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Recently, emotion classification from electroencephalogram (EEG) data has attracted
much attention. As EEG is an unsteady and rapidly changing voltage signal, the
features extracted from EEG usually change dramatically, whereas emotion states
change gradually. Most existing feature extraction approaches do not consider these
differences between EEG and emotion. Microstate analysis could capture important
spatio-temporal properties of EEG signals. At the same time, it could reduce the
fast-changing EEG signals to a sequence of prototypical topographical maps. While
microstate analysis has been widely used to study brain function, few studies have used
this method to analyze how brain responds to emotional auditory stimuli. In this study,
the authors proposed a novel feature extraction method based on EEG microstates
for emotion recognition. Determining the optimal number of microstates automatically
is a challenge for applying microstate analysis to emotion. This research proposed
dual-threshold-based atomize and agglomerate hierarchical clustering (DTAAHC) to
determine the optimal number of microstate classes automatically. By using the
proposed method to model the temporal dynamics of auditory emotion process, we
extracted microstate characteristics as novel temporospatial features to improve the
performance of emotion recognition from EEG signals. We evaluated the proposed
method on two datasets. For public music-evoked EEG Dataset for Emotion Analysis
using Physiological signals, the microstate analysis identified 10 microstates which
together explained around 86% of the data in global field power peaks. The accuracy of
emotion recognition achieved 75.8% in valence and 77.1% in arousal using microstate
sequence characteristics as features. Compared to previous studies, the proposed
method outperformed the current feature sets. For the speech-evoked EEG dataset, the
microstate analysis identified nine microstates which together explained around 85% of
the data. The accuracy of emotion recognition achieved 74.2% in valence and 72.3% in
arousal using microstate sequence characteristics as features. The experimental results
indicated that microstate characteristics can effectively improve the performance of
emotion recognition from EEG signals.

Keywords: EEG, dual-threshold-based AAHC, microstate characteristics, auditory emotion process, emotion
recognition
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INTRODUCTION

To make a human–machine interaction more natural, emotion
recognition should play an important role. Interest in emotion
recognition from different modalities (e.g., face, speech, body
posture, and physiological responses) has risen in the past
decades. Physiological signals could measure the changes in
physiological responses to emotional stimulus. They have
advantages on eliminating social masking or factitious emotion
expressions to obtain a better understanding of underlying
emotions (Jang et al., 2015). Among the various types of
physiological signals, an electroencephalogram (EEG) shows
a direct measure of the electrical activity of the brain. It
has been used in cognitive neuroscience to investigate the
regulation and processing of emotion (Dennis and Solomon,
2010; Thiruchselvam et al., 2011). With the rapid development of
dry EEG electrode techniques, EEG-based emotion recognition
has received increasing applications in different fields such
as affective brain–computer interaction (Atkinson and
Campos, 2016; Chen et al., 2021), healthcare (Hossain and
Muhammad, 2019), emotional companionship, and e-learning
(Ali et al., 2016).

Early work on emotion recognition from EEG goes back as
far as 1997 (Musha et al., 1997). In the past several years, various
signal processing methods have been proposed to improve the
EEG-based emotion recognition. Previous studies (Jenke et al.,
2014; Alarcao and Fonseca, 2017) provided a comprehensive
overview of the existing works in emotion recognition based on
EEG signals. Feature extraction is a critically significant step in
EEG-based emotion recognition framework. Basically, features
from EEG can be distinguished in time domain, frequency
domain, and time–frequency domain. The time domain features
aim to identify and detect the temporal information in the brain
activity. Frantzidis et al. (2010) used amplitude and latency
of event-related potentials (ERPs) as features for EEG-based
emotion classification. However, it is difficult to detect ERPs
related to emotions since the onset is usually unknown. Other
features, such as Hjorth features (Mehmood and Lee, 2015),
fractal dimension (Sourina and Liu, 2011; Liu and Sourina, 2013),
and higher-order crossings (Petrantonakis and Hadjileontiadis,
2009) have been used to characterize EEG time series. The
frequency–domain feature aims to capture the relative amplitude
and phase information of specific oscillation frequency. The most
popular frequency–domain features are band power (Rozgić
et al., 2013) and high-order spectra (Hosseini et al., 2010). These
features could be extracted from different frequency bands, e.g.,
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–
30 Hz), and gamma (31–49 Hz). With this kind of method, it
is not possible to determine when a particular frequency occurs.
The time–frequency domain features bring up the temporal
information by considering the dynamical changes of spectrum.
The most commonly used time–frequency analyses for feature
extraction were short-time Fourier transform (Lin et al., 2010),
wavelet transform (Mohammadi et al., 2017), and Hilbert–Huang
transform (Zong and Chetouani, 2009).

However, some limitations still exist on traditional feature
sets. As EEG is an unsteady and rapidly changing voltage signal,

the feature extracted from EEG usually changes dramatically,
whereas emotion states change gradually (Wang et al., 2014).
This leads to bigger differences among EEG features, even
with the same emotion state in adjacent time. Most existing
feature extraction approaches do not consider these differences
between EEG and emotion. In this study, the authors proposed
a feature extraction method based on EEG microstates for
emotion recognition. Microstate analysis treats multichannel
EEG as a series of momentary quasi-stable scalp electric potential
topographies (Pascual-Marqui et al., 1995). These quasi-stable
potential topographies are referred to as microstates, so brain
electrical activity could be modeled as being composed of a time
sequence of non-overlapping microstates. Microstate sequences
could capture the important spatio-temporal properties of an
EEG signal. At the same time, it can reduce the fast-changing
EEG signals to a sequence of prototypical topographical maps.
Characterizing the dynamics of brain neuronal activity through
EEG microstate patterns could provide novel information for
improving EEG-based emotion recognition.

Microstate analysis has been used to study the resting state of
the human brain based on the topography of the EEG signals
(Van de Ville et al., 2010; Khanna et al., 2015; Michel and
Koenig, 2018). The greater part of the literature acknowledges
four standard microstate maps on healthy subjects at rest. In
addition, the characteristics of microstate sequences have been
proven to offer a potential biomarker for some diseases, such
as mood and anxiety disorders (Al Zoubi et al., 2019), autism
spectrum disorder (D’Croz-Baron et al., 2019), and schizophrenia
(Soni et al., 2018, 2019; da Cruz et al., 2020; Kim et al., 2021).
Baradits et al. (2020) created a specified feature set to represent
microstate characteristics. These features were used to classify
patients with schizophrenia and healthy controls.

