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Environmental pollution caused by rapid industrial activities are becoming

increasingly drastic, particularly its impact on soil and plant health. The

present study was conducted to investigate the heavy metal (loid) (As, Cd,

Cu, Hg, Pb, and Zn) concentrations in soils and food biomass crops and estimate

the potential health risks of metals to humans via consumption of contaminated

food biomass crops from Shifang, a periurban agricultural areas in the Chengdu

Plain, Sichuan, China. Results revealed that the soils have been experiencing a

substantial accumulation of heavy metals, especially for Cd, with a mean of

0.84 mg kg−1, about six times higher than the background values, of which 98%

exceeded the pollution warning threshold of the China Soil Environmental

Quality Standards. A total of 78% of all the grain part failed the national food

standard for Cd. No significantly positive relationships between metal levels in

food biomass crops and in the corresponding soils, indicated metals

enrichment in soils were not entirely reflected to crops contaminant

burdens. Estimated daily intake (EDI) of all the metals except for Pb,

exceeded the oral reference dose (RfD) or the minimal risk levels

recommended by USEPA and ATSDR. Target hazard quotients (THQs) of all

themetals except for Cdwas less than one indicated that potential health risk to

the local inhabitant originated mainly from Cd exposure via cereals

consumption. Mitigation strategies to curtail Cd-contaminated soils and

crops Cd burdens need careful tailoring to meet the needs of health and

safety in this region.
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1 Introduction

Nowadays, environmental pollution and the greenhouse

effect are becoming increasingly drastic. Among them,

potential environmental and human risks of exposure to

heavy metals through diet become an important issue of

public health concern, but such information remains still

fragmentary and scattered in an area of intensively cropping

and heavily industrialized coexist (Masindi and Muedi, 2018;

Briffa et al., 2020). Heavy metals are ubiquitous in the

environment, with either natural or anthropogenic origin (Wu

et al., 2016). Anthropogenic activities, such as mining, solid waste

disposal, sludge applications, and industrial processing are the

main sources of heavy metals soil contamination (Sodango et al.,

2018; Timothy and TaguiWilliams, 2019; Sharma et al., 2021). In

addition, excessive use of pesticides and fertilizers, and

wastewater irrigation also play an important role in the

contamination of foodstuffs by heavy metals (Loutfy et al.,

2012; Zwolak et al., 2019; Qin et al., 2021). Toxic heavy

metals released by anthropogenic activities into ecosystems

may lead to geo-accumulation, bio-accumulation, and

biomagnification. In agricultural ecosystems, excessive

accumulation of heavy metals in agricultural soils leads to

elevated heavy metals uptake by food biomass crops, which is

of great concern because of potential health risk to humans (Ali

et al., 2019; Afonne and Ifediba, 2020; Hasan et al., 2020).

Consumption of food biomass crops contaminated with heavy

metals is a major food chain route for human exposure. Recently,

there have been increasing interests in human health risk caused

by consuming heavy metal contaminated food (Sall et al., 2020;

Zheng et al., 2020; Ahmad et al., 2021; Alengebawy et al., 2021).

The Food and Agricultural Organization of the United Nations

(FAO), World Health Organization (WHO), United States

Environmental Protection Agency (USEPA), the Agency for

Toxic Substances and Disease Registry (ATSDR), and other

regulatory bodies of various countries have established

maximum permissible limits (MPL) of heavy metals in

foodstuffs and offered some methods for health risk

assessment. Based on these methods, numerous studies have

been conducted on potential health risk assessment of heavy

metals contaminated in soils and crops in different regions (Saha

et al., 2016; Ishtiaq et al., 2018; Bello et al., 2019; Lien et al., 2021;

Setia et al., 2021; Udom et al., 2022). But such information from

an intensively cultivated areas remains still fragmentary (Bhatti

et al., 2018; Zheng et al., 2020).

