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Abstract: Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a
significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is
very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in
the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and
antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore
the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords
“oxidative stress in intracerebral hemorrhage” and “natural products in intracerebral hemorrhage”.
Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of
natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In
summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH.
However, researchers still have a long way to go to apply these natural products for the treatment of
ICH more widely in the clinic.
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1. Introduction

Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains
a significant cause of morbidity and mortality worldwide, although our understanding of
its underlying pathologic mechanisms has progressed rapidly in the last two decades [1].
Approximately 15% of all stroke cases are ICH, but the mortality and morbidity in ICH
patients exceed that of ischemic stroke patients [2]. ICH occurs when the arterial vasculature
ruptures for various reasons, causing blood to leak into adjacent tissues [3]. Presently, there
is no pharmacological or surgical treatment that could significantly improve neurological
function after ICH [4]. Large numbers of experimental studies demonstrated that the
interaction of cytotoxicity, excitotoxicity, oxidative stress (OS), and inflammation generated
by the products of red blood cell lysis and plasma components caused subsequent brain
injury after ICH [5]. However, the precise pathophysiological mechanisms underlying ICH
remain to be completely elucidated.

Helmut Sies came up with the term “oxidative stress” to describe the imbalance
between the generation of oxidants and antioxidant defenses that could cause harm to
biological systems [6]. OS is related to several disease processes and refers to an imbalance
in the oxidative and antioxidant actions of the body. According to substantial evidence, OS
is implicated in the pathophysiology of numerous brain diseases, including neurodegen-
erative disorders, depression, and ischemic stroke [7]. Importantly, OS is also a primary
mediator of secondary brain injury following ICH [8]. Experimental results have indicated
that OS plays a critical role in brain damage after ICH, even though clinical trial results
have been disappointing [9]. Consequently, there are currently no clinically available drugs
for protecting the brain from OS injury following ICH. In recent years, researchers have
taken a keen interest in natural products as potential new stroke drug candidates because
of their positive effects on brain injury prevention in animal stroke models. In this review,
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we focus on the sources of free radicals after ICH; we also summarize in detail the natural
products of antioxidant therapy in the ICH model. For this review article, we searched
PubMed using the keywords “oxidative stress in intracerebral hemorrhage” and “natural
products in intracerebral hemorrhage.”

2. The Pathogenesis of ICH-Induced Brain Damage

One of the most common causes of hemorrhagic stroke is the rupture of blood vessels in
the brain, which could lead to both intracerebral and subarachnoid hemorrhage (SAH) [10].
The injuries caused by ICH mainly include primary injury and secondary injury. Primary
brain injury is defined as bleeding caused by non-traumatic intraparenchymal vascular
rupture. Hematoma formation occurs after ICH in the acute phase and can increase
intracranial pressure, which subsequently compresses the surrounding tissue, thereby
affecting blood flow to form ischemia and leading to brain herniation [11]. The size
of the hematoma following ICH is not static; it continues to increase, pulling on the
surrounding nerve fibers and causing compression on the surrounding tissues, which
can cause mechanical damage to the brain tissue, a condition known as mass effect [12].
Hematoma expansion leads to midline shift and further neurological deterioration [13].
Meanwhile, hematoma mechanical compression and toxic compounds created by blood
clots trigger neuronal death, disrupt the blood-brain barrier (BBB), and result in cerebral
edema [14].

As shown in Figure 1, secondary injury following ICH could be induced by a chain reac-
tion of events triggered by the primary injury, the physiological response to the hematoma,
and the release of clot components. Inflammation, OS, excitotoxicity, and cytotoxicity
are all components of secondary injury [11]. This cascade occurs minutes after a brain
hemorrhage and lasts for days, weeks, or even months [15]. After ICH, thrombin secreted
by the body will stop the hemorrhage, and the hematoma tends to be stable. Thrombin
is a double-edged sword that can prevent bleeding and inflict nerve and endothelial cell
damage [16]. As we all know, the main component of hematoma is red blood cells. Red
blood cells release hemoglobin, iron, and heme, which are the primary causes of secondary
injury and are linked to OS [17].
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3. OS in ICH

Humans require oxygen for survival, and when they consume oxygen for metabolism,
they release certain charged molecules known as free radicals. Free radicals include reactive
oxygen free radicals (ROS) and reactive nitrogen free radicals (RNS), of which reactive
oxygen species are the primary source of free radicals. ROS includes superoxide anion
radical (O2

•−), hydroxyl radical (·OH) and hydrogen peroxide (H2O2). RNS includes nitric
oxide (NO) and nitrogen dioxide (NO2). The damage caused by OS to the body is mainly
ROS, which is mainly caused by two different effects: first, due to its unstable and highly
reactive chemical properties, ROS will react with lipids, proteins, and DNA, resulting in
body or cell senescence and death; second, in contrast, ROS is involved in cell homeostasis
functions through the heat shock transcription factor 1 (HSF-1), nuclear factor-κB (NF-κB),
phosphoinositide 3-kinase, and mitogen-activated protein [18]. OS is a situation in which
the human body responds to damaging stimuli by producing excessive ROS and RNS. Free
radicals have the characteristics of high activity and unstable chemical properties, so they
will seize the electrons carried by other molecules to make them more stable. Free radicals
could destroy cell walls, tunica intima, proteins, lipids, and DNA molecules, leading to cell
or tissue damage. The brain is high in lipids but low in antioxidants such as superoxide
dismutase (SOD), making it especially susceptible to OS damage [19]. Specifically, the brain
is more susceptible to oxidative stress-induced damage for the following reasons: (1) the
cellular oxygen consumption in the human brain accounts for 20% of the total oxygen
consumption of the body, but the brain weighs only 2% of the body, indicating that the
free radicals produced by the brain are significantly greater than those produced by other
organs; (2) the brain has a lot of iron compared to other organs, and iron can catalyze the
generation of free radicals; (3) in comparison to the kidney or liver, the brain is rich in lipids
with unsaturated fatty acids, which are targets for lipid peroxidation, and the brain has low
to moderate protective antioxidant systems [20]. Based on the above reasons, OS is crucial
in secondary injury after ICH and is involved in all critical stages of the pathophysiological
response after ICH (as shown in Figure 2).
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Following ICH, the primary sources of ROS are the activated neutrophils, microglia,
and macrophages. The most prominent source of these is microglia (Figure 2). ROS
are incredibly active and have a short half-life, making laboratory analysis extremely
difficult [21]. OS is usually evaluated indirectly by measuring the oxidized products
of macromolecules, such as 8-Hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde
(MDA), 4-hydroxy-trans-2-nonenal (4-HNE), dinitrophenyl (DNP), etc. The 8-OHdG is
an oxidative adduct produced by reactive oxygen radicals (such as hydroxyl radicals and