While microstate analysis has been widely used to study brain
function, few studies have used this method to analyze how the
brain responds to emotional auditory stimuli. There are some
challenges when applying microstate analysis to emotion process.
Considering the complex emotion process, how to determine
the optimal number of microstates automatically is a subject
worthy of study. The modified K-means and K-medoids had
been used to determine the microstate classes in many studies
(Von Wegner et al., 2018). However, these methods need pre-
set K cluster centers, and the clusters are sensitive to the
initialization. Emotional response is a complex cognitive process
so that it is difficult to predict the number of microstate classes
subjectively. Atomize and agglomerate hierarchical clustering
(AAHC) algorithm is specifically proposed for the microstate
analysis of EEG (Murray et al., 2008). It is a hierarchical
clustering that can offer more optional clustering results. The
method initializes with a large number of clusters and then
reduces the number of clusters by one during each iteration
step. It stops when only one single final cluster is obtained,
but the best partition from numerous clustering results is
subjectively determined.

To overcome this limitation, this study proposes a dual
threshold-based atomize and agglomerate hierarchical clustering
(DTAAHC) which can determine the optimal number of
microstate classes automatically. For microstate analysis,
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microstates are expected to be distinct and could explain the
original EEG topographies as much as possible. Therefore, two
optimization criteria are used to estimate the quality of the
candidate microstates during iterations. Compared with AAHC,
in addition to global explained variance (GEV) contribution, the
proposed algorithm also considers the microstate topographic
similarity. Global map dissimilarity (GMD) is used to measure
the topographic differences of candidate microstates. In addition,
the iteration stops when the criterion GEV reaches the threshold.
Although we made a minor alteration to the AAHC algorithm,
the new method could identify the optimal microstate classes
automatically and reduce the computational cost. By using
the proposed method to model the temporal dynamics of the
auditory emotion process, we extract microstate characteristics
as novel temporospatial features for improving the performance
of emotion recognition from EEG signals. The schema of the
present study is shown in Figure 1.

MATERIALS AND METHODS

This section provides details of the experimental tasks and
datasets used in this study. In addition, we describe the proposed
DTAAHC and the temporal parameters of microstate sequences
for emotion recognition.

Datasets
Speech, music, and ambient sound events carry emotional
information in human communication. In the present study, we
focused on the emotional response induced by speech and music.
Two independent datasets were available for analysis.

Dataset 1: Speech-Evoked Emotion Cognitive
Experiment
Participants
Nineteen healthy participants (8 females and 11 males) with
normal hearing participated in the experiment. The mean
age of the 19 subjects was 22.4 (SD = 5.4; range, 18–
27) years. All subjects were self-reported right-handers. All
subjects had no personal history of neurological or psychiatric
illness. The subjects were undergraduate and graduate students
at Harbin Institute of Technology. The participants must
exhibit enough proficiency in English. The ethics committee
of Heilongjiang Provincial Hospital accepted the study. The
concept was explained to the subjects, and written informed
consent was obtained.

Stimuli selection
There are two unique models for signifying emotions: the
categorical model and the dimensional model. In the former,
emotions are recognized with the help of words denoting
emotions or class tags. In the dimensional model, the
representation is based on a set of quantitative measures
using multidimensional scaling. One of the classical and widely
used categorical models is six basic emotion classes, namely,
anger, disgust, fear, joy, sadness, and surprise (Ekman et al.,
1987). Various dimensional models have also been proposed
(Schlosberg, 1954; Russell and Mehrabian, 1977; Russell, 1980).
In this work, we use the valence–arousal scale of Russell (1980),

which is widely used in research on affect, to quantitatively
describe emotions. In this scale, each emotional state can be
placed on a two-dimensional plane with arousal and valence
as the horizontal and vertical axes, respectively. In the present
research, we first selected stimuli by categorical model. After
selection, we rated the valence–arousal scales for each stimulus
online using Self-Assessment Manikin (SAM).

Considering the six basic emotions, we collected 20 pairs of
audio clips for each emotion category. Each pair of clips was the
same slice of a film in two languages (original English version vs.
Chinese-dubbed version).

The stimuli used in the experiment were selected in three
steps. First, we selected the raw films by watching a range of
films for 1 month. The principles considered in the raw film
selection are listed below: (A) The films display relatively strong
emotions; (B) The films should have an original English version
and a Chinese-dubbed version; and (C) The Chinese-dubbed
version matches the original version to the greatest extent. We
finally selected 40 films as raw sources. Second, we need to select
emotional clips from the films. This step is carried out manually.
The selection requirements are as follows: (A) Each segment
should contain the speech of only one speaker; (B) Each segment
expresses a single desired target emotion; (C) Each segment lasts
for 5 s and contains at least a complete utterance; and (D) The
background sound should not be too obvious. We finally selected
158 pairs of clips. We extracted soundtracks from these film clips.
Third, all the audio clips were manually rechecked to guarantee
the quality of emotional expression by 10 subjects. Some clips
with ambiguous emotions were removed. We finally selected 20
pairs of clips for each emotion category which maximize the
strength of elicited emotions. The list of the film clips is shown
in Supplementary Table 1.

To obtain reliable emotional labels of these clips, we
utilized Amazon’s Mechanical Turk service to collect data
from native English-speaking and native Chinese (Mandarin)-
speaking subjects. We initially started with a target goal of 40
repetitions per clip. The subjects were allowed to classify as
many of the 240 possible audio clips as they wish. There was
no expectation for a single subject to complete all 240 audio
exemplars. In the event that a subject completes only a portion of
the 240 audio clips, we will continue to solicit additional subjects
until we have achieved the required number of responses.

We presented subjects with selected audio clips and asked
them to rate the emotional content of what they just heard and
how they arrived at that decision. Discrete affective label and
dimensional emotional annotation (arousal–valence) with 1–9
scales related to a single audio clip were obtained. Figure 2 shows
the mean locations of the stimuli on the arousal–valence plane.