The Chengdu Plain, the“Land of Abundance” in China, is an

important agricultural region and has also experiencing rapid

change of socio-economic structur e changes. Urbanization,

industrialization, and agricultural intensification have caused

an increase of large amounts of metal-contained

agrochemicals, wastes, and sewages in the agricultural

environment. Previous studies in the Chengdu Plain reveal an

obvious increase of heavy metals, especially cadmium (Cd) and

mercury (Hg) in soils in the past decades (Qin et al., 2013; Wang

et al., 2017; Deng et al., 2019; Wang et al., 2019). Increased heavy

metals in soil results not only in soil quality deteriorating but may

also affect agricultural product safety. There is a probable

accumulation of heavy metals in crops grown in this region.

However, studies have suggested that the knowledge of total

concentration of metals alone is not sufficient to evaluate

phytotoxic risk and human health risk (Yuswir et al., 2015;

Tapia-Gatica et al., 2020); Huang et al. (2018) suggest that

exposure to heavy metals through rice intake was the most

important single health risk contributor. Dietary intake

through contaminated foods has become the main route of

heavy metal intake by humans (Chen et al., 2018). Therefore,

the risk assessment of exposure to heavy metals through diet

becomes an important health issue.

The coexist area of heavily industrialized and intensively

cropping occupied a considerable proportion in the Chengdu

Plain. Many previous studies only considered the levels of heavy

metals in the soils and/or vegetables (Liu et al., 2004; Jin et al.,

2008; Qin et al., 2013) and no studies have investigated the bio-

accumulation of heavy metals in food crops from the soils in the

coexist area. On the one hand, there are a large number of

industrial pollution sources from such as the chemical industry,

metal smelting, and cement production in the coexist areas,

pollutants enter into farmland are inevitable through

atmospheric deposition, wastewater, and solid waste discharge.

On the other hand, highly intensive farming systems also bring a

certain amount of heavy metals to the agricultural environment

through the application of chemical fertilizers and pesticides.

Health consequences of these pollution to local residents need to

understand assessment, which has certain implications for

changes in local planting structures and risk mitigation

strategies or the safe usage of farmlands.

In order to enable the development of appropriate

environmental and/or health guidelines, it is essential to have

an understanding of the universal range of heavy metals

concentrations in crops on the intensively cultivated area.

Such data are also important to assist in assessing any

potential risk to the environment or human health. The

purpose of this study is to 1) identify the concentration of

heavy metals in soils, rice, and maize; 2) evaluate the potential

health risk associated with heavy metals through consumption of

rice and maize using estimated daily intake (EDI) and target

hazard quotient (THQ).

2 Materials and methods

2.1 Study area

The research area is composed of the whole flat area of

Shifang city and parts of Guanghan city and Mianzhu city,

situating at the northwest of the Chengdu Plain, Sichuan
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province, southwestern China (103°58′–104°22′E,
30°58′–31°23′N) (Figure 1). Climate is subtropical humid

climate, with mean annual temperature of −16°C and mean

annual rainfall of 940 mm. Parent materials of soils are

mainly alluvial of the Min River. Major soil types are Hapli-

Stagnic Anthrosols and Gleyi-Stagnic Anthrosols in the Chinese

Soil Taxonomy (Gong and Li, 2001).As a heavily industrial

activities and intensively farming coexist area, the study area

has diverse industrial clusters, including food, metallurgical,

construction materials, pharmaceutical, chemical, and leather

industry in the flat part, whereas the mountainous/hill part being

phosphorus ore, coal, and limestone mining.

Rice is cultivated on 90% of the total arable lands, rest be used

for maize, wheat, vegetable, andmushroom cultivating (WangM.

et al., 2016). Agriculture depends on agrochemicals. It is a typical

area that intensive crop farming mingled with heavily industrial

operations in the Chengdu Plain.

2.2 Sample collection

The systematic random sampling method was used to

collect samples. A sampling grid overlay on the study region

(Figure 1), then the samples were collected at the node areas

of a regular grid of about 3 km × 3 km. At each sampling site,

a clean plastic shovel was used to collect 5–7 randomly

subsamples at the 0–20 cm depth to form one

representative composite sample of at least 500 g by the

quartering method and put in a cleaned zip-lock plastic

bag for the laboratory analysis. At each soil sampling sites,

3–5 subsamples of the edible part of maize mature seeds and/

or the ear of rice were collected at random, and a composite

sample at least 300 g was made for each crop. In total, the

samples of 40 paddy soils, 10 dryland soils, 40 rice, and

10 maize were collected.