Antioxidants 2022, 11, 1811 4 of 21

singlet oxygen species) attacking the carbon atom at position 8 of the guanine base in
DNA molecules, which can cause G-C/A-T base pairing errors during DNA replication
if not removed in time and thus cause gene point mutations or even carcinogenesis [22].
Therefore, it was used to evaluate the extent of DNA damage following OS. In organisms,
free radicals act on lipids to undergo peroxidation, and the oxidative end products are MDA
and acetaldehyde, which can cause cross-linking polymerization of life macromolecules
such as proteins and nucleic acids, and are cytotoxic. The body produces oxygen free
radicals through enzymatic and non-enzymatic systems, which attack polyunsaturated
fatty acids in biofilms, trigger lipid peroxidation, and thus form lipid peroxidation acids.
Lipid peroxidation not only converts ROS into reactive chemicals, i.e., lipid decomposition
products with a non-free base, but also amplifies the action of ROS through chain or
chain branch chain reactions. Therefore, an initial reactive oxygen species can lead to the
formation of many lipid decomposition products, some of which are harmless, while others
can cause cell metabolism and dysfunction, and even death. Oxygen free radicals can
cause cell damage not only through the peroxidation of polyunsaturated fatty acids in
biofilms but also through the decomposition products of lipid hydroperoxides [22]. The
lipid oxidation final product MDA affects the activity of the mitochondrial respiratory
chain complex and key enzymes in mitochondria in vitro, and its production can also
aggravate membrane damage, so testing the amount of MDA can reflect the degree of lipid
peroxidation in the body and indirectly reflect the degree of cell damage [22]. OS-induced
lipid peroxidation produces not only MDA but also 4-HNE, which changes the fluidity
and permeability of cell membranes and ultimately leads to changes in cell structure and
function. Therefore, it is frequently used to judge indicators of lipid peroxidation. The level
of DNP can represent the degree of protein damage after OS, so researchers often quantify
it by Western blot [22]. In the ICH model of rats, 8-OHdG and DNP around the hematoma
increased simultaneously and peaked on the third day [23]. These oxidative indicators
have been found to be elevated in ICH animal models and human patients [24].

4. The Main Source of free Radicals following ICH
4.1. Mitochondria

Physiologically, a portion of the electrons in the electron transport chain of the inner
mitochondrial membrane are detached, and roughly 1% to 2% of oxygen is oxidized to
superoxide anions. Under situations of external stimulation, mitochondria sustain damage
and create more ROS. In a normal situation, ROS could be eliminated by the body itself,
which helps to maintain homeostasis. ROS are produced in large quantities as a result of
mitochondrial malfunction, which happens during ICH. Research demonstrated that a
mitochondrial ROS-specific scavenger could reduce ROS after ICH [25]. ROS generation
in mitochondria could be attributed to the opening of inner membrane anion channels
and mitochondrial permeability transition pore, resulting in changes in the intracellular
and intramitochondrial oxidation environments, which trigger the release of ROS. It was
discovered that blocking the activation of mitochondrial permeability transition pore and
neutralizing the excessive generation of mitochondrial ROS eased OS damage caused by
ICH [25]. A study on mitochondrial dysfunction after ICH showed that a mitochondrial
ROS-specific scavenger could significantly alleviate the increased ROS following ICH [25].

4.2. Hemoglobin

Hemoglobin (Hb) is the major erythrocyte breakdown product and the principal
mediator of oxidative damage following ICH [26]. Studies have demonstrated that a high
level of ROS is generated after exposing Hb to cell culture in vitro or injecting Hb into
mouse striatum in vivo [27]. There are different statements about Hb promoting oxidative
damage. Some argued that iron released during Hb degradation causes oxidative damage
because iron chelators could prevent Hb-induced neurotoxicity. Some claimed that when
hemoglobin broke down naturally into oxyhemoglobin and methemoglobin without the
aid of enzymes, Hb could release a great deal of superoxide [28].



Antioxidants 2022, 11, 1811 5 of 21

4.3. Heme

Hb, a combination of globin and heme, is the most critical component of red blood
cells. After ICH, heme is encapsulated in the hydrophobic pocket of Hb, which in turn is
encapsulated in red blood cells. Hb degrades large amounts of heme, which could produce
enormous amounts of ROS, so heme is cytotoxic [29]. When it comes to heme catabolism,
heme oxygenase is both the starting point and the limiting factor [30]. Three isoenzymes
of heme oxygenase (HO) exist: HO-1, HO-2, and HO-3 [31]. It has been well-established
that three mechanisms contribute to the cytotoxicity of heme [31]. It initiates free radical
chain reactions by decomposing preformed lipid peroxides, which oxidize membrane
lipids rapidly and efficiently [32]. Second, it disrupts membrane stability through an as-
yet-unidentified colloid osmotic mechanism that is unaffected by antioxidants [32]. Third,
the breakdown of hemin by the heme oxygenase enzymes may cause iron-dependent
oxidative damage to cell populations that cannot store large amounts of iron, such as
neurons [33]. Studies have shown that the co-culture of astrocytes and endothelial cells
with heme in vitro produced a significant increase in ROS, which was also observed in rats
injected with heme intracerebroventricularly [34].