Experimental protocol
Before the experiment, the subjects were given a set of
instructions to help them understand the experiment protocol.
When the instructions were clear, the participants were led
into the experiment room with sensors placed on their heads.
After that, an experimenter explained the meaning of the
different scales of SAM. The SAM is a non-verbal pictorial
assessment technique that directly measures the valence, arousal,
and dominance associated with the affective reaction of a person
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FIGURE 1 | The schema of the methodology. The main six steps are: (A) The auditory emotional experimental design. (B) The pre-processing for EEG signals. (C)
The proposed microstate analysis to identify the microstates. (D) Back-fitting to obtain the microstate sequences. (E) Microstate characteristics extraction as
features. (F) Multivariate pattern analysis for emotion recognition.

FIGURE 2 | The distribution of ratings on arousal–valence plane.

to a wide variety of stimuli. The arousal dimension ranges from a
relaxed, sleepy figure to an excited, wide-eyed figure. The valence
dimension ranges from a frowning, unhappy figure to a smiling,
happy figure. The dominance–submissiveness scale represents

FIGURE 3 | The process of speech-evoked emotion cognitive experiment.

the controlling and dominant vs. controlled or submissive one
feels: a prominent figure indicates maximum control in the
situation. The participants could perform three practice trials to
familiarize themselves with the experiment.

The subjects were instructed to keep their eyes open for
the entire duration of the experiment. The process of our
experiment is depicted in Figure 3. In this experiment, each
subject performed two sessions of around 25 min each. They can
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have a 5-min break after one session is finished. Each session
consisted of 40 trials.

Audio clips inducing different emotional states were presented
in random order. Each trial consists of the following steps:

(a) a 3-s baseline recorded, during which the subjects were
instructed to watch a fixation cross presented on a computer
monitor,

(b) a 5-s audio clip played, during which the subjects were
instructed to listen attentively and watch a central visual
fixation, and

(c) a 30-s self-assessment for arousal, valence, and dominance,
during which the subjects used a computer keyboard to rate
the SAM on a scale of 1–9.

The experiment was programmed using Psychophysics
Toolbox of Matlab. Table 1 summarizes the number of trials
for high/low valence and arousal and the average rating for the
four conditions.

EEG acquisition
The EEG signals were continuously recorded using a 64-channel
EEG system (64-channel Quik-Cap and Neuroscan Synamp2
Amplifier). The cap had 64 electrodes and two integrated bipolar
which led for vertical and horizontal electrooculography (EOG).
During recording, two EOGs and two mastoid electrodes (M1
and M2) were not placed. Each electrode impedance should be
less than 10 k�. The sampling rate was 1,000 Hz. The electrodes
were placed over the scalp according to the international 10–
20 system.

EEG pre-processing
The EEG signal pre-processing was performed to reduce
unwanted noise and artifacts that compromise the quality of
the signal. First, four signals from two EOGs and two mastoid
electrodes were removed. Sixty-two remaining signals were used
for the processing and analysis of the next step. Then, the EEG
signals were average-referenced, down-sampled to 500 Hz, and
filtered with 1–35 Hz to obtain the desired frequency range and
remove the electrical line noise. After that, the eye blinks and
muscular artifacts were excluded using independent component
analysis (ICA). For each group, each participant, and each trial,
EEG signal from 3-s baseline before the audio clip was removed
to correct stimulus-unrelated variations. The pre-processing was
performed using EEGLAB of Matlab.

Dataset 2: Music-Evoked Emotion Cognitive
Experiment
Music is a powerful method for emotional communication
and can evoke genuine basic emotions in the listener (Daly

TABLE 1 | Database summary.

Valence Arousal

Condition High Low High Low

Number of trials 790 583 815 558

Rating 5.9 ± 0.8 3.3 ± 0.5 6.4 ± 0.7 3.7 ± 0.3

et al., 2015). Physiological measurements can be used to
identify personal emotional responses to music. A popular public
database, Dataset for Emotion Analysis using Physiological
signals (DEAP), has been widely used to analyze affective states
(Koelstra et al., 2011). DEAP is a multimodal dataset, including
EEG, MEG, galvanic skin resistance, electrooculography, blood
volume pressure, skin temperature, and respiration pattern.
A total of 32 subjects participated in the data collection, and 40
carefully pre-selected 1-min-long music videos were used as the
stimulus to elicit emotions for each subject. Before each video
is displayed, a 5-s baseline is recorded. Each participant was
requested to finish a self-assessment for arousal, valence, and
dominance on a scale of 1–9 after watching.

In this research, we used 32-channel EEG original signals
for emotion recognition based on microstate analysis. The raw
EEG data can be downloaded from http://www.eecs.qmul.ac.uk/
mmv/datasets/deap/. During pre-processing, the EEG data was
average-referenced, down-sampled to 128 Hz, and filtered with
a 1–35-Hz cutoff, and eye artifacts were removed with ICA.
The 5-s baseline before the stimuli was used to correct the
data for stimulus-unrelated variations. There is a total of 1,280
trials for analysis.

The Proposed Dual-Threshold-Based
Microstate Analysis
The principles of microstate analysis are the quasi-stable periods
of topographies, which is demonstrated in previous studies.
More particularly, the changes of electric field configurations can
be described by a limited number of microstate classes, which
remain stable for around 80–120 ms before abruptly transitioning
to another configuration. EEG microstates might represent and
characterize the dynamic neuronal activity of conscious contents.

Global Field Power
Global field power (GFP) is calculated to find a series of dominant
template topographies. GFP constitutes a single, reference-
independent measure of response strength at a global level
(Lehmann and Skrandies, 1980). GFP is simply the standard
deviation of all electrodes at a given time. What GFP tells the
researcher is, on average across the electrode montage, how
strong is the potential being recorded. It is often used to measure
the global brain response to an event or to characterize the rapid
changes in brain activity.

For each subject, GFP was calculated for each sample time
according to Eq. 1, where N denotes the number of electrodes,
ui(t) is the measured voltage of a specific electrode at time t, and
u(t) is the average voltage of the N electrodes at the respective
sample time t.

GFP(t) =

√√√√∑N
i=1

(
ui(t)− u(t)

)2

N
(1)

The local maxima of the GFP curve represent high global
neuronal synchronization (Skrandies, 2007) and are considered
with the highest signal-to-noise ratio. The topographies around
these peaks remain stable and are submitted to the clustering
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algorithm. For each participant, the GFP of each trial is
calculated. After smoothing the GFP with a Gaussian-weighted
moving average of 50 time points, topographies at GFP peaks
were collected and fed into a DTAAHC clustering algorithm to
identify the microstates.

