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SUMMARY

Immune responses are essential for pathogen elimination but also cause tissue damage, leading to 

disease or death. However, it is unclear how the host immune system balances control of infection 

and protection from the collateral tissue damage. Here, we show that PD-1-mediated restriction of 

immune responses is essential for durable control of chronic LCMV infection in mice. In contrast 

to responses in the chronic phase, PD-1 blockade in the subacute phase of infection paradoxically 

results in viral persistence. This effect is associated with damage to lymphoid architecture and 

subsequently decreases adaptive immune responses. Moreover, this tissue damage is type I 

interferon dependent, as sequential blockade of the interferon receptor and PD-1 pathways 

prevents immunopathology and enhances control of infection. We conclude that PD-1-mediated 

suppression is required as an immunoregulatory mechanism for sustained responses to chronic 

viral infection by antagonizing type-I interferon-dependent immunopathology.

In Brief

Using stage-specific PD-1 blockade in LCMV-infected mice, Raju et al. uncover the requirement 

for PD-1-mediated suppression of CD8 T cells for durable immune response to chronic viral 

infection, as well as the requirement for IFNAR signaling in programming of CD8 T cells toward 

effectors that cause immunopathology.
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INTRODUCTION

The host immune system responds to invading pathogens through a variety of effector 

mechanisms that not only control infection but also cause host damage (Rouse and 

Sehrawat, 2010). Reduction of pathogen burden occurs primarily through immune effector 

mechanisms, including expression of cytokines and cytotoxic molecules (Kägi et al., 1994; 

Samuel, 2001). However, elimination of pathogens often causes collateral tissue damage, 

referred to as immunopathology, leading to significant disease or death (Doherty and 

Zinkernagel, 1974; Graham et al., 2005; Zinkernagel, 2005). Several regulatory mechanisms 

prevent excessive immune activation and development of immunopathology, including 

expression of inhibitory receptors and cytokines, as well as the generation of regulatory 

immune cells (Chen and Flies, 2013; Josefowicz et al., 2012; Moore et al., 2001). Although 

immunoregulatory factors restrict effector responses, the long-term consequence of 

attenuated activity on pathogen control is unclear.

The inhibitory receptor PD-1 is rapidly upregulated following exposure of T cells to antigen 

(Ag) and remains high during experimental infection of mice with rapidly replicating 

Lymphocytic choriomeningitis virus (LCMV) strains, such as clone 13 (Ahn et al., 2018; 

Barber et al., 2006). High Ag load results in decreased CD8 T cell function, termed T cell 

“exhaustion,” and a long-term viremia that is eventually resolved in a majority of 

immunocompetent mice (Matloubian et al., 1994; Moskophidis et al., 1993). A mechanistic 

link between PD-1-mediated inhibition of T cells and viral persistence is exemplified by the 
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inhibition of the PD-1:PD-L1 interaction, which leads to “reinvigoration” of CD8 T cells 

and accelerates control of viremia (Barber et al., 2006; Lee et al., 2015). Thus, engagement 

of PD-1 signaling compromises viral control through attenuation of effector responses after 

CD8 T cells are exposed to high viral load. In contrast, infection of Pdcd1−/− or 

Cd274(encoding PD-L1)−/− mice with LCMVc-13 results in lethal immunopathology within 

several days after infection (Barber et al., 2006; Frebel et al., 2012), indicating that PD-1-

dependent immune regulation is essential to restrict host damage. Thus, PD-1-mediated 

attenuation of antiviral responses by CD8 T cells is thought to be primarily an 

immunoregulatory mechanism by which the infected host minimizes tissue damage (Speiser 

et al., 2014), although the impact of the attenuated immunity on pathogen control remains 

unknown. These findings collectively imply that the consequence of PD-1-mediated 

regulation of immune responses depends on the context of host-microbe interactions, such as 

microenvironmental cues and inflammatory signals.

In this study, we sought to define the impact of PD-1 signaling on long-term viral control 

and the contexts that modulate its function in host-pathogen interactions. We found that loss 

of PD-1 signals during the early stages of chronic viral infection results in long-term viral 

persistence. Defective antiviral immunity resulted from atrophy of lymphoid tissues and 

global lymphopenia with marked loss of germinal center (GC) B cells due to excessive T 

cell responses. Intriguingly, a transient blockade of type I interferons (IFN-Is) not only 

reversed tissue damage caused by PD-1 blockade but also enhanced viral clearance in 

combination with a subsequent PD-1 blockade. Thus, functional outcomes of the 

engagement or blockade of the PD-1 pathway depend on inflammatory conditions 

established by IFN-Is, and thus, the PD-1 pathway must be engaged not only for host 

protection against immunopathology but also for durable antiviral immunity.