4.4. Iron

As one of the most significant hematoma degradation products, iron could cause
direct toxic damage and DNA damage in the acute phase of ICH and cognitive impairment
in the chronic phase of ICH [35]. The researchers found that, in a rat model of ICH with
intraventricular collagenase injection, iron was detected around the hematoma on the first
day after ICH, peaked on day 7, and remained at a higher level at 14 days [34]. In another
study, the researchers observed a similar trend in a mouse ICH model using the intraven-
tricular injection of autologous blood and collagenase; that is, iron around the hematoma
began to increase at 3 days after ICH, peaked at 14 days, and decreased at 28 days [35].
Iron overload induces oxidative damage via the Fenton reaction, which generates ROS,
particularly toxic hydroxyl radicals [36]. In rats injected intracerebroventricularly with
FeCl2, oxidative damage to DNA was observed, demonstrating directly that iron mediates
oxidative damage [37]. After ICH, it is indicative of iron-mediated oxidative damage that
both ROS and 8-OHdG are significantly reduced when iron chelators are administered to
ICH rats [38].

4.5. Inflammatory Cells

An important factor leading to secondary injury in ICH is the infiltration of inflamma-
tory cells. After ICH, microglia are the first cells to respond and activate within minutes
to release cytokines and chemokines and recruit neutrophils from the peripheral blood to
aggravate brain injury [39]. In the inflammatory reaction, activation of neutrophils results
in a respiratory chain burst and release of large amounts of ROS, which leads to high
consumption of SOD produced by the body, OS imbalance, lipid peroxidation, and brain
injury [40]. In rats with ischemic stroke, depletion of neutrophils could reduce free radical
generation. In ICH models, it has also been shown that neutrophils could cause damage
due to OS when they get inside the brain [41].

Typically, microglia are in a resting state (M0), and when ICH, it turns from a resting
state to pro-inflammatory (M1) and anti-inflammatory (M2) activation phenotypes [42]. At
the same time, the two phenotypes could be interconverted. Studies have shown that Hb
could promote microglial activation through toll-like receptors [43]. ROS is also released
when the phenotypes of M1 and M2 microglia are out of balance [44]. Microglia exposed
to erythrocyte lysis produce more ROS in vitro [45]. Furthermore, in animal models of
ICH, inhibiting microglial expression could reduce ROS and edema by a large amount
and improve neurological function and neuronal activity [46]. Microglial activation is also
associated with OS-related genes, such as nitric oxide synthase, COX2, tumor necrosis
factor (TNF-α), and interleukin 1β [47].
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5. Targeted Therapy of Oxidative Stress with Natural Products

Researchers are becoming more interested in traditional and alternative medicines,
particularly natural products, as a result of the lack of effective and widely applicable
pharmacological strategies for the treatment of ICH [48]. Numerous animal and cell studies
on ICH have demonstrated the potent antioxidant properties of natural substances [49].
Despite the success of natural products in animal and cell experiments, there is still much
work to be done before they can be used in clinical settings. The following table provides a
list of studies of natural products that are effective antioxidants in ICH models (Table 1).

Table 1. Antioxidant activity of nature product in ICH related studies.

S.
N. Phytochemicals Cell/Animal Model

Dosages and Methods
of Administration in

Animal Models
Antioxidation-Related Indexes BBB Penetration Capability

(Administration Mode and Cmax) Ref

1 Baicalein
SAH

ICH

30 mg/kg i.p.

10, 50 mg/kg i.p.

Up: SOD, CAT
Down: MDA

Up: SOD, GSH-Px
Down: MDA

[50]

[51]

2 Baicalin ICH
PC12

20 mg/kg, p.o.
5, 10,20 µM

Up: GPX-4
Down: ROS

yes, 100 mg/kg i.v.
Brain 501.33 ± 115.94
µg·mL−1/ng·g−1

[52]

3 Curcumin

SAH

SAH (SD)

SAH (Wistar)

ICH (C57)

ICH (Wistar)

SAH (SD)

Cortical Neurons

150, 300 mg/kg i.p.

150 mg/kg i.p.

20 mg/kg i.p.

5 mg/kg, p.o.

30 mg/kg, p.o.

150, 300 mg/kg i.p.

5, 10 µM

Up: SOD
Down: MDA

UP: SOD
Down: MDA

UP: SOD, CAT
Down: MDA

Down: ROS

Up: CAT
Down: MDA

Up: SOD, GSH-Px
CAT

Down: ROS, MDA
8-OHdG

Up: SOD, GSH-Px
Down: MDA, ROS

[53]

[54]

[55]

[56]

[57]

[58]

[59]

4 Luteolin

SAH (SD)
Cortical Neurons

and microglia
ICH (SD)

Cortical neurons

10, 30, 60 mg/kg i.p.
5, 10, 25 mM

5, 10, 20 mg/kg
10 µM

Up: SOD, GSH, GSH-Px, Nrf2,
HO-1

Down: MDA, ROS
Up: Nrf2, NQO1, HO-1

Keap-1

[60]

[61]

5 Quercetin
SAH (Wistar)

SAH (SD)

10, 50 mg/kg i.p.

10, 50 mg/kg i.p.

Down: MDA

Up: GSH-Px
CuZn-SOD

Down: MDA

yes, 100 mg/kg p.o.
Brain 842.1 ± 508.4 mg/L

[62]

[63]

6 (−)-
Epicatechin

ICH (C57)

microglia

5, 15, 45 mg/kg p.o.

1, 10, 100 µM

Up: Nrf2, NQO1
SOD1, HO-1
Down: MDA

Up: Nrf2, HO-1
SOD1

Down: ROS

yes, 10 mg/kg i.v.
Brain 8.92 ± 2.68 µg/mL

[64]

[65]

7 Silymarin ICH (C57) 200 mg/kg i.p.
Up: Nrf2, HO-1
SOD, CAR, GSH

Down: ROS, MAD
[66]

8 Astragaloside
IV SAH (SD) 10 mg/kg i.p. Up: SOD, GSH-Px

Down: MDA [67]
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Table 1. Cont.

S.
N. Phytochemicals Cell/Animal Model

Dosages and Methods
of Administration in

Animal Models
Antioxidation-Related Indexes BBB Penetration Capability

(Administration Mode and Cmax) Ref

9 Puerarin
SAH (C57)

ICH (SD)

100 mg/kg i.p.

