosco et al., 2017). Patients with ADHD were
tested with random-dot motion tasks under the accuracy and
speed emphasis (Mulder et al., 2010). Compared to typically
developing children, patients with ADHD were faster under the
accuracy emphasis, but the response times of these groups were
similar in speed trials. DDM analysis revealed that patients with
ADHD had lower thresholds in accuracy sessions and higher
thresholds in speed sessions. This finding indicates that patients
with ADHD do not optimize the speed-accuracy tradeoff as
efficiently as control participants. The lower level of flexibility in
the threshold setting of patients with ADHDwas also reported by
another study using a different paradigm (Weigard and Huang-
Pollock, 2014). Weigard et al. used an implicit contextual cueing
task and found that the thresholds of patients with ADHD
were unresponsive to contextual cues. The decision-making and
attentional alterations of adults with ADHD diagnosis were
summarized in a meta-analysis (Mowinckel et al., 2015). Studies

using simple perceptual decisions, reinforcement learning,
risky decision-making, temporal discounting, and continuous
performance tasks were analyzed by Mowinckel et al. (2015).
The most significant effect size was found to reduce the drift
rate (−1.62).

Therefore, in ADHD, the drift rate and decision threshold
are reduced. The drift rate improved after taking stimulant
medication. When performing accuracy trials, the ADHD group,
compared to controls, had faster RT, while in speed trials, the
two groups showed similar RT. ADHD participants also show
impaired threshold adjustments for contextual cue changes.

DISCUSSION

Decision-making involves a selection of an outcome (from
available choices) to maximize the rewards. Attempts to study the
decision-making led to the development of various theoretical
models such as the DDM. The DDM estimates the decision
threshold, drift rate, and bias toward a choice based on the
observed choices and reaction time. The electrophysiological,
imaging, and behavioral experiments trace the DDM parameter
computations to several cortical areas such as the FEF, LIP,
SC, PFC, and pre-SMA. Neural activity in basal ganglia does
not correspond to the determination of these parameters.
BG facilitates decisions by choice valuation, assigning a cost
to choice, learning an association between the choice and
action, assigning the value to actions, signaling reward, task
initiation, task termination, goal information presentation,
sensory evidence gain modulation, the urgency to commit
to a decision, integrating reward history to choices, selecting
responses, determining utility, and learning a new task. DDM
parameters are thus influenced by the close interactions between
the cortical and BG areas. Impairment of any of the structures
or a change in functional connectivity can lead to aberrations in
decisions and the DDM parameters.

In PD, the loss of dopaminergic neurons in the SNc impact
the RT, drift rate, and threshold. However, as SNc is a part of
the more extensive BG network, almost all the DDM parameters
are impacted. The increased threshold and slower drift rate result
in patients being unable to gather enough evidence to cross a
decision threshold or reach sufficiently high choice confidence
for any of the available choices. This results in the patients
continuing to gather evidence and may result in classical motor
deficits like freezing of gait (Moustafa et al., 2016a,b). It has
been further observed that when the patients are presented
with additional visual information like strips on the floor, they
can overcome the freezing (Cao et al., 2020). The additional
visual cues may alleviate the freezing by reducing the decision
threshold. PD medications lower the threshold, which results
in decisions terminating without enough evidence gathering.
This is consistent with the various cognitive and motor studies
suggesting the medication increases the impulsivity in PD. In
Schizophrenics, a lower BG volume and reduced BG activation
are observed. This results in reduced activation of the STR
and reduced functional connectivity between the BG and PFC,
which leads to abnormal action valuation (Bernard et al., 2017).
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The valuation change impairs the patient to integrate the prior
trial information and modulate the bias.

As the pathology is arguably limited mainly to the STR,
the decision threshold remains largely unaltered. Furthermore,
the altered D2 affinity in Schizophrenics disinhibits the
NoGo pathways (which is involved in punishment learning),
and therefore, the Schizophrenics follow the punishment
avoidant approach (Cox et al., 2015). Current neurobiological
understanding of OCD implies the serotonergic dysfunction-
related hyperactivity of cortico-striato-thalamocortical pathways
(Dougherty et al., 2018). A reduction in serotonin level interrupts
its inhibitory role in the STR, thalamus, and cortical areas,
resulting in hyperactivation of cortico-striato-thalamocortical
loops. The cortico-striato-thalamocortical loops involved in the
pathophysiology of OCD are particularly indicated as the caudate
nucleus, dorsal anterior cingulate cortex, and orbitofrontal
cortex (Dougherty et al., 2018). These structures are found to
be abnormally active at rest and with symptom provocation
(Dougherty et al., 2018). One theory suggests that compulsions
are a way to relieve anxiety caused by obsessions. The source
of anxiety in patients with OCD is reported to be caused by
amygdala hyperactivity (Simon et al., 2010). Another approach to
explain OCD symptoms is based on the feeling of incompleteness
to counteract “not-just right experiences.” Low-frequency rTMS
application to pre-SMA reduced the incompleteness-driven
symptoms (Mantovani et al., 2013). In ASD, the increase in
PFC neurons (Courchesne et al., 2011) and reduced volumes of
BG and thalamus (Estes et al., 2011) result in higher decision
thresholds. In ADHD, hypoactive PFC, BG, and thalamus (Zhu
et al., 2016) and the impaired functional connectivity between
the STR and thalamus (Mills et al., 2012) results in lower decision
threshold and drift rates.

Many of the motor and cognitive processes leverage the
interaction between cortical and BG areas; structural and/or
functional damage can lead to motor and cognitive deficits
leading to many disorders. In this review, we highlight how the
DDMparameters differ in various disorders. The studies featured
in this review present a significant understanding of the neural
basis of DDM, including cortical and BG areas. Given the close
interactions between frontal cortical regions and BG, it is of
utmost importance that both frontal and BG areas are studied
together in future DDM studies.

Future studies should be directed toward probing multiple
DDM parameters and several BG and PFC areas using
microelectrode arrays and finding interactions between all
the regions. As discussed above, simulation-based functional
inactivation of each of these areas will further refine our
understanding of various clinical disorders. DDM parameters
provide a robust estimate of decision properties that can
be used to estimate cognitive performance quantitatively.
These quantitative estimates may enable tracing the latent
variables, which allow for making mechanistic inferences
about various therapies, disease progression, and efficacies
of neurostimulation.
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