2.3 Analyses of samples

Soil samples were screened of debris and stones, air-dried,

and crushed to pass through a 2-mm sieve. Each sample was

homogeneized and quartered, representative subsamples

of ≤2 mm size fraction were grounded in an agate mortar to

pass a 0.149-mm sieve and prepared for chemical analysis.

Samples of rice and maize were washed with deionized water

to remove all visible soil particles or dusts, oven-dried at 60°C.

After rice husks were removed, rice grains were grounded in a

stainless steel mill to a fine powder and stored in plastic bags for

further chemical analysis. Corn kernels were also prepared in the

same way as analytical samples.

Soil pH was measured by a pH meter with soil/H2O ratio of

1:2.5 (soil:solution, dry w/v). The organic matter content was

determined by the Walkley-Black procedure. Cation exchange

capacity (CEC) was determined using NH4OAc at pH 7.0, the

leaching method of the Soil Survey Staff (1996). Soil samples

were digested by concentrated acid mixture (HNO3, HClO4,

and HF), and food crop samples were digested with HNO3 and

HClO4 in a 5:1 ratio. The acid digested soil and crop samples

were filtered and diluted with distilled water to 50 and 10 ml,

respectively. Concentration of total Pb, Cd, Cu, and Zn in the

digests was measured using an atomic absorption

spectrophotometer (Analyst 800 P.E.) equipped with a

heated graphite furnace system (THGA-800 P.E.), while As

and Hg were determined by atomic fluorescence spectrometer

(AFS-830a).

2.4 Quality control and assurance

To ensure the quality of metals analysis, certified reference

material (CRM) (from the National Research Center for

Standards in China, Beijing) including Sichuan basin soil

(GBW07428) and Sichuan rice flour (GBW10044) was used to

validate the analysis. The average rice flour CRM recoveries

ranged from 91 to 101%, 94 to 100%, 96 to 101%, 98 to

101%, 96 to 103%, and 90 to 105% for Cd, As, Pb, Cu, Zn,

and Hg, respectively. The mean recoveries for soil CRM’s ranged

from 89 to 100%, 97 to 104%, 98 to 102%, 97 to 100%, 98 to 101%,

and 95 to 103% for Cd, As, Pb, Cu, Zn, and Hg.

FIGURE 1
Schematic map of sampling sites in the study area, Sichuan
province (southwest China).
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2.5 Data analysis

2.5.1 Bio-accumulation factor
Metal concentrations of soils and grains were calculated on

the basis of dry weight. The bio-accumulation factor (BAF), a

ratio of the contaminant in food crops to the concentration in the

soil substrate, was calculated using the following equation:

BAF � Cplant

Csoil
,

where Cplant and Csoil represent the heavy metal (loid)

concentration in the edible part of food crops and soils on

dry weight basis, respectively.

2.5.2 Estimated daily intake of metals
The estimated daily intake (EDI) of the specific metal

depended on both the metal concentration in the edible part

of food crops and the amount of consumption of the respective

food. The EDI was determined by the following equation:

EDI � Cmetal × CF × Wfood

BW
,

where Cmetal (mg kg−1, on dry weight basis) is the concentration

of metals in contaminated crops; CF denotes the conversion

factor, the Cmetal of both rice and maize were converted with a

factor of 0.86 because home-stored rice and maize commonly

contain water under 14% (w/w); Wfood represents the daily

average consumption of food crops in the study area; and BW

is the average body weight. According to the dietary intake

surveyed by Zhu et al. (2000), the local inhabitants had an

average consumption per person (average 65 kg in body

weight) of 363 and 45 g/day for rice and maize, respectively,

for children (average 30 kg in body weight), estimated intake

account for about 60% of consumption for adults.