50, 100 mg/kg i.p.

Up: SOD2
Down: ROS

Down: 3-NT, ROS
8-OHdG

yes, i.p.
Hippocampus (µg/mL)

80 mg/kg 3.35 ± 0.55
40 mg/kg 2.09 ± 0.31
20 mg/kg 1.58 ± 0.24

Cerebral cortex (µg/mL)
80 mg/kg 4.48 ± 0.86
40 mg/kg 3.56 ± 0.61
20 mg/kg 1.73 ± 0.24

Striatum (µg/mL)
80 mg/kg 1.93 ± 0.37
40 mg/kg 1.55 ± 0.17
20 mg/kg 1.03 ± 0.22

[68]

[69]

10 Naringin ICH (Wistar) 10, 20, 40 mg/kg p.o. Up: SOD, GSH, CAT
Down: ROS, MDA

yes, 120 mg/kg
femoral vein

0.64 ± 0.18µg/ml
[70]

11 Gastrodin ICH (SD)
Cortical Neuron

100 mg/kg i.p.
100 µM

Up: SOD, Nrf2, HO-1
Keap-1, GSH-Px

Down: 8-OHdG, MDA
3-NT, ROS

yes, 200 mg/kg
femoral vein

Frontal cortex (µg/mL)
21.6 ± 6.0

Hippocampus (µg/mL)
24.3 ± 9.4

Thalamus (µg/mL)
22.0 ± 6.9

Cerebellum (µg/mL)
35.8 ± 10.3

[71]

12 Astaxanthin
SAH (SD)

SAH (SD)

25, 75 mg/kg p.o.

20 µL i.p.

Up: SOD, GSH
Down: MDA

Up: Nrf2, HO-1
NQO-1

Down: MDA

yes, 100 mg/kg p.o.
Hippocampus (pmol/g)

10.5 ± 1.1
Cerebral cortex (pmol/g)

19.6 ± 1.8

[72]

[73]

13 Artemisinin ICH (C57) 5 mg/kg i.p.
Up: GSH, SOD

Down: 4-HNE, 3-NT
8-OHdG, ROS

[74]

14 Oleuropein ICH (SD) 20, 40, 60, 80 mg/kg i.p. Up: SOD, GSH-Px
Down: ROS, MDA [75]

15 Parthenolide ICH (SD) 0.5, 1 mg/kg i.p. Up: SOD, GSH
Down: ROS [76]

16 Ursolic acid SAH (SD) 25, 50 mg/kg i.p. Up: GSH, SOD, CAT
Down: MDA [77]

17 Bakuchiol SAH (C57) 50 mg/kg orally by
gavage

Up: SOD, GSH-Px
Down: MDA, 3-NT

8-OHdG, 4-HNE
[78]

18 Dauricine ICH (C57) 5 mg/kg i.p. Down: ROS [79]

19 Tetramethylpyrazine SAH (SD)
SAH (Rabbit)

60 mg/kg i.v.
30 mg/kg i.v.

Up: Nrf2, HO-1
Down: ROS, 3-NT

8-OHdG
[80]

20 Isorhynchophylline ICH (SD)
HT-22 cells

30 mg/Kg i.p.
30 µM

Up: SOD, GPX-4
Down: 4-HNE, MDA

ROS
[81]

21 Allicin SAH (SD) 30, 70 mg/kg i.p. Up: SOD, GSH
Down: MDA [82]

22 Cordycepin ICH (C57) 5, 10, 20 mg/kg i.p. Up: SOD, CAT, GSH
Down: MDA [83]

23 Crocin ICH (C57) 40 mg/kg i.p.
Up: SDO, GSH-Px

GXP-4, Nrf2
Down: MDA

[84]

24 Polydatin ICH (Wistar) 50 mg/kg i.p.
Up: Nrf2, NQO1, HO-1

SOD, GSH
Down: MDA

[85]

25 Green or red
tea ICH (Wistar) orally Up: GSH

Down: ROS
[86]
[87]
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Table 1. Cont.

S.
N. Phytochemicals Cell/Animal Model

Dosages and Methods
of Administration in

Animal Models
Antioxidation-Related Indexes BBB Penetration Capability

(Administration Mode and Cmax) Ref

26 Chrysophanol ICH (Wistar) 10, 20 mg/kg, p.o.
Up: GPX, CAT, SOD

GSH
Down: MDA

[88]

27 Phillyrin ICH (C57) 5, 15, 30 mg/kg i.p.
Up: Nrf2, NQO-1, HO-1 SOD-1,

GSH
Down: MDA, ROS

[89]

28
Momordica

charantia
polysaccharide

ICH (SD) 60, 75, 100 mg/kg i.p. Up: SOD
Down: MDA, ROS [90]

5.1. Polyphenols and Phenolic Compounds

Polyphenols refer to a collective term for chemical elements in a group of plants, each
named for having multiple phenolic groups. Natural polyphenols are mainly found in
fruits and vegetables, nuts, soybeans, tea, cocoa, and alcohol. Polyphenols are known as
“the seventh category of nutrients” and have antioxidant effects [91]. As shown in Table 1,
phenolic compounds could attenuate the oxidative stress caused by ICH.

5.1.1. Baicalein and Baicalin

Baicalein, the aglycon of baicalin, is a substance extracted from Radix Scutellariae,
which has the functions of antioxidation, antitumor, and neuroprotection [92]. Baicalein
protected rats with ICH and SAH, which could reduce vasospasm, edema, and the size of
the hematoma and increase the number of neurons that survive [50,51]. In addition, many
widely used oxidative stress indicators revealed that the antioxidant function of baicalein
was crucial [50]. Baicalein also reduced MDA levels after SAH by preserving the activities
of SOD and catalase (CAT). Baicalein increased SOD and glutathione peroxidase (GSH-Px)
activity while decreasing MDA levels in the brain tissues of ICH model rats [51].

Similarly, baicalin is also an essential component in Radix Scutellariae. A pharmacoki-
netic study showed that baicalin could cross the BBB and improve neurological impairment
in mice (specific data are presented in Table 1) [52,93]. Baicalin could reduce ROS and
oxidative damage induced by ferroptosis, which has been confirmed through in vivo and
in vitro experiments on ICH [94]. Together, these results demonstrated that baicalein and
baicalin could be used to treat ICH injury by targeting oxidative stress.