RESULTS

PD-1 Blockade at the Peak of Viremia Enhances CD8 T Cell Activation with No Immediate 
Impact on Viral Control

Cd274−/− mice die from immunopathology by infection with the chronic LCMV-c13, but not 

the acute LCMV-Armstrong (LCMV-Arm) strain (Barber et al., 2006). To determine 

whether high viral load is sufficient to induce the lethal immunopathology in the absence of 

PD-1 signaling, we infected C57BL/6 (B6) mice with LCMV-c13 and blocked PD-1 by 

injecting anti-PD-L1 monoclonal antibody (mAb) on day 8 post-infection (dpi), 

corresponding to the peak of viremia (Wherry et al., 2003). As a control, we infected B6 

mice with LCMV-c13 and treated with anti-PD-L1 at the time of infection, recapitulating 

lethal immunopathology as shown using Cd274−/− mice (Figure 1A; Barber et al., 2006; 

Frebel et al., 2012). Depletion of CD8 T cells prior to infection completely rescued the mice 

from death, although depletion of CD4 T cells had little impact on their survival, confirming 

CD8 T-cell-dependent immunopathology (Figure S1A; Frebel et al., 2012). Although 

overriding PD-1-mediated suppression during the initial stages after infection achieved 

expansion of Ag-specific CD8 T cells on 5 dpi, it had little impact on the establishment of 

high viremia (Figures S1B–S1D), suggesting a minimal role of PD-1 in controlling virus in 

this context.
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In marked contrast, the majority of mice survived when anti-PD-L1 treatment started on 8 

dpi (Figure 1A), indicating that high viral load is insufficient to cause death of the infected 

mice. To rule out the possibility that the lack of death resulted from resistance of target 

tissues or reduced Ag presentation, we transferred unexhausted CD8 T cells harvested from 

LCMV-Arm-infected mice into LCMV-c13-infected mice and subsequently treated the 

recipient mice with anti-PD-L1. All LCMV-c13-infected recipient mice died quickly after 

anti-PD-L1 treatment (Figure 1B), indicating that the resistance to lethal pathology of mice 

treated with anti-PD-L1 on 8–22 dpi is independent of T-cell-extrinsic resistance of the 

infected animals.

The increased frequency of total and LCMV-specific CD8 T cells in the peripheral blood on 

14 dpi in mice with anti-PDL1 treatment started on 8 dpi indicated that virus-specific CD8 T 

cells are suppressed by PD-1 signaling during this period (Figure 1C). However, the increase 

in CD8 T cells was no longer observed on 22 dpi with expression of PD-1 and LAG-3 by 

LCMV-specific CD8 T cells being elevated in anti-PD-L1-treated compared with control 

antibody-treated or untreated mice (Figures 1D and 1E). PD-1 blockade has been shown to 

promote pathogen clearance in certain infection models, including LCMV-c13 infection 

(Barber et al., 2006; Bhadra et al., 2011; Fuller et al., 2013). However, plasma viral titers 

were unchanged on day 22 dpi (Figure 1F). These results indicate that engagement of the 

PD-1 pathway during the acute and subacute phases has little immediate impact on control 

of viral infection.

PD-1 Signaling Protects Host from Sustained Immunopathology in Lymphoid Organs

Although the majority of LCMV-infected mice treated with anti-PD-L1 initiated on 8 dpi 

survived, we found a significant delay in recovery of body weight, suggesting that PD-1 

blockade during this period causes non-lethal immunopathology (Figure S2A). Lymphoid 

organs are transiently disrupted following LCMV-c13 infection due predominantly to T-cell-

mediated tissue damage (Müller et al., 2002; Teijaro et al., 2013; Wilson et al., 2013; 

Zinkernagel et al., 1999). We thus determined whether excessive loss of the integrity of 

lymphoid organs, presumably impacting subsequent durable immunity, is a direct 

consequence of PD-1 blockade. Indeed, spleen sizes and splenocyte numbers in anti-PD-L1-

treated mice were significantly reduced compared to controls (Figures 2A and 2B). 

Histological analyses of spleens on 14 and 22 dpi revealed smaller B cell follicles and 

disrupted red and white pulp boundaries in anti-PD-L1-treated animals (Figures 2C and 

S2B). This tissue damage in the spleen was CD8 T cell dependent because it was prevented 

by depletion of CD8 T cells prior to infection (Figure S2C). Frequencies of LCMV-specific 

CD8 T cells, including “terminally exhausted” PD-1+ TIM-3+ cells and stem-cell-like PD-1+ 

TCF-1+ cells (Im et al., 2016; Utzschneider et al., 2016; Wu et al., 2016), were similar in 

control and treated mice (Figures 2D and 2E). However, absolute numbers of these 

populations were diminished in proportion to reductions in spleen size and cellularity 

(Figure 2E).