The Proposed Dual-Threshold-Based AAHC
AAHC is a bottom-up hierarchical clustering wherein the
number of clusters is initially large and progressively diminishes.
Classical agglomerative hierarchical clustering would eventually
disintegrate the short-duration period of stable topography.
These short-duration periods would be designated to other
clusters even if they contribute a high GEV (Murray et al.,
2008). In AAHC, clusters are given priority according to their
GEV contributions. In this way, short-duration periods are
conditionally maintained. Specifically, during each iteration,
AAHC frees the cluster with the lowest GEV and then re-assigns
these “free” maps to the surviving clusters by calculating spatial
correlation. The iterations stop when only one single final cluster
is obtained. An important next step is the choice of the number
of desired output clusters. Unfortunately, there is no definitive
solution. The more clusters one identifies, the higher the quality
of the clustering but the lower the data reduction. Five criteria to
decide on the amount of microstate clusters have been described
by Poulsen et al. (2018). GEV is used to measure the percentage
of data that can be explained by microstate classes. The cross-
validation criterion is related to the residual noise. Dispersion
(W) is a measure of the average distance between members of
the same cluster. However, it is not a suitable measure of fitting
for polarity-invariant methods such as modified K-means and
AAHC. Krzanowski–Lai criterion and normalized Krzanowski–
Lai criterion are based on dispersion (W).

Here we propose DTAAHC to determine the optimal number
of microstate classes automatically during clustering. Compared
with AAHC, in addition to GEV contribution, the proposed
algorithm also considers the microstate topographic similarity.
For microstate analysis, microstates are expected to be distinct
and could explain the original EEG topographies as much as
possible. Therefore, two optimization criteria are used to estimate
the quality of the topographical maps of microstate classes during
iterations. First, the cluster with the lowest GEV is freed and re-
assigned to the surviving clusters. Second, the clusters are merged
if the GMD between the candidate microstate classes is lower
than 0.1. In addition, the iteration stops when the criterion GEV
reaches the threshold. Although we made a minor alteration to
the AAHC algorithm, the new method could identify the optimal
microstate classes automatically and reduce the computational
cost. The detailed introduction of this method is discussed below.

GMD is used to measure the topographic differences of
microstate maps, independent of electric strength. It is defined
as follows:

GMD =

√√√√ 1
N

N∑
i=1

(
ui − u
GFPu

−
vi − v
GFPv

)
2

(2)

where ui and vi are the voltages of two specified microstates, and u
and v are the average voltages of the N electrodes. GMD ranges

from 0 to 2, where 0 indicates topographic homogeneity and 2
indicates topographic inversion.

GEV measures the percentage of data that can be explained by
microstate classes. It is frequently used to quantify how well the
microstate classes describe the whole data. The higher GEV, the
better. It is influenced by the dimensionality of the data. The total
GEV is the sum of the GEV values over all microstate classes:

GEV =
∑

l

GEV l (3)

The GEVl value for a specific microstate class with label l is:

GEVl =

∑
t GFP2

t · C
2
Vt,Ml
· δl,Lt∑

t GFP2
t

(4)

δl,Lt =

{
1 if l = Lt
0 if l 6= Lt

(5)

CVt,Ml =

∑
i VtiMli√∑

i V2
ti ·
√∑

i M2
li

(6)

The spatial correlation CVt,Ml between instantaneous EEG
topography Vt and the candidate microstate class Ml can be
calculated by Eq. 6, where Vti is the voltage of ith electrode of
instantaneous EEG at time t (local peak index), and Mli denotes
the topography of the microstate class l.

In this study, DTAAHC is performed on the EEG topographies
at local peaks of GFP. During initialization, each topography map
is considered as a unique cluster. Upon subsequent iterations,
the spatial correlation CVt,Ml between each instantaneous EEG
topography Vt and the candidate microstate class Ml will be
calculated by Eq. 6, merging the clusters which have maximum
spatial correlation. The groups of the centroid of maps are
defined as the candidate microstate class for that cluster. Then,
two optimization criteria are applied. The GEVl for a specific
microstate class with label l is calculated by Eq. 4. The cluster
with the lowest GEV is removed and re-assigned to the most
similar cluster during each iteration step. The GMDs between
the candidate microstate classes are calculated. The clusters are
merged if the GMD is lower than the threshold. The iterations
stop when the GEV is higher than the threshold. In the present
work, the threshold of GEV is set to 85% (Lehmann et al.,
2005; Michel and Koenig, 2018; D’Croz-Baron et al., 2019). The
threshold of GMD is set to 0.1 (Murray et al., 2008). Table 2 shows
the DTAAHC procedure.

Microstate Sequence Characteristics
After microstate classes are identified, the original individual
EEG data can be labeled as a microstate sequence, with fitting
back of these microstate classes to topographies at sample
point. Temporal parameters can be extracted as features for
further analysis and can also be compared between different
experimental conditions or between groups of subjects.

Backfitting
Microstate classes are assigned to EEG at each time frame (or
index of GFP peaks) considering the highest spatial correlation
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TABLE 2 | Pseudocode for dual-threshold-based atomize and agglomerate
hierarchical clustering (DTAAHC).

Algorithm: DTAAHC

Inputs: set of n topographies D {S1, S2, S3, , Sn};

the spatial correlation C;

ThGEV : threshold of global explained variance (GEV)

ThGMD: threshold of global map dissimilarity

Procedure:

1: for i = 1, 2, . . ., n do

2: Clusteri {Si}

3: end for

4: repeat

5: for i = 1, 2, . . ., n do

6: for j = 1, 2, . . ., n do

7: CClusteri , Clusterj = C(Clusteri, Clusterj)

8: end for

9: end for

10: merge two clusters Clusteri∗ and Clusterj∗ , which have maximum spatial
correlation max(CClusteri , Clusterj )

11: define the centroid (mathematical average) as the template map for that
cluster

12: calculate the GEVl between each template map and samples

13: the cluster with the min (GEVl ) is atomized, and each sample in this cluster
is independently re-assigned to the surviving cluster with the highest
spatial correlation

14: calculate the GMD for each pair of template map

15: merge clusters if the GMD is lower than ThGMD

16: until sum (GEVl ) > ThGEV

Outputs: Cluster {Cluster1, Cluster2, Cluster3, , Clusterk}

(see Eq. 5). The maximum spatial correlation determines the
microstate label Lt . In the fitting process, temporal smoothing
(Pascual-Marqui et al., 1995; Poulsen et al., 2018) is applied
to avoid interruptions in spontaneous EEG sequences with a
lot of unwanted noise—that is, class assignments are based
on topographical similarity with microstate classes and the
microstate labels of samples prior to and following the EEG
sample. Different temporal parameters and statistical analyses
will be performed after class assignments for every subject.