2.5.3 Target hazard quotient
Health risks for locals through the consumption of

contaminated rice and maize was assessed based on the target

hazard quotient (THQ). The THQ is a ratio of determined dose

of a pollutant to a reference dose level. If the ratio is less than one,

the exposed population is assumed to be safe (USEPA, 2012);

THQ is described by the following equation:

THQ � EF × ED × FIR × C

RfD × BW × TA
× 10−3,

where EF is the exposure frequency (365 days/year); ED is the

exposure duration (70 years), equivalent to the average lifetime;

FIR is the food ingestion rate (for adults, rice: 363 g/person/day,

maize: 45 g/person/day; for children, rice: 218 g/person/day and

maize: 27 g/person/day) (Zhu et al., 2000); C is the metal (loid)

concentration in food (μg g−1); RfD is the oral reference dose

(As = 0.3 μg kg−1 d−1, Hg = 0.16 μg kg−1 d−1, Cd = 1 μg kg−1 d−1,

Pb = 4 μg kg−1 d−1, Cu = 10 μg kg−1 d−1, Zn = 300 μg kg−1 d−1)

(USEPA, 2008; USEPA, 2013; ATSDR, 2013); BW is the average

body weight (65 kg), and TA is the averaging exposure time for

non-carcinogens (365 days/year ×ED).

2.5.4 Statistical analysis
Data were statistically analyzed using a statistical package

SPSS 20. Shapiro–Wilk test is used to determine whether sample

data have been drawn from a normally distributed population.

When the assumption of normality was met, the mean was

selected to test the statistical significance of the data,

including comparison the mean of two and multiple groups

and analysis of variance (ANOVA), with a significance level of

p < 0.05, and the figures also presented with the mean values and

standard errors. When the assumption of normality was violated,

the median was selected to do Mann–Whitney test for two

groups and Kruskal–Wallis test for multiple groups, and

Spearman’s correlation analysis was used to test the

correlation assumption.

3 Results

3.1 Heavy metals in soils

Basic soil characteristics and the concentrations of As, Cd,

Hg, Pb, Cu, and Zn in soils are presented in Table 1. Soil is

generally slightly acidic (mean pH 6.48), with a range of acidic

(pH 4.54) to slightly alkaline (pH 7.99), in which pH value of

36 soil samples was less than seven, accounting for 72%. Soil

organic matter (SOM) ranged between 54 and 112 g kg−1, with a

mean of 101 g kg−1. Cation exchange capacity (CEC) varied

considerably from 2.35 to 21.16 cmol kg−1, a difference of

approximately nine times. The pH value in the rainfed lands

that maize cultivated soils were not markedly different,

comparing with the paddy fields that rice cultivated soils

(p = 0.919). There was also no obvious difference in SOM

between rainfed lands and paddy fields (p = 0.422). CEC in the

paddy land was significantly lower than that in rainfed lands

(p = 0.049).

Mean concentrations of As, Cd, Hg, Pb, Cu, and Zn in soils

were 8.01, 0.84, 0.19, 24.49, 25.72, and 80.12 mg kg−1, respectively

(Table 1). Except for Cd, all other metals were below the risk

control standard for soil contamination of agricultural land

(Ministry of Ecology and Environment of the PRC, 2018)

(Table 1). A considerable buildup for all the metals in the

soils were observed when comparison with the background

values, indicating that soils in the study area had a

considerably contaminated by heavy metals, especially Cd and

As. Concentration of metals was higher in rainfed soil than in

paddy soil (Figure 2), with As (p = 0.001), Cd (p = 0.027), and Cu

(p = 0.028) significantly higher in rainfed soil than paddy soil,

and the rest [Pb (p = 0.156), Hg (p = 0.174), Zn (p = 0.47)]

insignificantly different.
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TABLE 1 Characteristics and metal levels of the soils collected from the study area (matters content on dry weight basis).