It has now become clear that the consequences of loss of PD-1 signaling differ depending on 

contexts in which the signal is blocked. Although the blockade at later time points in LCMV 

infection or in the tumor microenvironment enhances CD8 T cell responses, its constitutive 
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loss paradoxically leads to more pronounced cell-intrinsic dysfunction of CD8 T cells 

(Barber et al., 2006; Odorizzi et al., 2015). To determine whether intrinsic CD8 T cell 

function is altered by PD-1 blockade during the subacute period, we analyzed cytokine 

production ex vivo and proliferative capacity of CD8 T cells in vivo by adoptive transfer to 

congenic mice followed by LCMV-c13 infection. Immediately following blockade of PD-

L1, we detected increased frequencies of tumor necrosis factor alpha (TNF-α)+ interferon 

(IFN)-γ+ co-producing CD8 T cells ex vivo as well as an increased frequency of Ki-67+ 

LCMV-specific CD8 T cells (Figures 2F and 2G), suggesting PD-1 blockade started on 8 dpi 

resulted in enhanced activity of Ag-specific CD8 T cells. Additionally, adoptively 

transferred PD-1+ CD8 T cells from control or anti-PD-L1-treated mice were capable of 

comparable secondary expansion in the recipient mice (Figure 2H), indicating that Ag-

specific CD8T cells preserved polyfunctionality and proliferative capacity, regardless of 

PD-1 blockade during this period. These results suggest that the decreased overall CD8 T 

cell response in the treated mice is secondary to tissue damage in lymphoid organs caused 

by CD8 T cells.

CD8 T cells also directly target Ag-specific B cells in LCMV infection and thus impair 

antibody responses (Moseman et al., 2016). We hypothesized PD-1 blockade exacerbates 

CD8 T-cell-dependent cytotoxicity to B cells. Consistently, despite comparable frequencies 

of CD8 T cells and total B220+ B cells, we observed a significant reduction in the 

frequencies and numbers of GL7+ Fas+ GC B cells known to be directly infected by LCMV 

(Moseman et al., 2016) as well as in anti-LCMV IgG2c titers (Figures 2I and 2J). Although 

PD-1 blockade could also act directly on B cells and cause their death by hyperactivation, 

we did not detect PD-1 expression on B cells at this stage of infection, making this 

explanation unlikely (Figure S2D). Moreover, depletion of CD8 T cells prior to infection 

restored GC B cell numbers and anti-LCMV IgG2c titers (Figures S2E and S2F), indicating 

that the GC B cell reduction was mediated by Ag-specific killing by uninhibited CD8 T 

cells. These data collectively indicate that PD-1 signaling during the subacute stage of 

LCMV infection protects hosts from excess tissue damage, particularly in the lymphoid 

organs that provide a microenvironment for proper adaptive immune responses. Thus, 

engagement of the PD-1 pathway may be an essential component of protective immunity to 

control persistent viral infection targeting lymphoid organs.

Engagement of PD-1/PD-L1 Is Essential for Control of Chronic LCMV Infection

We have shown that PD-1 is necessary to prevent tissue damage with no immediate impact 

on viral control. We thus hypothesized that insufficient adaptive immunity resulting from the 

defective lymphoid tissue integrity impairs long-term control of virus. Accordingly, we 

conducted a longitudinal analysis of viremia using different regimens of PD-1 blockade. As 

demonstrated previously (Barber et al., 2006), PD-1 blockade late in the infection, initiated 

on 23 dpi, accelerated resolution of viremia, with viral RNA undetectable by 50 dpi (Figure 

3A, blue dots). In sharp contrast, PD-1 blockade initiated on 8 dpi impaired viral control 

with a majority of infected mice exhibiting viral persistence (Figure 3A, red dots). Thus, 

PD-1 engagement in the subacute phase of infection, after T cell priming and initial clonal 

expansion, is required to preserve durable antiviral responses.
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To further delineate the effects of a temporary PD-1 blockade on 8–22 dpi, we first 

examined how function of Ag-specific CD8 T cells was impacted. It has been shown that 

loss of PD-1 signaling depletes T-bet+ CD8 T cells, resulting in defective antiviral responses 

(Odorizzi et al., 2015). To this end, similar to analysis on 22 dpi, frequencies of LCMV-

specific CD8 T cells, including those of PD-1+ TCF-1+ and T-bet+ CD8 T cells, were 

comparable between 8–22 dpi treated and control groups in the spleen on 37 dpi (Figures 3B 

and 3C). However, expression of TIM-3 by Ag-specific CD8 T cells in the spleen was 

increased in the treated mice (Figures 3B and 3C), suggesting an accumulation of severely 

exhausted cells due to the changes in the microenvironment. This change of CD8 T cells in 

the spleen was reflected by more pronounced reduction of both total and LCMV-specific 

CD8 T cells in the peripheral blood (Figure 3D). Thus, it is likely that the decline in CD8 T 

cells and diminished anti-LCMV antibody responses led to defective viral control in mice 

treated with anti-PD-L1 between 8–22 dpi. Together, our results indicate that engagement of 

the PD-1 pathway in the face of persistent Ag is essential for durable antiviral responses by 

generating requisite numbers of adaptive immune cells through the maintenance of 

lymphoid tissue integrity.