Temporal Parameters
EEG microstate sequences (EEG-MS) are symbolic time series
related to potential neurophysiological relevance. The temporal
dynamic characteristics of EEG-MS can be described by
the following parameters. These statistical parameters mainly
represent the activation strength, the spatial configuration, and
the temporal attributes of microstates:

(1) Duration (ms): This refers to the average length of
continuous sequences belonging to a given microstate class.

(2) Occurrence: This indicates the average frequency in which
a microstate class is present per second. It is computed by
taking the number of segments belonging to a microstate
class divided by the whole analysis duration (in seconds).

(3) Time coverage (%): This represents the proportion of a
specified microstate that is active during the whole analysis
time.

GEV (%): This parameter is the percentage of explained
variation of a given microstate class, described in Eq. 4.

Transition Probabilities
Transition probabilities can be derived to quantify the
probabilities of a certain class switched to other classes.
The transition probability between two states is given as
Tij = P(Xt+1 = Sj|Xt = Si). A Markov chain describes the
probability distribution of the system either remaining in that
state or transitioning to a different state for the next time point.
In this study, separate transition probabilities are computed and
compared for each of the four conditions (high vs. low valence
and high vs. low arousal).

Statistical Analysis
Statistical analyses were performed by using in-house scripts.
Each microstate parameter was compared on the valence and
arousal dimension separately. The trial is labeled as “high” group
if its dimension value is higher than 4.5 and “low” group
if its dimension value is lower than 4.5. To evaluate group
differences in the microstate parameters mentioned above, we
used Wilcoxon rank–sum statistic test for comparisons (Musaeus
et al., 2019; Chu et al., 2020). The Wilcoxon rank–sum test
is a nonparametric approach. It allows us to compare two
populations where the underlying distributions are not normal
but that do have similar shapes.

RESULTS

Microstate Class Spatial Topographies
Microstate Classes
For dataset 1, the group-level clustering revealed nine optimal
microstate classes for emotional speech-evoked EEG. These nine
microstate topography templates are illustrated in Figure 4A. The
topographies are labeled as #1–9. For dataset 2, the microstate
analysis identified 10 microstates for emotional music video-
evoked EEG (see Figure 4B).

Global Explained Variance
The performance of the microstate segmentation algorithm is
reported in terms of the GEV, which estimates the portion of
EEG point topography that can be explained by microstates. For
dataset 1, the nine EEG microstate classes together explained
around 85% of the data in global field power peaks. The GEV of
each microstate class ranged from 6.55 to 11.25% (see Figure 4C).
For dataset 2, ten microstates explained 86% of the variance of
all global field power peaks. Correspondingly, the GEV of each
microstate class fluctuates between 6.73 and 11.68%.

Global Map Dissimilarity
GMD is calculated as a measure of topographic differences of
microstate maps. For dataset 1, the GMD matrix across different
microstates is shown in Table 3. The GMD ranged from 0.10
to 0.25 (mean = 0.18, SD = 0.06). Table 4 presents the GMD
between different microstates of dataset 2. The average GMD is
0.25 (SD = 0.08). The range of the GMD is 0.10–0.34.
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FIGURE 4 | The topographical maps of the microstates across subjects. (A) Microstates from speech-evoked emotion cognitive experiment. (B) Microstates from
music-evoked datasets. (C) The global explained variance (GEV) of each microstate for two datasets.

TABLE 3 | The global map dissimilarity (GMD) between different microstates of dataset 1.

GMD

Microstates from dataset 1

#1 #2 #3 #4 #5 #6 #7 #8 #9

#1 0 0.11 0.23 0.25 0.12 0.23 0.15 0.23 0.10

M
ic

ro
st

at
es

fr
o

m
d

at
as

et
1

#2 0.11 0 0.23 0.23 0.14 0.21 0.17 0.21 0.11

#3 0.23 0.23 0 0.11 0.24 0.11 0.23 0.12 0.23

#4 0.25 0.23 0.11 0 0.25 0.11 0.22 0.10 0.24

#5 0.12 0.14 0.24 0.25 0 0.23 0.10 0.24 0.10

#6 0.23 0.21 0.11 0.11 0.22 0 0.23 0.10 0.23

#7 0.15 0.17 0.23 0.22 0.10 0.23 0 0.24 0.10

#8 0.23 0.21 0.12 0.10 0.24 0.10 0.24 0 0.23

#9 0.10 0.11 0.23 0.24 0.10 0.23 0.10 0.23 0

TABLE 4 | The GMD between different microstates of dataset 2 (Dataset for Emotion Analysis using Physiological signals, DEAP).

GMD

Microstates from DEAP

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

#1 0 0.25 0.29 0.30 0.18 0.24 0.28 0.14 0.31 0.33

M
ic

ro
st

at
es

fr
o

m
D

E
A

P #2 0.25 0 0.33 0.19 0.34 0.22 0.11 0.33 0.16 0.16

#3 0.29 0.33 0 0.30 0.14 0.32 0.28 0.20 0.23 0.28

#4 0.30 0.19 0.30 0 0.33 0.11 0.24 0.31 0.25 0.11

#5 0.18 0.34 0.14 0.33 0 0.30 0.32 0.10 0.30 0.34

#6 0.24 0.22 0.32 0.11 0.30 0 0.29 0.26 0.31 0.17

#7 0.28 0.11 0.28 0.24 0.32 0.29 0 0.33 0.11 0.19

#8 0.14 0.33 0.20 0.31 0.10 0.26 0.33 0 0.33 0.34

#9 0.31 0.16 0.23 0.25 0.30 0.31 0.11 0.33 0 0.194

#10 0.33 0.16 0.28 0.11 0.34 0.17 0.19 0.34 0.19 0
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Temporal Parameters
It is controversial whether the first-order Markov model can
capture the complex temporal dependencies for a longer time
series of minutes (von Wegner et al., 2017). The duration
of one trial in DEAP is 60 s. The duration is 5 s in the
emotional speech-evoked cognitive experiment. Therefore, the
microstate sequence characteristics are evaluated on the speech-
evoked EEG dataset. We compared the temporal parameters
of microstates in valence and arousal dimensions separately.
We divided the trials into two groups based on the valence or
arousal level. The trial is labeled as “high” group if its valence
(or arousal) value is higher than 4.5 and as “low” group if it
is lower than 4.5.