Property Range Mean (n =50) SEa Background valueb SEPA RSVc

(pH = 6.5–7.5)

pH (H2O) 4.54–7.99 6.48 0.85 — —

SOM(g kg−1) 54.04–112.23 101.04 20.31 — —

CEC (cmol kg−1) 2.35–21.16 7.04 0.45 - -

As (mg kg−1) 3.81–33.18 8.01 0.75 3.77 30

Cd (mg kg−1) 0.51–1.90 0.84 0.04 0.14 0.30

Hg (mg kg−1) 0.12–0.33 0.18 0.03 0.14 0.30

Pb (mg kg−1) 8.05–80.33 24.49 1.69 20.70 250

Cu (mg kg−1) 16.66–70.57 25.72 1.42 23.01 50

Zn (mg kg−1) 53.58–159.59 80.21 3.19 65.12 200

aSE denote standard error.
bBackground value from Yao (1987).
cRisk-based screening values (RSV) of soil environmental quality risk control standard for soil contamination of agricultural land (GB 15618-2018) (Ministry of Ecology and Environment

of the PRC, 2018).

FIGURE 2
Metal concentrations (dry weight basis) in the soils from different types of farming in the study area. Data are mean ± 1SE, n = 40 for paddy soils
and n = 10 for dryland soils. For each element, means with the same letter are not significantly (p > 0.05) different.

TABLE 2 Metals concentrations (on dry weight basis) in the edible parts of food crops collected from the study area.

Metal Rice (n =40) Maize (n =10)

Range Mean ± SE Range Mean ± SE MLsa

As (mg kg−1) 0.04–0.17 0.07 ± 0.01 0.04–0.13 0.06 ± 0.01 0.15 (0.2)b

Cd (mg kg−1) 0.09–1.78 0.46 ± 0.06 0.05–0.77 0.26 ± 0.08 0.2 (0.1)

Hg (mg kg−1) 0.002–0.21 0.01 ± 0.01 0.002–0.02 0.01 ± 0.01 0.02

Pb (mg kg−1) 0.06–0.58 0.30 ± 0.02 0.02–0.50 0.29 ± 0.05 0.2

Cu (mg kg−1) 1.48–6.33 4.14 ± 0.17 1.21–5.30 2.73 ± 0.48 10

Zn (mg kg−1) 27.49–53.54 39.55 ± 0.83 35.58–49.13 41.72 ± 1.48 50

aMaximum levels of contaminants in foods (GB 2762-2017) (Ministry of Health of the PRC, 2017).
bNumber in parenthesis indicate maximum levels of metals in food grains other than rice.
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3.2 Heavy metals in food crops

The average concentrations and ranges of heavy metals (on

dry weight basis) in the edible portions of food crops grown in the

investigated soils are given in Table 2. The average

concentrations of Cd in rice and maize were 0.46 and

0.26 mg kg−1, respectively (Table 2), 78% of crop samples

exceeded the MPL for Cd of Chinese standard (Ministry of

Health of the PRC, 2017). Mean content of Pb in rice and

maize was 0.30 and 0.29 mg kg−1, respectively, also overtaking

the MPL. The results indicated that both rice and maize in the

study area exhibited a conspicuous Cd and Pb pollution. But As,

Hg, Cu, and Zn concentrations were substantially lower than the

MPL in rice and maize grown in the soils of the research area

(Table 2). All the metal contents except for Cu (p = 0.001) and Cd

(p =0.05) are insignificantly different between rice and maize, but

the trends of heavy metal accumulations, in general, was in the

order of rice > maize (Table 2).

3.3 Heavy metal transfer from soil to food
crop

The bio-accumulation factor (BAF) for heavy metal

transferring from soils to food crops tended to be in the order

of Cd > Zn > Cu > Pb > Hg > As, and there was significantly

difference in BAF values among metals (p < 0.001) (Figure 3). As,

Cd, and Cu in the edible parts of rice were markedly higher than

that of maize (Figure 3, all p < 0.05), whereas Hg, Pb, and Zn

buildup in the corresponding parts of crops had no obvious

difference. Correlation analysis reveals no significant correlation

between metal concentrations in soils and in the edible parts of

the plants except for Cu (p = 0.026), indicating that the metals

content in plant does not fully reflect the total metal level in soils.