IFN-Is Are Required for Anti-PD-L1-Mediated Immunopathology

Our results demonstrate the requirement of PD-1 signaling for protecting the host from 

tissue damage that compromises antiviral responses. However, immunopathology 

preferentially occurred during early time points in the infection, potentially due to elevated 

inflammatory cytokines. Among the cytokines induced upon viral infection, IFN-Is are 

transiently produced through by plasmacytoid dendritic cells (pDCs) and other myeloid cells 

upon infection by LCMV-c13 (Macal et al., 2012; Teijaro et al., 2013; Wang et al., 2012; 

Wilson et al., 2013; Ng et al., 2015). The expression of IFN-Is peaks in the acute stage and 

would thus be consistent with their roles in enhancing immunopathology following anti-PD-

L1 treatment in the acute phase (Baccala et al., 2014; Oldstone et al., 2018). To first test 

whether IFN-Is were required for lethal immunopathology in LCMV-c13-infected mice 

resulting from PD-1 blockade, we combined administration of blocking mAbs against 

interferon alpha/beta receptor 1 (IFNAR) immediately before infection (day −1) and PD-L1 

on 0–8 dpi. In striking contrast to mice treated with anti-PD-L1 alone, almost all infected 

mice were rescued from death by the co-treatment (Figure 4A), indicating that IFN-Is 

enhance effector function of Ag-specific CD8 T cells.

We next examined how loss of IFNAR signaling impacted the CD8 T cell response to 

LCMV-c13 infection. We found reduced frequencies of total and LCMV-specific CD8 T 

cells in peripheral blood on 8 dpi in anti-IFNAR-treated mice (Figure 4B). This diminished 

CD8 T cell expansion was independent of natural killer (NK)-cell-dependent cytotoxicity, as 

CD8 T cell frequencies remained unchanged with depletion of NK cells (Crouse et al., 2014; 

Madera et al., 2016; Xu et al., 2014; Figure S3A). In Ifnar1−/− mice, splenocyte counts were 

increased by two-fold, consistent with diminished CD8 T-cell-mediated tissue damage, 

although total and LCMV-specific CD8 T cell numbers were reduced (Figures S3B–S3E). 

Among LCMV-specific CD8 T cells, we observed skewed differentiation into TCF-1+ 

memory-like CD8 T cells over TIM-3+ effector/exhausted cells (Figures S3B–S3E), 

consistent with a previous study (Wu et al., 2016). These results suggest that differentiation 
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of activated CD8 T cells into effectors is suppressed in the absence of IFNAR signaling. In 

addition, LCMV-specific CD8 T cells deprived of IFNAR signaling expressed substantially 

higher PD-1 compared to control CD8 T cells (Figure 4B) and therefore may be more 

sensitive to PD-L1-mediated suppression. Consistently, additional blockade of PD-1 

signaling rescued the reduction in LCMV-specific CD8 T cells without impacting total CD8 

T cell frequencies (Figures 4B and 4C).

We next sought to establish which cellular compartments IFN-Is target to cause 

immunopathology. Bone marrow (BM) chimeras reconstituted with Ifnar1−/− hematopoietic 

cells died following LCMV-c13 infection and anti-PD-L1 treatment with similar kinetics to 

control chimeric mice reconstituted with wild-type (WT) BM cells (Figure S4A). Although 

Ifnar1−/− host mice reconstituted with Ifnar1−/− hematopoietic cells were resistant to PD-1-

blockade-mediated death as expected, Ifnar1−/− hosts reconstituted with WT BM cells also 

succumbed to PD-1 blockade following LCMV-c13 infection (Figure S4B). These results 

collectively indicate that IFN-Is program enhanced CD8 T cell effector responses by acting 

on both non-hematopoietic and hematopoietic cells and in part by restricting induction of 

PD-1 in activated CD8 T cells to desensitize them to PD-L1-mediated suppression.