The comparison results are shown in Table 5. For the
valence dimension, the mean duration, occurrence, time
coverage, and GEV are investigated for the high valence
and the low valence groups. The Wilcoxon rank–sum
statistic test was used to identify statistically significant

differences between high/low conditions for each microstate
class in every temporal parameter. The significance level
is set to 5%. The significant group differences are marked
with an asterisk. The result revealed that the duration of
microstate #3 is significantly increased during the response
to a high valence stimulus (p = 0.02). No significant
differences in occurrence, time coverage, and GEV between
the groups are found.

For the arousal dimension, microstates #3 and #6 had a
striking increase in duration for high arousal (p = 0.05). On
the other hand, the occurrence, temporal coverage, and GEV of
microstate #7 slumped during the same period for high arousal.

Further tests examined the model of transition probabilities
for valence and arousal, respectively. Table 6 depicted the
statistically significant differences (p-value) of directions of
transitions between high- vs. low-level groups. For valence,
the statistical analysis unraveled the significant differences
between high and low groups in five transitions: from

TABLE 5 | Means for all microstate parameters of speech-evoked EEG signals.

Microstate classes

Temporal parameters #1 #2 #3 #4 #5 #6 #7 #8 #9

Mean duration, ms (SD)

Valence High 97.58 (17.4) 106.33 (21.0) 110.73 (22.5) 74.12 (15.6) 87.19 (19.3) 107.06 (23.9) 104.96 (20.8) 83.89 (16.8) 69.03 (28.1)

Low 98.98 (19.6) 107.26 (19.5) 102.80 (21.8) 73.85 (17.5) 82.46 (17.0) 105.71 (22.5) 103.66 (19.5) 80.56 (18.6) 67.27 (227.5)

P-value 0.53 0.22 0.02* 0.83 0.86 0.77 0.51 0.79 0.79

Arousal High 98.32 (19.0) 106.77 (20.1) 105.21 (22.8) 73.82 (16.8) 83.18 (17.5) 106.64 (23.3) 103.86 (19.7) 81.60 (18.4) 67.66 (27.8)

Low 102.72 (23.9) 110.36 (17.2) 98.90 (18.9) 75.19 (22.8) 89.18 (24.3) 98.55 (20.1) 105.45 (18.3) 78.48 (13.1) 68.32 (30.5)

P-value 0.11 0.09 0.05* 0.64 0.52 0.05* 0.49 0.79 0.73

Frequency of occurrence, counts/s (SD)

Valence High 1.20 (0.6) 1.51 (0.6) 1.30 (0.6) 0.46 (0.3) 0.67 (0.4) 1.30 (0.6) 1.44 (0.5) 0.78 (0.5) 0.47 (0.2)

Low 1.23 (0.6) 1.55 (0.5) 1.35 (0.7) 0.45 (0.3) 0.68 (0.4) 1.31 (0.6) 1.45 (0.5) 0.74 (0.5) 0.51 (0.2)

P-value 0.52 0.50 0.49 0.93 0.86 0.56 0.84 0.64 0.27

Arousal High 1.22 (0.6) 1.54 (0.6) 1.34 (0.7) 0.45 (0.3) 0.68 (0.4) 1.31 (0.6) 1.43 (0.5) 0.75 (0.5) 0.51 (0.2)

Low 1.31 (0.6) 1.57 (0.5) 1.25 (0.6) 0.43 (0.3) 0.65 (0.3) 1.31 (0.8) 1.62 (0.6) 0.71 (0.4) 0.44 (0.2)

P-value 0.20 0.62 0.39 0.55 0.72 0.76 0.04* 0.70 0.74

Ratio of time coverage, % (SD)

Valence High 12.11 (6.4) 16.57 (8.0) 15.84 (9.3) 4.13 (2.7) 6.48 (3.5) 14.29 (6.9) 15.53 (6.6) 7.26 (4.8) 7.74 (1.6)

Low 12.79 (6.6) 17.02 (7.0) 15.22 (9.3) 4.02 (2.5) 6.37 (3.8) 14.59 (8.2) 15.16 (6.1) 7.12 (4.7) 7.67 (1.8)

P-value 0.45 0.37 0.78 0.97 0.92 0.65 0.82 0.64 0.58

Arousal High 12.52 (6.5) 16.85 (7.3) 15.51 (9.4) 4.06 (2.5) 6.36 (3.7) 14.61 (8.0) 15.10 (6.2) 7.21 (4.8) 7.73 (1.8)

Low 14.02 (6.8) 17.64 (5.4) 13.59 (7.4) 3.88 (2.6) 6.88 (3.9) 13.27 (7.8) 17.13 (6.6) 6.49 (3.7) 7.07 (1.7)

P-value 0.09 0.32 0.20 0.71 0.87 0.25 0.05* 0.58 0.68

Global explained variance, % (SD)

Valence High 6.35 (4.3) 6.38 (3.8) 9.22 (6.8) 3.65 (2.9) 3.82 (2.3) 6.01 (4.3) 4.87 (2.7) 4.84 (3.9) 3.06 (0.6)

Low 6.53 (4.5) 6.79 (4.0) 9.08 (7.2) 3.27 (2.2) 3.64 (2.2) 6.16 (4.0) 4.82 (2.5) 4.58 (3.5) 2.90 (0.5)

P-value 0.78 0.21 0.91 0.67 0.93 0.69 0.93 0.68 0.47

Arousal High 6.42 (4.4) 6.62 (4.0) 9.21 (7.1) 3.38 (2.4) 3.65 (2.3) 6.20 (4.1) 4.76 (2.5) 4.71 (3.7) 2.97 (0.5)

Low 7.37 (4.0) 7.59 (2.5) 7.97 (6.4) 3.19 (2.7) 4.13 (1.6) 5.16 (3.6) 5.65 (2.5) 3.78 (2.8) 2.67 (0.5)

P-value 0.12 0.08 0.39 0.71 0.72 0.32 0.03* 0.54 0.92

The asterisk indicates significant difference (p ≤ 0.05).
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TABLE 6 | The differences (p-value) of transition probabilities between high and low valence or arousal.