3.4 Daily intake of metals through food
consumption and human health risks

Daily intake of heavy metal was estimated based on the

average food consumption in the study area. The estimated daily

intake (EDI) via consumption of rice and maize for adults and

children is given in Table 3. EDI of Hg, As, Pb, Cd, Cu, and Zn for

adults was 0.11, 0.44, 1.62, 2.43, 21.52, and 214.83, respectively,

whereas for children it was 0.31, 0.55, 2.11, 3.12, 38.02, and

379.52, respectively. According to the oral reference dose (RfD)

recommended by USEPA, ASTDR and Cal EPA, EDI of As, Cd,

and Cu for adults had exceeded the reference dose (Table 3),

while EDI, except for that of Pb, for children, surpassed the

recommended limit. Moreover, EDIs through the consumption

of rice were significantly higher than through the consumption of

maize because the dietary habits of local inhabitant are centered

on rice. In particular, EDI values to the local children tended to be

higher over adults, indicating that the children had a relatively

significant health risks via the consumption of metals

contaminated foods.

Target hazard quotient (THQ) of metals through the

ingestion of rice and maize for adults and children is shown

in Figure 4. While THQ of As, Hg, Pb, Zn, and Cu for adults was

below one, indicating health risk was low, THQ of Cd was close

to one, suggesting a potential health threat. Analogously, THQ

of As, Hg, Pb, and Zn for children from consumption of rice

and maize was below one, which suggested that health risk was

insignificant. Conversely, THQ of Cd and Cu was bigger than

FIGURE 3
Bio-accumulation factors (BAF) for different metals, a ratio of heavy metals concentration in the edible part of maize and rice to that in the
corresponding soil at the study area. Data are mean ± 1SE. For each element, means with the same letter are not significantly (p > 0.05) different.
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one, indicating that health risk these two metals was of a

concern.

4 Discussion

4.1 Heavy metals in soils and crops

Increasing evidence (Ren et al., 2006; Tang et al., 2007; Jin

et al., 2008; Qin et al., 2013) indicate that high Cd concentration

in paddy soil and rice in the Chengdu Plain is a problem. All the

metal concentrations except for Cd, although were still below the

Grade II of the EQSS (SEPA, 2018), a substantial accumulation of

metals in the soils was found when compared with the

background values (Yao, 1987), on average concentrations of

As, Hg, Pb, Cu, and Zn increasing up to 112, 30, 18, 12, and 23%,

respectively (Table 1). These results agreed with the findings of

previous studies in the Chengdu Plain (Qin et al., 2013; Wang

et al., 2017; Deng et al., 2019). Cd concentrations in 49 soils were

above the pollution warning threshold of the EQSS, accounting

for about 98%, indicating that soils suffered generally from Cd

contamination. This may have been due to the fact that diversity

industries embedded in an intensively cultivated area, such as

phosphorus chemicals, leather chemicals, old or currently active

mining or ore processing facilities, with mine waste runoff or

overspill tainted irrigation water, atmospheric deposition

resulting from ore smelting, and application of agrochemicals,

all may contribute to Cd contamination and others metals

buildup in soils (Qin et al., 2013). Many previous studies

suggested that long-term wastewater irrigation led to elevated

levels of heavy metals in soils (Elbana et al., 2013; Christou et al.,

2014; Meng et al., 2016; Abuzaid and Fadl, 2018) and revealed

that the heavy metals content in soils were markedly influenced

by stationary sources such as non-ferrous metal smelter, coal-

fired power plant (Reza et al., 2015; Yang et al., 2017; Semenov

et al., 2019; Wang et al., 2020), and non-point sources as use of

fertilizers, pesticides, and bactericides (Ouyang et al., 2016;

Zhang et al., 2021). These activities are inevitable in an

intensively farming and heavily industrial activities coexist area.