To determine whether early PD-1 blockade can promote control of infection in the absence 

of excess tissue damage, we tracked antiviral responses following anti-IFNAR and anti-PD-

L1 treatment. As shown previously (Teijaro et al., 2013; Wilson et al., 2013), anti-IFNAR 

alone on day −1 prior to infection accelerated resolution of viremia compared to control 

(Figure 4D). The viral control was further enhanced by combination of anti-IFNAR on day 

−1 with anti-PD-L1 on 8 dpi. In contrast, anti-IFNAR administration on 7 dpi, at which time 

IFN-Is are already undetectable in serum (Macal et al., 2012; Teijaro et al., 2013; Wang et 

al., 2012; Wilson et al., 2013), had no effect (Figure 4D). Consistently, atrophy of the spleen 

caused by anti-PD-L1 was completely rescued in mice co-treated with anti-IFNAR and anti-

PD-L1 (Figure 4E). These results suggest IFN-Is as a target to tune the outcomes of immune 

checkpoint blockade.

DISCUSSION

Our data demonstrate a critical, temporal function of PD-1 in the regulation of host 

immunity against persistent infections. PD-1 is a major inhibitory receptor that causes 

attenuated CD8 T cell responses to some infections and tumors. Blockade of the PD-1/PD-

L1 interaction to restore function of exhausted CD8 T cells was originally demonstrated 

using a mouse chronic LCMV infection model and has now been applied broadly as a cancer 

immunotherapy in humans. However, the biological significance of PD-1-mediated 

suppression on long-term control of persistent viral infection is understudied. We now 

demonstrate that PD-1-mediated restriction of T cell responses is beneficial for control of 

chronic infection.

Immunopathology in the LCMV-c13 infection model is a consequence of abundant and 

broad expression of viral Ag across different cell types. LCMV is a non-cytopathic virus, 

and the pathogenesis of LCMV infection is predominantly host T cell response dependent, 

as is the case with some viral infections in humans, such as hepatitis B virus (HBV), HCV, 
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and HIV infections. Context-dependent PD-1-mediated protection through restriction of 

immunopathology may be beneficial to establish durable immunity against those infections, 

although the benefit of restraining host T cell responses may not be applicable to all viral 

infections. Constitutive absence of PD-1 signal causes severe exhaustion of CD8 T cells in a 

cell-intrinsic manner (Odorizzi et al., 2015). In contrast, our results show the requirement for 

PD-1 to preserve CD8 T cell responses in a T-cell-extrinsic manner and thus reveal the 

additional role of immune regulation in durable antiviral immunity. Collectively, restriction 

of CD8 T cell function by PD-1 or acquisition of the exhausted state is a host protective 

mechanism in response to persistent Ag, for which long-term durable immunity is prioritized 

at the expense of immediate immune responses.

Our results also show that IFN-Is enhance immunopathology in the setting of PD-1/PD-L1 

deficiency. Sequential blockade of IFNAR and PD-1 signaling synergistically improved 

control of LCMV infection, further supporting our conclusion that preventing initial 

immunopathology is critical for overall antiviral responses, even if it temporarily 

compromises viral control. Although IFNAR is broadly expressed in both hematopoietic and 

non-hematopoietic compartments, its expression in either compartment was sufficient to 

cause lethal immunopathology in LCMV-c13-infected mice depleted of PD-1 signaling. 

IFNAR signaling thus likely contributes to maximizing CD8 T cell responses through 

multiple mechanisms, including effector differentiation and modulation of PD-1 expression 

by CD8 T cells. Although blockade of IFNAR signaling enhances control of persistent 

LCMV infection (Teijaro et al., 2013; Wilson et al., 2013), the therapeutic effects appear to 

be mediated by regulation of CD8 T cells and preservation of host immune functions, 

similar to PD-1-mediated suppression, rather than direct enhancement of T cell function. 

This conclusion is supported by protection of LCMV-specific B cells by IFNAR blockade 

(Fallet et al., 2016; Moseman et al., 2016). The IFN-I pathway could be a potential target for 

modulation of immunotherapies against infections and cancer beyond its direct effect on the 

virus or transformed cells.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new reagents. Further information and requests for resources and 

reagents should be directed to and will be fulfilled by the Lead Contact, Takeshi Egawa 

(egawat@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Male C57BL/6N and B6-CD45.1 mice were purchased from Charles River 

Laboratory. Ifnar1−/− were obtained from Michael S. Diamond (Washington University). All 

mice were housed in a specific pathogen-free facility at Washington University in St. Louis, 

and were used at 8 to 10 weeks of age, unless stated otherwise. We used both males and 

females except that only male mice were used as recipient mice for bone marrow chimeras 

to minimize the risk of graft rejection due to the male antigen. All experiments were 

performed according to a protocol approved by Washington University’s Animal Studies 

Committee.
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METHOD DETAILS

Mouse Infection and Viral Load Quantification—Stocks of LCMV were made by 

propagating virus in BHK (baby hamster kidney) cells, followed by titering of culture 

supernatants by focus forming assay on Vero (African green monkey kidney) cells. For 

LCMV infection, mice were infected with 2 × 105 plaque-forming units (PFU) of LCMV-

Arm via the intraperitoneal route or 2 × 106 (PFU) of LCMV-c13 by intravenous injection. 