5.1.2. Curcumin

Curcumin is a hydrophobic polyphenolic compound derived from Curcuma longa with
the properties of antioxidation, anticancer, and antiviral activities [95]. Numerous studies
have shown that curcumin has significant potential in cardiovascular and cerebrovascular
diseases [96]. Previous reports have demonstrated that curcumin has therapeutic effects
on ischemic stroke in vitro and in vivo, although curcumin has poor water solubility,
poor oral availability, and cannot penetrate the BBB [97]. Curcumin could reduce the
production of superoxide, ROS, and MDA and increase the content of SOD and CAT in
SAH animal models [53–55]. In the SAH mouse animal model, the lowest effective dose
of curcumin was 150 mg/kg [53,54]. Curiously, the lowest effective dose in this literature
was 20 mg/kg [55]. Some researchers have turned curcumin into nanoparticles that reduce
ROS production and increase SOD, CAT, and GSH-Px levels in the SAH model [56–58].
In the SAH model in vitro, the antioxidant effect of curcumin was also confirmed, and
curcumin could decrease the production of ROS and MDA and increase the content of SOD
and GSH-Px [59].

5.1.3. Luteolin

Luteolin is found everywhere in nature and can be extracted from medicinal plants
and fruits. Luteolin received its name because of being extracted firstly from the leaves,
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stems, and branches of Reseda odorata L., which is in the Resedaceae. Modern pharmacolog-
ical studies have shown that luteolin has anti-inflammatory, antioxidant, anti-apoptosis,
antitumor, and autophagy-regulating effects [98–101]. Luteolin has antioxidant effects
because it can decrease the production of ROS and MDA and increase the production of
SOD, GSH-Px, CAT, HO-1, and glutathione (GSH) [60,61]. The Nrf2/Keap-1 signaling
pathway is the primary pathway through which luteolin can reduce oxidative stress after
SAH [60,61].

5.1.4. Quercetin

Quercetin is a flavanol compound found in many plants that performs various bio-
logical functions. Quercetin is the most common flavonoid in nature [102]. Because of
this, it is also the polyphenolic compound that has been studied the most. Quercetin has
poor water solubility, unstable chemical properties, and a short biological half-life, which
limit its clinical application [103]. Quercetin has been approved by the U.S. Food and Drug
Administration (FDA; National Drug Code number is 65,448–3085–3005) because it fights
free radicals and allergies, even though it has many of the problems listed above [104]. The
results showed that quercetin could be detected in the brains of rats after oral administra-
tion at 100 mg/kg, indicating that quercetin could cross the BBB (specific data are presented
in Table 1) [105]. In the SAH model, quercetin may alleviate brain damage and provide
neuroprotection by increasing the activity of endogenous antioxidant enzymes and inhibit-
ing free radical generation [62,106]. Quercetin could reduce ROS and MDA production in a
rat model of SAH with autologous blood [106]. Another study demonstrated that quercetin
could enhance the activities of GSH-Px and copper/zinc superoxide dismutase (CuZn-SOD)
and significantly decrease the level of MDA [62]. The researchers overcame the low oral
availability of quercetin by making quercetin into a quercetin-loaded nanoemulsion, which
could reduce the hematoma while maintaining glutathione S-transferase (GST) activity,
increasing GSH content and overall antioxidant capacity [63].

5.1.5. (−)-Epicatechin

(−)-Epicatechin (EC) is a natural plant flavanol compound belonging to the subgroup
of flavan-3-ols [107]. EC is widely found in daily edible fruits or beverages, such as
apples, grapes, tea, and red wine [108]. Pharmacological studies have shown that EC
has antioxidant, lipid-lowering, hypoglycemic, and cardiovascular disease prevention
effects and can cross the BBB when given intravenously (specific data are presented in
Table 1) [64]. In a rat model of collagenase-induced ICH, EC could decrease perihematomal
HO-1 protein expression as well as ROS-induced DNA damage (hydroethidine), lipid
peroxidation (MDA), and protein oxidation (dinitrophenyl hydrazone) [65]. EC exerted
antioxidant effects by up-regulating Nrf2 and phase II enzymes (SOD1 and NADPH
quinone oxidoreductase 1 (NQO1)) [65]. The researchers further validated the above effects
through an ICH mouse model with Nrf2 knockout and found that EC protected astrocytes
from hemoglobin toxicity by up-regulating Nrf2 and inhibiting AP-1 activity [109].

5.1.6. Silymarin

Silymarin, a natural flavonoid lignan compound, is a natural active substance extracted
from the dried fruits of the Asteraceae plant Silybum marianum, and its main components
are silybin, isosilybin, silydianin, and silychristin [110]. Silymarin is called a “natural liver
protection drug”, but it also has antioxidant, antitumor, anti-cardiovascular disease, and
other effects [66]. Silymarin played an antioxidant role in a rat model of ICH by preventing
SOD, CAT, GSH, and GST activities to achieve the purpose of the antioxidant [86]. Moreover,
Silymarin also decreased ROS and MDA levels and up-regulated the expression of Nrf2
and HO-1 [66].
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5.1.7. Astragaloside IV

Astragaloside IV (AS-IV) is extracted from the herb Radix Astragali., which is a standard
for evaluating the quality of Radix Astragali. The study of stroke in AS-IV is mainly focused
on ischemic stroke, while there are few studies on ICH [111]. However, AS-IV has shown
strong antioxidant, anti-apoptotic, and immune-enhancing effects in other diseases [111].
However, there is one study on AS-IV for OS injury induced by SAH [67]. AS-IV could
reverse the up-regulation of MDA and down-regulation of SOD and GSH-Px induced by
SHA [67].