Concentrations of Cd, As, and Cu in rainfed soils are

significantly different from that in paddy soils (Figure 2),

suggesting that different farming styles may potentially impact

on metal concentrations in soil. It is a fact that rainfed lands are

commonly used to cultivate vegetables, with a high ratio of

rotation and increasing the input of agrochemicals, and more

potential metals of anthropic sources being added to rainfed soils

in compare to paddy soils. Metal elements may have different

behaviors such as bioavailability, leachability, and mobility in

various environments. An extractable form by DTPA is

TABLE 3 Estimated daily intake (EDI) of metals by consumption of rice andmaize at the investigation area (the EDI values based on the body weight of
65 and 30kg for the adults and children, respectively).

Groups Type
of food

DIa

(g d−1)
As Hg Cd Pb Cu Zn

µg kg−1 d−1

Adults Rice 363 0.43 0.11 2.21 1.43 19.91 190.02

Maize 45 0.04 0.01 0.22 0.21 1.62 24.81

Total 0.47e 0.11 2.43 1.62 21.52 214.83

Children Rice 218 0.51 0.33 2.92 1.91 25.92 247.22

Maize 27 0.05 0.01 0.21 0.23 2.13 32.33

Total 0.55 0.31 3.12 2.11 38.02 379.52

RfDb 0.3 0.16c 1 4 10d 300

aDI represents dietary intake (Zhu et al., 2000).
bOral reference dose base on USEPA (2013).
cOral reference exposure level (REL) recommended by OEHHA at CalEPA (2013).
dMinimal risk levels (MRLs) recommended by Agency for Toxic Substances and Disease Registry ATSDR (2013).
eData in bold represents exceeding the RfD recommended by USEPA, indicating a potential health risk.

FIGURE 4
THQ values ofmetals through consumption of rice andmaize
grown at the sampling sites of the study area (a histogram above
the reference line may be subjected to potentially higher health
risk).
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commonly applied to evaluate availability in previous many

studies (Kim et al., 2015; Zahedifar et al., 2017; Kaninga et al.,

2020). It was reported that Cd and Cu were readily extracted by

DTPA compared to Pb and Zn (Singh et al., 1998), suggesting

that Cd and Cu have more bioavailability in the same field

condition, and therefore it should be possible to incur more

leachability and/or mobility in a wet–dry cropping rotation due

to the function of water. The mobile behavior of As in soils was

affected by many factors such as pH and amorphous Al and Fe

contents (Violante et al., 2010; Álvarez-Ayuso et al., 2016),

especially, reduction condition possibly facilitates As releasing

from soil because of reducing As (Ⅴ) to As (Ⅲ) (Pigna et al., 2015;

Guénet et al., 2017). These behaviors would show why that As

levels was different between rainfed soils and paddy soils.

Heavy metal accumulation in crops is a serious concern due

to potential public health implications. The data from present

study indicated that the average concentration of Cd in rice and

maize was 2.3 and 2.6-fold higher than the MPL (Table 2),

respectively. Similarly, Pb contents in rice and maize also

surpassed the MPL by about1.5 times (Table 2). The

concentration of Cd in rice from the Chengdu Plain was in

balance with the findings of previous studies in a mining-

affected area of Hunan province (Du et al., 2013; Chen et al.,

2016; Wang X. et al., 2016) but lower than those in the

Dabaoshan mine area in Guangdong province (Zhuang et al.,

2009). While the Cd level in corn grains was beyond that of the

corn grown at Qingchengzi Pb/Zn mine soil in Liaoning

province (Li et al., 2014). On average buildup of Pb in the

edible part of both rice and maize reached up to about

0.30 mg kg−1, ranging from 0.06 to 0.58 mg kg−1 for rice and

0.02–0.50 mg kg−1 for maize (Table 2), which was less than

those in mining-affected areas (Zhuang et al., 2009). Analysis

showed that no strong positive relationship between metals in

the soils and in the crops. Conversely, a negative relationship

between soil metal contents and crops for Cu, in addition to Cd

were observed. Such inverse relationships were also reported by

Khan et al. (2008) for vegetables. This may suggest that

knowing total metal levels in soils use to assess health risk is

inappropriate.