For the quantification of plasma viral load, RNA was extracted from 10 μL of plasma using 

Trizol (Life Technologies). Before RNA extraction a spike-in of exogenous control mRNA 

encoding clover was added to the plasma samples as previously described. The amounts of 

the LCMV gp transcript relative to that of ‘spiked- in’ clover RNA were determined by real-

time qRT-PCR using qScript cDNA synthesis and Luminaris HiColor Green Master Mix as 

previously described (Chou et al., 2016; McCausland and Crotty, 2008; Raju et al., 2018).

Antibody treatments—200 μg of anti-PD-L1 (29F.1.G2, BioXcell) was injected every 

day or every other day for treatments initiated on day 0, otherwise administration was every 

three days for a full two weeks of treatment. anti-IFNAR (MAR1, Leinco) was 

intraperitoneally injected at the indicated time points after infection at a dose of 1 mg. For 

depletion of CD4 T cells, 200 μg of anti-CD4 (GK1.5, Leinco) was injected on day −1 and 

+1 of infection. For depletion of CD8 T cells, 400 μg of anti-CD8 (YTS-169, Leinco) was 

injected on a day before infection. For NK cell depletion, 100 μg of anti-NK1.1 (PK136, 

Leinco) was injected on a day before infection.

Histology—Organs were fixed in 4% PFA overnight, then dehydrated in 70% ethanol. 

Samples were subject paraffin embedding and H&E staining using standard methods 

performed by the Developmental Biology Histology Core at Washington University in St. 

Louis. Images were collected using an EVOS FL Auto Imaging System (Thermofisher).

Cell Preparation, Staining, and Flow Cytometry—Single-cell suspensions were 

prepared by manual disruption of spleens with frosted glass slides. Absolute live cell counts 

were determined by Trypan-blue exclusion using Vi-Cell (Beckman Coulter). Tetramer 

staining was performed using iTag-PE LCMV gp33–44 and gp276–284 (MBL international) 

for 1 hour at RT followed by surface staining was performed at 4°C for 30 minutes. For 

intracellular cytokine staining, splenocytes were cultured in RPMI-1640 supplemented with 

10% fetal bovine serum in the presence of 1 ug/ml of LCMV-gp peptide (Genscript) and 5 

ug/ml of Brefeldin A (Biolegend) for 4 hours. Cells were stained for surface makers and 

then subject to LIVE/DEAD Aqua staining (Thermofisher) for 30 minutes at 4°C before 

being fixed with 4% PFA for 10 minutes at RT. Cells were then washed twice with 0.03% 

saponin in 2% FBS/PBS before being stained with the indicated antibodies in 0.3% Saponin 

in 2% FBS/PBS for 20 min at 4°C. Staining for transcription factors was performed using 

the Foxp3 staining kit (eBioscience) according to the manufacturer’s instructions. Stained 

samples were analyzed with FACS LSR Fortessa or X20 (BD) and data processing with 

FlowJo Software (FlowJo. LLC).

Anti-LCMV antibody ELISA—Anti-LCMV antibody ELISA was performed as described 

previously (Raju et al., 2018). Briefly, Nunc Polysorp plates were coated with 10ug/mL 
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sonicated cell lysate from LCMV-infected BHK-21 cells as capture antigen or uninfected 

BHK-21 cell lysate overnight followed by UV irradiation (300 mJ in Stratalinker 1800; 

Stratagene). Plasma antibody was detected with biotinylated anti-mouse IgG2c antibody 

(1077–08; Southern Biotech), followed by Streptavin-HRP (BD), and TMB substrate 

(Dako). Endpoint titers were calculated by a sigmoidal-dose response curve using Graphpad 

Prism software.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using Prism (Graphpad Software). P-values were 

calculated with an unpaired two-tailed Student’s t test or the Mann-Whitney U-test for two-

group comparisons and by one-way ANOVA for multi-group comparisons with the Tukey 

post hoc test. *p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

DATA AND CODE AVAILABILITY

This study did not generate code or new datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Host response to PD-1 blockade is timing dependent in LCMV-c13 infection

• PD-1 blockade in the subacute period leads to persistent viremia

• The impaired antiviral response results from lymphoid tissue damage by CD8 

T cells

• Blocking IFNAR rescues LCMV-infected mice from immunopathology by 

PD-1 blockade
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Figure 1. PD-1 Blockade at the Peak of Viremia Enhances CD8 T Cell Activation with No 
Immediate Impact on Viral Control
(A) Survival LCMV-c13-infected B6 mice following anti-PD-L1 treatment. n = 25 (control), 

n = 6 (days 0–8), and n = 30 (days 8–22) pooled from 3 experiments.