5.1.8. Puerarin and Naringin

Both puerarin and naringin are flavonoids belonging to the same polyphenolic com-
pound. Puerarin was extracted from the traditional Chinese medicine Pueraria lobata (Willd)
in 1950, and since then its pharmacological effects have been extensively studied [112].
Intravenous injection of puerarin could penetrate the BBB and exert the potential neu-
roprotective effects in central nervous systems (CNS) disorders such as ischemic stroke,
Alzheimer’s disease (AD), SAH, and Parkinson’s disease (PD) [68,113–115]. After intraperi-
toneal injection of puerarin in rats, puerarin could be detected in the hippocampus, cortex,
and basal ganglia (specific data are presented in Table 1) [116]. In ICH animal models em-
ploying intracerebroventricular collagenase injection, Puerarin could significantly reduce
the activity of 3-NT, 8-OHdG, and ROS, and this phenomenon has also been observed in
SAH models [68,69].

In 1857, De Vry first found naringin in grapefruit blossoms [117]. Since then, naringin
has been found in various fruits, vegetables, and nuts, such as grapes, cherries, tomatoes,
beans, and cocoa [117]. Although its oral availability is poor, naringin could easily penetrate
the BBB (specific data are presented in Table 1), and the anticancer, antibacterial, and
antioxidant effects of naringin have been demonstrated [70,117,118]. Administration of
naringin reversed ICH-induced decreases in enzymatic activity of SOD and CAT, levels of
GSH, and increases in MAD and ROS levels [70].

5.1.9. Gastrodin

Gastrodin, a phenolic glycoside, is an organic compound extracted from the dried roots
of the orchid plant Gastrodia elata Blume. Studies have shown that gastrodin could penetrate
the BBB (specific data are presented in Table 1), which provided a theoretical basis for the
potential protective effects on CNS diseases [119,120]. Gastrodin has the effect of dilating
blood vessels, and it is the only drug for the treatment of vertebrobasilar insufficiency in
clinical practice. With the continuous deepening of research, the antioxidant, anti-apoptotic,
and sedative effects of gastrodin have also been confirmed [121].

In recent studies, gastrodin could significantly reduce ROS levels caused by ICH and
reduce ICH-induced increase of oxidative damage marker of lipid (MDA), protein (3-NT),
and nucleic acid (8-OHdG) at 72 h following ICH [71]. Moreover, gastrodin significantly
increased the expression of keap-1, Nrf2, and HO-1 and increased the activities of SOD
and GSH-Px enzymes, demonstrating that gastrodin reduces oxidative stress injury after
ICH through the Nrf2/HO-1 pathway [71]. This is consistent with the previous antioxidant
effect of gastrodin through the Nrf2/HO-1 pathway to reduce oxidative stress damage in
other diseases [122,123].

5.2. Terpenoids

Terpenoids (isoprenoids) are compounds and their derivatives are derived from
meprenoic acid, with the isoprene unit (five-carbon units) as the basic structural unit
of the molecular skeleton. These oxygenated derivatives include alcohols, aldehydes, ke-
tones, carboxylic acids, esters, etc. Terpenoids are widespread in nature and are the main
components of fragrances, resins, and pigments that constitute certain plants. For exam-
ple, rose oil, eucalyptus oil, turpentine, and other terpenoids are contained. In addition,
hormones and vitamins in some animals also belong to terpenoids [124].
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5.2.1. Astaxanthin

Astaxanthin, a keto-carotenoid, is a terpene unsaturated compound with multiple
uses, including dietary supplements and food dyes. Astaxanthin has a high antioxidant
capacity, which allows it to scavenge singlet oxygen and free radicals, preventing lipid
peroxidation [125]. Astaxanthin has a wide range of biological activities and effects due to
its antioxidant properties and cell signal modulating properties. Astaxanthin is a kind of
chain-breaking antioxidant with a strong antioxidant capacity, which could scavenge nitro-
gen dioxide, sulfide, disulfide, etc.; reduce lipid peroxidation; and effectively inhibit lipid
peroxidation caused by free radicals [126]. The strong antioxidant activity of astaxanthin is
because it could stabilize the structure of the membrane, reduce membrane permeability,
and limit the entry of peroxide promoters into cells. Astaxanthin could protect important in-
tracellular molecules from oxidative damage. Conjugated double bonds, hydroxyl groups,
and unsaturated ketone groups at the ends of conjugated double bond chains in astaxan-
thin molecules have relatively active electron effects and could provide electrons to free
radicals or attract unpaired electrons from free radicals, effectively dampening singlet ROS
with powerful oxidation properties as well as other free radicals in the environment [126].
Because astaxanthin is lipid-soluble, it could easily penetrate the BBB and exert antioxi-
dant effects [127]. Astaxanthin could be detected in the rat brain after oral administration
(specific data are presented in Table 1) [127]. Astaxanthin therapies significantly reduced
the increased MDA levels and restored the suppressed SOD and GSH levels at 30 min
and 3 h after SAH [72]. The protection after astaxanthin treatment of SAH was mainly
through the Nrf2-ARE pathway. Specifically, astaxanthin exerted antioxidant effects by
up-regulating NQO1, Nrf2, and HO-1 [73]. The antioxidant properties of astaxanthin have
all been demonstrated in both in vitro and in vivo models of ICH [128].

5.2.2. Artemisinin

Artemisinin, a class of compounds extracted from Artemisia annua L., is a well-
established drug for the treatment of malaria [129]. In addition to its role in the treatment
of malaria, artemisinin has antibacterial, antioxidant, and protective properties, and it has
also been demonstrated to protect the central nervous system [130]. Studies have shown
that artemisinin could increase the expression of neural cell adhesion molecule L1 to help
ICH mice recover from neurological damage, which could also lower the levels of ROS,
3-NT, 4-HNE, and 8-OHdG and boost the activities of GSH and SOD [74].

5.2.3. Oleuropein

Oleuropein is a class secoiridoid compound isolated from the leaves of olive trees.
Oleuropein has potent antibacterial and antiviral properties, as well as an extremely strong
antioxidant capacity [131]. Oleuropein exhibited protective effects against a variety of
diseases, such as ischemic stroke, AD, and nonalcoholic fatty liver disease [75]. The
therapeutic effects of oleuropein on ICH rats were increased in a dose-dependent manner,
which could significantly reduce the levels of MDA and ROS and increase the activities of
SOD and GSH-Px [75].