→ Dimensions

Valence – 0.99 0.09 0.47 0.003 0.97 0.47 0.87 0.78

Arousal – 0.54 0.56 0.48 0.77 0.42 0.65 0.61 0.94
Valence 0.29 – 0.48 0.49 0.10 0.80 0.29 0.75 0.88

Arousal 0.76 – 0.98 0.86 0.20 0.98 0.12 0.64 0.86
Valence 0.66 0.83 – 0.79 0.66 0.12 0.20 0.93 0.57

Arousal 0.91 0.43 – 0.18 0.26 0.94 0.45 0.61 0.19
Valence 0.72 0.41 0.75 – 0.31 0.28 0.66 0.48 0.08

Arousal 0.44 0.53 0.91 – 0.46 0.12 0.41 0.74 0.38
Valence 0.10 0.70 0.72 0.76 – 0.07 0.67 0.98 0.83

Arousal 0.29 0.08 0.21 0.64 – 0.51 0.13 0.37 0.26

Valence 0.29 0.19 0.43 0.12 0.20 – 0.23 0.24 0.24

Arousal 0.42 0.48 0.23 0.09 0.40 – 0.37 0.36 0.76

Valence 0.99 0.34 0.06 0.28 0.32 0.89 – 0.32 0.48

Arousal 0.12 0.87 0.68 0.43 0.92 0.52 – 0.43 0.70
Valence 0.04 0.72 0.06 0.51 0.68 0.22 0.96 – 0.26

Arousal 0.21 0.46 0.04 0.77 0.60 0.98 0.0002 – 0.71
Valence 0.74 0.84 0.65 0.93 0.97 0.98 0.91 0.92 –

Arousal 0.67 0.65 0.12 0.01 0.08 0.23 0.78 0.21 –

FIGURE 5 | Connections with the statistically significant difference between groups. The blue arrows represent p < 0.05. The red arrows represent p < 0.10 for (A)
high vs. low valence groups and for (B) high vs. low arousal groups.

microstate #1 to #3, #7 to #3, and #8 to #3 (p < 0.10)
and from microstate #1 to #5 and #8 to #1 (p < 0.05).
For arousal, six transitions have significant differences: from
microstate #9 to #5, #5 to #2, and #6 to #4 (p < 0.10)
and from #9 to #4, #8 to #3, and #8 to #7 (p < 0.05).
Figure 5 highlights the directions of transitions that show
significant differences.

Emotion Recognition Results
In order to verify the effectiveness of our feature sets, we
firstly captured the EEG data from the public DEAP dataset to
validate our framework. Then, the proposed feature extraction
was applied to the speech-evoked EEG dataset.

A fivefold cross-validation method is adopted to evaluate the
performance: the dataset is split into fivefolds. In each iteration,
onefold is used to test the model, and the rests serve as the
training set. The process is repeated until each fold has been used
as the training set.

For the two-class classification problem, the accuracies are
measured using

Accuracy =
TP + TN

TP + TN + FN + FP
(7)

where TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively.

Performance on DEAP Dataset
The dataset is separated into high–low classes by valence or
arousal dimension. Each class is determined by the positivity of
arousal and valence ratings. Valence and arousal levels higher
than 4.5 are high and vice versa.

Considering temporal dependencies more complex than the
first Markov models, von Wegner et al. (2017) suggested that
the geometric distribution of microstate durations for short EEG
time series was up to a duration of 16 s. In DEAP, the duration
of EEG signals is 60 s. Therefore, we segment each signal using
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TABLE 7 | The classification accuracies of different feature sets on dataset 2
(Dataset for Emotion Analysis using Physiological signals, DEAP).

References Feature set Classifier Accuracy

Valence
(%)

Arousal
(%)

Mert and Akan (2018)

MEMD, PSD,
Entropy, Hjorth, IMF
energy, energy
ratios

k-NN
ANN

67.0
72.7

51.0
75.0

Zhuang et al. (2017) EMD, TSD, PD, NE SVM 69.1 71.9

Daimi and Saha (2014) DT-CWPT SVM 65.3 66.9

This study

Temporal
parameters

SVM 72.5 72.1

Transition
probabilities

SVM 74.4 73.9

Temporal
parameters +
transition
probabilities

SVM 75.8 77.1

DT-CWPT, dual-tree complex wavelet packet transform time–frequency features;
PSD, power spectral density; EMD, empirical mode decomposition.

a moving window with a length of 5 s to evaluate short-time
identifiability.

We perform three experiments on the microstate-related
feature sets. We first use four temporal parameters (duration,
occurrence, time coverage, and GEV) as features to obtain
accuracies for the valence and arousal dimensions and later
use transition probabilities as features to obtain the accuracies.
Finally, we combine temporal parameters and transition
probabilities as a feature set to measure performance. The
extracted features are fed into the support vector machine (SVM)
for classification. SVM is widely used for emotion recognition,
which has promising properties in many fields. We also carry out
comparisons of other features that exist in the works of literature.

The accuracy results of high/low valence and arousal are
given in Table 7. The four temporal parameters with SVM
yield accuracy rates of 72.5 and 72.1% for high/low valence and
high/low arousal, while the transition probabilities have scores
of 74.4 and 73.9%, respectively. The highest scores of 75.8%
for valence and 77.1% for arousal are obtained by combining
temporal parameters and transition probabilities. Our methods
are compared to other states-of-the-art which use the DEAP
dataset. According to the comparison table, our study has higher
accuracy rates than the previous studies. The results demonstrate
that the parameters derived from microstate sequences are
promising features for characterizing the dynamics of neural
activity and recognizing emotion from EEG signals.

Performance on Speech-Evoked EEG Signals
In this section, the performances of microstate
characteristic features are evaluated on the emotional
speech-evoked EEG dataset.

Three different classifiers are applied to three feature sets—
that is, SVM, random forest, and artificial neural network (ANN).

TABLE 8 | The classification accuracies of different feature sets on
speech-evoked EEG signals.

Dataset Feature set Classifier Accuracy

Valence (%) Arousal (%)

This study

Temporal
Support vector
machine (SVM)

71.8 68.8

parameters Random forest (RF) 72.0 67.9

Artificial neural network
(ANN)

72.3 69.5

SVM 69.9 70.5

Transition
probabilities

RF 68.5 68.3

ANN 70.4 69.8

Temporal
parameters +
transition
probabilities

SVM 74.2 71.9

RF 73.1 70.7

ANN 73.9 72.3

From Table 8, there is no significant difference among the three
classifiers. The performance of the features extracted in this
research is not affected by the type of classifiers. The highest
accuracy is obtained by combining temporal parameters and
transition probabilities as the feature set for valence and arousal.
In valence recognition, the highest accuracy is 74.2% with the
SVM classifier. For arousal, it is 72.3% with ANN.