(B) Survival of LCMV-c13-infected B6 mice after adoptive transfer of unexhausted LCMV-

specific CD8 T cells and treatment with anti-PD-L1 or isotype control. Data are from 3 

experiments.

(C) Expression of CD4, CD8, CD44, and LCMV-gp276-specific T cell receptor (TCR) in 

peripheral blood mononuclear cells (PBMCs) from control and anti-PD-L1-treated mice on 

14 dpi with LCMV-c13 infection. Representative plots are shown with mean ± SD from 3 

experiments.

(D and E) Expression of CD4, CD8, CD44, PD-1, LAG-3, and LCMV-gp33-specific TCR in 

PBMCs on 22 dpi. Representative plots (D) and mean ± SD from 2 experiments (E) are 

shown.

(F) Plasma viral RNA load in LCMV-c13-infected mice on 22 dpi. Data pooled from 5 

experiments are shown with median. The statistical difference was tested by the Mann-

Whitney U test.

See also Figure S1.

Raju et al. Page 14

Cell Rep. Author manuscript; available in PMC 2019 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. PD-1 Blockade at the Peak of Viral Load Results in Reduced Spleen Sizes and Pan-
lymphopenia
(A) Gross images of spleens from control and anti-PD-L1-treated mice on 22 dpi.

(B) Splenocyte counts of control and anti-PD-L1-treated mice on 22 dpi. n > 8 mice per 

group, shown by mean and SD.

(C) H&E staining of spleen sections from control and day 8–22 anti-PD-L1-treated mice on 

22 dpi. Scale bars, 200 μm. Representative images of 6 mice per group are shown.

(D) Expression of CD44 and LCMV-gp33-specific TCR of total splenocytes and expression 

of TCF-1 and TIM-3 by LCMV-gp33-specific CD8 T cells in control and anti-PD-L1-treated 

mice on 22 dpi.

(E) Statistical analysis of frequencies and absolute numbers of the indicated cell populations 

pooled from 2 experiments. n = 4–6 mice per group.
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(F) Expression of IFN-γ and TNF-α by splenocytes from LCMV-c13-infected control and 

anti-PD-L1-treated B6 mice following stimulation with the gp276–284 peptide. 

Representative data from 2 experiments are shown with mean ± SD; n = 4.

(G) Expression of Ki-67 by gp33-specific CD8 T cells.

(H) Frequencies of CD45.2 PD-1+ donor CD8 T cells in PBMCs of CD45.1-recipient mice 

that received PD-1+ CD8 T cells from LCMV-c13-infected anti-PD-L1-treated B6 mice and 

subsequently challenged with LCMV-c13. Data are pooled from two experiments.

(I) Expression of Fas and GL7 expression in B220+ splenocytes from control and anti-PD-

L1-treated mice. Data from 2 experiments are shown with mean and SD.

(J) Anti-LCMV IgG2c antibody titers on 22 dpi.

See also Figure S2.

Raju et al. Page 16

Cell Rep. Author manuscript; available in PMC 2019 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Engagement of PD-1 in the Subacute Phase Is Required for Durable Control of LCMV 
Infection
(A) Plasma viral RNA load in LCMV-c13-infected B6 mice treated with anti-PD-L1 on 8–

22 dpi (red dots, same as Figure 1) or 23–37 dpi (blue dots). Data are pooled from 5 

experiments shown with median.

(B–D) Expression of CD4, CD8, CD44, PD-1, LAG3, and LCMV-gp33-specific TCR by 

splenocytes (B and C) and peripheral blood mononuclear cells (D) on day 37 of LCMV-c13 

infection. Representative plots are shown with median ± SD from at least 2 experiments.
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Figure 4. Type I Interferon Receptor Blockade Rescues Immunopathology Caused by Loss of 
PD-1 Signaling in LCMV-Infected Mice
(A) Survival of LCMV-c13-infected B6 mice treated with anti-IFNAR 1 day prior to 

infection, anti-PD-L1 (days 0, 2, 4, 6, and 8), or both. Data pooled from 3 experiments with 

n > 6 mice per group are shown.

(B and C) Frequencies of total CD8 T cells, LCMV-gp33-specific CD8 T cells, and PD-1+ 

cells in indicated PBMC populations on 8 dpi in LCMV-c13-infected B6 mice with 

indicated treatment. Representative plots (B) with mean ± SD from 2 experiments (C) are 

shown.

(D) Plasma LCMV viral RNA load in LCMV-c13-infected B6 mice with indicated treatment 

from 2 experiments shown with median.

(E) Macroscopic images of spleen and splenocyte counts of LCMV-c-13-infected B6 mice 

with indicated treatment as in (A) on 22 dpi. Data from two experiments are shown.