5.2.4. Parthenolide

Parthenolide is the primary extract of Tanacetum parthenium, which is the main compo-
nent of sesquiterpene lactone. In the past, parthenolide was mainly used to treat migraines,
fevers, and rheumatoid arthritis [132]. However, recent studies have shown that partheno-
lide could also play an antioxidant role [76,133]. The bioavailability of parthenolide is high,
and only 0.5 mg/kg could reverse the increase in ROS and the decrease in SOD and GSH
activities induced by ICH.

5.2.5. Ursolic Acid

Ursolic acid is a triterpenoid found in natural plants, which has various biological
effects such as sedation, antibiotics, antidiabetes, antiulcer, and lowering blood glucose,
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and ursolic acid also has a significant antioxidant function, so it is widely used as a raw
material for medicine and cosmetics [134]. At the same time, ursolic acid is an antioxidant.
It has been shown that ursolic acid could inhibit the activities of 5-lipoxygenase and
cyclooxygenase in the process of arachidonic acid metabolism and prevent the production
of prostaglandins and leukotrienes, which may be the reason why ursolic acid inhibited the
inflammatory response and lipid peroxides [77]. In an experiment on the treatment of SAH
with ursolic acid, MDA was significantly higher. At the same time, the activities of GSH,
CAT, and SOD were decreased in the cerebral cortex of rats in the SAH group compared
with the vehicle group. In contrast, the ursolic acid group adjusted the above parameters to
normal levels [77].

5.2.6. Bakuchiol

Bakuchiol is a prenylated phenolic monoterpene isolated from the seeds of Psoralea
corylifolia L [135]. Bakuchiol was first extracted in 1997, and its pharmacological effects have
been widely studied with antioxidant, antibacterial, antiageing, and anti-inflammatory
effects [135]. A recent study showed that bakuchiol could reverse the increase of MDA, ROS,
3-NT, 8-OHdG, and 4-HNE induced by SAH. Meanwhile, bakuchiol could also increase the
activities of SOD and GSH-Px, and the specific mechanism is to improve mitochondrial
morphology through the Trx/NIP system to exert antioxidant function [78].

5.3. Alkaloids

Alkaloids are a group of essential organic compounds that contain nitrogen and are
widely found in nature (mostly in plants but partially in animals). Most alkaloids have
complex ring structures, and nitrogen is mostly contained in the ring and has signifi-
cant biological activity, which is one of the essential active ingredients in Chinese herbal
medicines [136].

5.3.1. Dauricine

Dauricine is an isoquinoline alkaloid isolated from the Chinese herbal medicine Rhi-
zoma menispermi. Modern pharmacological studies have shown that dauricine has neuro-
protective effects in AD and ischemic stroke [137–139]. Compared with the ICH group,
dauricine at 5 mg/kg, 10 mg/kg, and 15 mg/kg could reduce MDA and ROS and alleviate
ICH-induced injury [79].

5.3.2. Tetramethylpyrazine

Tetramethylpyrazine is an alkaloid monomer extracted from Ligusticum chuanxiong
Hort, a traditional Chinese medicine, and is the main active ingredient of Ligusticum
chuanxiong Hort. Tetramethylpyrazine has been shown to have several pharmacological
properties over the last few decades and has been used to treat a wide range of diseases with
excellent effects. Two-[[(1,1-dimethylethyl) oxidoimino]-methyl]-3,5,6-trimethylpyrazine
(TBN), nitrone derivative of tetramethylpyrazine, has an extremely strong antioxidant
effect, which could scavenge free radicals such as O2

−, ·OH, and ONOO− in vitro [140].
Tetramethylpyrazine also has antioxidant effects in SAH rats, which could reduce the
production of 8-OHdG, 3-NT, and ROS by up-regulating the Nrf2/HO-1 pathway [80].

5.3.3. Isorhynchophylline

Isorhynchophylline is an alkaloid compound isolated from Uncaria rhynchophylla that
could lower blood pressure, relax blood vessels, and protect nerves from damage caused by
ischemia. In ICH rats, isorhyncholine could attenuate ferroptosis induced by iron overload,
increase the expression of glutathione peroxidase-4 (GPX-4), and decrease ROS, 4-HNE,
and MDA production [81].
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5.4. Others
5.4.1. Allicin

Allicin is an organosulfur compound extracted from the bulbs of allium sativum, a
member of the alliaceae family, and is also found in onions and other alliaceae. The effects
of allicin on cardiovascular disease and neuroinflammatory and degenerative diseases have
been widely reported [141]. Allicin has also been reported to exert protective effects on the
brain [82,142]. Meanwhile, allicin also showed antioxidant effects in SAH rats and could
decrease the level of MDA and increase the activities of SOD and GSH [82].

5.4.2. Cordycepin

Cordycepin is the first nucleoside antibiotic isolated from Cordyceps [143]. Cunning-
ham et al., German scientists, discovered the core component of Cordyceps militaris,
“cordycepin”, in 1951, which was discovered to have antibacterial, antiviral, antitumor, and
immunomodulatory properties [144]. Until now, researchers have explored the biosynthetic
mechanism of cordycepin in cordyceps militaris and found for the first time that cordyceps
militaris could synthesize the anticancer drug, pentostatin, which is used to protect the
structural stability of the synthesized cordycepin [145]. In an experiment on cordycepin
treatment of mice with ICH, cordycepin effectively reduced the level of MDA in brain
tissue within 3 days after ICH and increased the levels of SOD, GSH, and CAT [83].

5.4.3. Crocin

Crocin is a water-soluble carotene isolated from Crocus sativus L. Modern studies
have shown that crocin has a good effect on a variety of central nervous system and
cardiovascular system diseases, but also has anticancer, antioxidative, hepatoprotective,
cholagogue, and antidiabetic effects, in addition to long-term use as spices, dyes, and food
additives [146]. In a recent study, the content of MDA was significantly reduced following
treatment with crocin, while the activities of SOD and GSH-px were clearly increased in the
crocin-treated group compared to the ICH group [84]. Crocin also elevated the expression
of Nrf2 and GXP-4 and alleviated ICH-induced lipid oxidation [84].