DISCUSSION

In this study, we applied the microstate analysis to the emotional
auditory response. Our proposed method DTAAHC revealed that
nine template maps best described the entire dataset, explaining
∼85% of the global variance for speech-evoked EEG. For music-
evoked EEG, 10 template maps explain ∼86% of the data.
In previous visual research, Gianotti et al. (2008) studied the
temporal dynamics of the neural activity that responded to
emotional words and picture stimulus using ERP microstate
analysis. In the emotional word experiment, 11 sequential
microstates were identified. Among the 11 microstates, four
of them were valence-sensitive and two of them were arousal-
sensitive. In the emotional picture experiment, the microstate
analysis identified 15 sequential microstates. Five of the fifteen
and two of the fifteen microstates were valence-sensitive
and arousal-sensitive, respectively. Although four prototypical
microstate classes were useful to compare or complement results
across different studies, several studies also suggested that the
number of microstate classes was explicitly driven by the data.
Muthukrishnan et al. (2016) performed the microstate analysis
in a visuospatial working memory task. The optimal number of
clusters was determined by the cross-validation criterion without
prior assumptions. D’Croz-Baron et al. (2019) investigated that
six template microstate maps can best describe the dataset across
the autism spectrum disorder and neurotypical controls. In
research of schizophrenia (Soni et al., 2018, 2019), four to six
microstate maps were clustered, which related to the conditions
of the experiments. Michel and Koenig (2018) discussed a meta-
criterion for the optimal number of clusters. They suggested
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that the most appropriate choice was a pragmatic compromise
between the needs for specificity and generalizability.

The four prototypical microstates exhibited highly similar
topographies across studies and were consistently labeled as class
A, B, C, and D. Microstate A exhibits a left–right orientation,
map B exhibits a right–left orientation, map C exhibits an
anterior–posterior orientation, and map D exhibits a fronto-
central maximum (Michel and Koenig, 2018). In terms of the
orientation of the electrical axis, we relate some microstates
of our study to four prototypical microstates. Here we mark
maxima as “+” and minima as “-.”In our emotional speech-
evoked cognitive experiment, three microstates (#3, #4, and #8)
are characterized by fronto-central orientation of the maxima
which are similar to map D (Santarnecchi et al., 2017; da Cruz
et al., 2020). Some studies suggest that microstate D is associated
with attention network activity (Britz et al., 2010; Milz et al.,
2016). For the music-evoked EEG dataset, microstates #5 and #8
exhibit fronto-central maximum.

In the speech-evoked emotion experiment, microstates #1,
#2, and #5 have an anterior(-)-posterior(+) orientation which is
consistent with map C(Santarnecchi et al., 2017; Seitzman et al.,
2017; Al Zoubi et al., 2019). Microstate #6 has an anterior(+)-
posterior(−) orientation which is consistent with map C in some
studies (Hernandez et al., 2016; Pipinis et al., 2017; da Cruz et al.,
2020). In the music-evoked cognitive experiment, microstates #2
and #10 have an anterior(−)-posterior(+) orientation which is
somewhat alike to map C.

In the speech-evoked emotion experiment, microstate #7
shows a left anterior (−)–right posterior (+) location of
the extrema. It is similar to map B (Khanna et al., 2014;
Santarnecchi et al., 2017). In the music-evoked cognitive
experiment, microstate #3 has a left anterior(+)–right posterior(-
) orientation which is alike to map B in some studies (Milz et al.,
2017; Pipinis et al., 2017; da Cruz et al., 2020).

In the music-evoked cognitive experiment, microstate #1
has a left posterior(−)–right anterior(+) orientation which is
consistent with map A in the studies (Tomescu et al., 2015;
Pipinis et al., 2017; da Cruz et al., 2020).

We also identify some microstates which have significant
differences with prototypical microstates. In the speech-evoked
emotion experiment, microstate #9 has a local extremum
in posterior (+). In the music-evoked emotion experiment,
microstates #4 and #6 exhibit local maxima in posterior.
Microstates #7 and #9 show local minima at the axis center.

For future research, the relationship between microstates
and brain functions can be explored using source localization.
Some computational approaches, e.g., distributed linear inverse
solution (LAURA) (de Peralta Menendez et al., 2004), can
help understand the brain source activation in terms of
intracranial generators.

We further delved into the temporal characteristics of
microstates for emotional speech perception. The Wilcoxon
rank–sum test was used to analyze the statistical differences
of the microstate parameters between different groups. For the
valence dimension, the results indicated that the mean duration
of microstate #3 (active prefrontal cortex) in the high group
was longer than that in the low group. For arousal dimension,

three microstates had significant differences between high and
low group. Specifically, the mean duration of microstates #3
and #6 (active frontal lobe) in the high group was longer than
those in the low group. The occurrence, coverage, and GEV of
microstate #7 (active temporal lobe) had significant differences
between the high and low groups. In previous research, Gianotti
et al. (2008) found that five of the 15 microstates were different
for pleasant vs. unpleasant pictures, and two of the 15 microstates
were different for high- vs. low-arousing pictures. However, it was
difficult to compare this work with our study directly since visual
and auditory information activated different cortices.

CONCLUSION

The main purpose of this study is to extract novel features based
on EEG microstates for emotion recognition. Determining the
optimal number of microstates automatically is a challenge
for applying microstate analysis to emotion. To overcome the
limitation, this research proposed DTAAHC. The proposed
method identified 10 microstates on a public music-evoked EEG
dataset (DEAP) and nine microstates on our recorded emotional
speech-evoked EEG dataset. Subsequently, the microstate
sequence characteristics were compared in the aspect of high/low
valence or arousal conditions. Finally, these characteristics were
fed into the classifier for emotion recognition. All the findings in
this work suggested that the microstate sequence characteristics
can effectively improve the performance of emotion recognition
from EEG signals. We hope this work will stimulate future
research to propose novel algorithms to reduce the limitation of
microstate analysis and uncover more interesting mechanisms
of the affective process, e.g., linking the source localization of
microstates to brain functions can help understand the functional
significance of these states.
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