See also Figures S3 and S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-B220-FITC Biolegend CAT#103206; RRID:AB_312991

Anti-B220-PB Biolegend CAT#103227; RRID:AB_492876

Anti-CD4-BV605 Biolegend CAT#100451; RRID:AB_2564591

Anti-CD44-AF700 Biolegend CAT#103026; RRID:AB_493713

Anti-CD8a-BUV395 BD CAT#563786; RRID:AB_2732919

Anti-CD8a-FITC Biolegend CAT#100706; RRID:AB_312745

Anti-CD8b-PerCP-Cy5.5 Biolegend CAT#126610; RRID:AB_2260149

Anti-EOMES-PerCP-e710 Invitrogen CAT#46–4875–82; 
RRID:AB_10597455

Anti-Fas-PE-Cy7 BD CAT#557653; RRID:AB_396768

Anti-IFNg-PE Biolegend CAT#505808; RRID:AB_315402

Anti-Ki-67-APC BD CAT#561126; RRID:AB_10611874

Anti-LAG-3-BV421 Biolegend CAT#125221; RRID:AB_2572080

Anti-mouse IgG2c-biotin SOUTHERN 
BIOTECHNOLOGY

CAT#1077–08; RRID:AB_2794453

Anti-PD1-PE-Cy7 Biolegend CAT#135216; RRID:AB_10689635

anti-Rabbit-IgG-A488 Invitrogen CAT#A27034; RRID:AB_2536097

Anti-T-bet-APC Biolegend CAT#644814; RRID:AB_10901173

Anti-TCF-1 CST CAT#2203S; RRID:AB_2199302

Anti-TIM3-BV421 Biolegend CAT#119723; RRID:AB_2616908

Anti-TNFa-APC Biolegend CAT#506308; RRID:AB_315429

GL7-A647 Biolegend CAT#144606; RRID:AB_2562185

Streptavidin-HRP BD CAT#554066

Anti-CD4 (for In vivo administration) Leinco CAT#C1333; RRID:AB_2737452

Anti-CD8 (for In vivo administration) Leinco CAT#C2442

Anti-IFNAR (for In vivo administration) Leinco CAT#I-401; RRID:AB_2491621

Anti-NK1.1 (for In vivo administration) Leinco CAT#N123; RRID:AB_2737553

Anti-PD-L1 (for In vivo administration) BioXcell CAT#BE0101; RRID:AB_10949073

Isotype control (for In vivo administration) BioxCell CAT#BE0090; RRID:AB_1107780

Bacterial and Virus Strains

LCMV-Armstrong Marco Colonna’s Lab N/A

LCMV-clone 13 Marco Colonna’s Lab N/A

Chemicals, Peptides, and Recombinant Proteins

Brefeldin A Biolegend CAT#420601

H2-Db (LCMV gp33–41) tetramer MBL International CAT#TB-5002–1

H2-Db(LCMV gp276–284) tetramer MBL International CAT#TB-5009–1

Fetal Bovine Serum Thermofisher CAT#10437028
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REAGENT or RESOURCE SOURCE IDENTIFIER

LCMV gp276–284 peptide Genscript CAT#RP19983

LCMV gp33–41 peptide Genscript CAT#RP20257

Linear Acrylamide Ambion CAT#AM9520

LIVE/DEAD Aqua Invitrogen CAT#L34966

RPMI-1640 Thermofisher CAT#SH3009601

TMB Substrate Dako Dako CAT#T03026

Critical Commercial Assays

Foxp3/transcription factor staining buffer Thermofisher CAT#00–5523–00

Luminaris Color HiGreen qPCR Master Mix Thermofisher CAT#K0394

Negative Selection CD8 Kit Biolegend CAT#480008

qScript cDNA SuperMix Quantabio CAT#95048–100

Experimental Models: Cell Lines

BHK cells Marco Colonna’s Lab N/A

Vero Cells Marco Colonna’s Lab N/A

Experimental Models: Organisms/Strains

B6-CD45.1 Charles River CAT#564

C57BL/6NCr Charles River CAT#556

Ifnar1−/− Michael Diamond’s Lab N/A

Oligonucleotides

GFP FWD primer: GACAACCACTACCTGAGCCA Raju et al., 2018 N/A, Sigma Custom Synthesis

GFP REV primer: GTCCATGCCATGTGTAATCC Raju et al., 2018 N/A, Sigma Custom Synthesis

LCMV gp FWD primer: CATTCACCTGGACTTTGTCAGACTC McCausland and Crotty, 2008 N/A, Sigma Custom Synthesis

LCMV gp REV primer: GCAACTGCTGTGTTCCCGAAAC McCausland and Crotty, 2008 N/A, Sigma Custom Synthesis

Software and Algorithms

Prism, version 8 Graphpad https://www.graphpad.com/scientific-
software/prism/

Flowjo, version 10 FlowJo, LLC https://www.flowjo.com/
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