5.4.4. Polydatin

Common foods such as grapes and red wine contain polydatin, a naturally occurring
active component isolated from the traditional Chinese herb Polygonum cuspidatum [147].
Polydatin is a glycoside form of resveratrol with the following structural formula: 3,4,5-
trihydroxystilbene-3-β-mono-D-glucoside, including two isomers: cis- Polydatin and trans-
Polydatin [147]. Therefore, polydatin also has an extremely strong antioxidant function.
Compared to the autologous blood-induced ICH model group rats, the polydatin group rats
had less NO and MDA in brain tissue while having more SOD and GSH [85]. Furthermore,
the relative expressions of Nrf2, NQO1, and HO-1mRNA were higher in the brain tissue of
rats treated with polydatin than in the ICH groups [85].

5.4.5. Green Tea and Red Tea

There is a record of tea consumption in Chinese history, and tea has become popular
as a beverage worldwide. Tea is rich in catechol, catechin, vitamin E, flavonoids, and
other substances; regular tea is beneficial to health. In an interesting study, both black and
green tea were able to inhibit ICH-induced ROS production and boost GSH activity [86].
Additionally, giving ICH rats green tea in the short-term could reduce the amount of ROS
in the hippocampus and improve the memories of rats [87].

5.4.6. Chrysophanol

Chrysophanol, a natural anthraquinone, was used in the food and pharmaceutical
fields. Chrysophanol is found in many traditional Chinese herbal medicines, such as
Radix et Rhizoma Rhei, Cassia obtusifolia L., and Polygonum multiflorum, with great medicinal
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value [148]. In the autologous blood ICH model, chrysophanol could decrease MDA
expression and increase SOD, GSH, and CAT expression [88].

5.4.7. Phillyrin

Phillyrin is an extract of the dried fruit of Forsythia suspensa, a member of the Oleaceae
family [149]. Modern pharmacology is not deep enough to study phillyrin, although some
studies have shown that phillyrin has the effects of antioxidation and anticancer [149].
Phillyrin increased the expression of Nrf2, HO-1, NQO1, and SOD-1, and decreased the
expression of MDA and ROS in the in vitro and in vivo ICH model [89].

5.4.8. Momordica Charantia Polysaccharide

Momordica charantia has a long history as a vegetable and is widely used in Asian herbal
medicine, which contains rich momordica charantia polysaccharide, and has been shown
to have pharmacodynamic functions such as anticancer, antioxidation, and improving
immunity [150]. It has been demonstrated that momordica charantia polysaccharide could
scavenge free radicals, decrease ICH-induced ROS and MDA expression, and increase SOD
levels to exert neuroprotective effects after ICH [90].

6. Discussion

Although natural products perform well as antioxidants in ICH animal experiments,
there are few clinical applications. Modern medical animal experiments are usually the
default gold standard for preclinical evaluation, but the results of animal experiments are
very poor or even opposite to the results of human clinical application, mainly for the
following three reasons: (1) the effect of the laboratory environment and other changes
on the study results; (2) the differences between animal models of diseases and human
diseases; (3) the physiology and genetic differences between species [151]. At the same
time, the pathological mechanisms of ICH are very complex, and there are still some
limitations in the current study of the mechanisms, which also limit the development of
clinical drugs. Although the efficacy and targets of natural products are relatively clear,
the research on druggability is still insufficient. In addition, the animals used in previous
studies were young and healthy, which may not mimic the actual clinical practice situation
because ICH frequently occurs in the elderly, and patients may also suffer from other
diseases. Due to the complex pathological mechanisms, the treatment of ICH should
be multi-targeted agents. For example, a recent study showed that the combination of
resveratrol and quercetin alleviated the production of pro-inflammatory factors, which
could be one of the research directions for ICH in the future [152]. We should integrate
network pharmacology, metabolomics, and genomics to understand better the advantages
of the multi-target combination of natural products in the treatment of diseases in the
future. Finally, we observed a phenomenon in which some natural products did not have
data to cross the BBB, but they did play a role in the treatment of ICH. We propose a
hypothesis that some natural products may exert their effects in the treatment of ICH
through the brain-gut axis. The gut and the brain are closely linked through the vascular
system and the vagus nerve to connect the brainstem to part of the gut to form direct neural
connections. Increasing evidence suggests that bacteria and microbiomes that survive in the
gut do influence the production of PD, and PD causes specific gut microbial changes [153].
Therefore, we speculate that these natural products that do not penetrate the BBB may play
an indirect role in the treatment of ICH by affecting the gut microbiota or the brain–gut
axis. At the same time, we think this is also a direction for future research.

At the same time, plant drugs are more prone to hormesis effects. In the 1980s,
hormesis was cited only 10 to 15 times a year in the Web of Science database, but more
than 3000 times in 2020, indicating that hormesis research has been gradually gaining
appreciation. In short, hormesis is the phenomenon in which chemicals have negative
effects on organisms at high doses (for example, inhibition of growth and development) but
positive effects (for example, stimulation of growth and development) at low doses [154].
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When luteolin was administered to ICH animal models at a dose of 10 mg/kg, it increased
keap-1 expression. However, when the dose was increased to 20 mg/kg, keap-1 expression
was not increased compared with 10 mg/kg [61]. The same thing happened when puerarin
was used to treat ICH, and increasing the dose of puerarin did not have a linear effect on
ROS expression in ICH models at 100 mg/kg compared to 50 mg/kg [69]. Although this
phenomenon has been observed during experiments exploring drugs for the treatment of
ICH, no one seems to study hormesis systematically. We believe that this is also worth
doing in the future. Hormesis provides new opportunities for improving clinical treatment
options and raises dangerous problems that must be solved.

7. Conclusions

In summary, natural products such as antioxidants offer the possibility for the treat-
ment of OS after ICH. Currently, there is no specific therapeutic agent for the treatment of
ICH, while there are a lot of natural products in vegetables, fruits, and plants, which are
a huge treasure trove for researchers who want to develop new drugs for ICH. However,
researchers still have a long way to go to apply these natural products for the treatment of
ICH more widely in the clinic.
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