Soil-to-plant transfer is one of key pathways of human

exposure to metals through food chain (Loutfy et al., 2006).

Our results showed that BAF differ significantly among metals

(p < 0.001) or between crops (Figure 3). Seemingly, Cd, As, and

Cu transfer from soil to rice were easier than to maize (all p <
0.05), but the rest of the metals did not like such trend.

However, the Cd, As, and Cu levels in rainfed soils where

maize was cultivated, on the whole, are higher than those in

paddy soils where rice was cultivated (Figure 2), suggesting that

the accumulation effect depends not only on the crop’s

physiological properties but also on mobility and availability

of metals in soils, it does not appear to be entirely associated

with the total element concentrations in the soils. Some studies

found that leafy vegetables can generally accumulate Pb and Cd

to a higher extent than non-leafy vegetables (Zhuang et al.,

2009; Nabulo et al., 2010; Chang et al., 2014; Gebeyehu and

Bayissa, 2020). Cd is usually considered a highly mobile heavy

metal in regard to moving from soil-to-plant and is of primary

concern in soil and food contamination, particularly in rice

cropping systems (Kim et al., 2015; Zhao et al., 2015). A high

average BAF for Cd in rice correspond to a lower mean content

of total Cd in paddy soils (Figures 2, 3). Gu et al. (2018)

investigated the BAF of rice for Cd, Cu, Pb, and Zn, the

results indicated that Cd and Zn showed stronger bio-

accumulation and mobility capability. These findings

demonstrate that Cd accumulation in rice is mainly

influenced by its availability, rather than total amount in

soils, which support the conclusions of many previous

studies (Du et al., 2013; Jing et al., 2020).

4.2 Health risk assessment

An important aspect in assessing risk to human health

from potentially harmful chemicals in food is the knowledge

of the dietary intake of such substances. Based on average

concentration of metals in the edible part of each food crops

and the respective consumption rate (Zhu et al., 2000), EDIs of

As, Cd, and Cu by consumption of rice and corn grains for the

local adults were 0.44, 0.24, and 21.52 μg kg−1 d−1, and for the

local children were 0.55, 0.31, and 38.02 μg kg−1 d−1,

respectively (Table 3). These EDIs are far below those in

the mining-affected areas (Zhuang et al., 2009; Du et al.,

2013), but exceed the oral reference dose (RfD)

recommended by USEPA (2013) and ATSDR (2013).

Analogously, EDIs of Hg and Pb for the local children

exceed also the RfD limits, but not for adults (Table 3).

The EDIs through consumption of rice were significantly

higher than that of maize due to rice as staple crop of local

inhabitant. Thus, adverse health effects induced by ingesting

contaminated food crops arise largely from rice consumption.

Moreover, the local children intakes of metals by consumption

of contaminated food crops was about 1.25–2.8 times higher

than those of the local adults due to children consumption

1.3 times more food than adults relative to their body weight

(Table 3). A similar phenomenon was also reported by Kim

et al. (2013), they found that the mean intakes of Cd at ages

1–2 were the highest in different age groups of Korea through

the intake of various agricultural products grown in

greenhouse. Ding et al. (2018) investigated trace elements

in soils and selected agricultural plants in the Tongling mining

area of China, their findings revealed that EDI of the trace

elements, except Cd, were generally below the maximum

tolerable daily intake. These estimates were also consistent

with the long-term dietary intake assessment on other

contaminants performed by the FAO/WHO (FAO/WHO,

2005). Therefore, children as a susceptible group have a
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higher health risk through consuming the same contaminated

foodstuff than adults.

The estimation of target hazard quotient (THQ) offers an

indication of the risk level due to pollutant exposure (USEPA,

2017; Shaheen et al., 2016; Miranzadeh Mahabadi et al., 2020).

Estimated THQs of As, Hg, Pb, Zn, and Cu through

consumption of rice and maize were below one for adults,

while this value for Cd approached one. Concerning children,

THQs of As, Hg, Pb, and Zn were also less than one, but for Cd

and Cu were beyond one, suggesting that Cd and Cu exposure

through daily intakes of rice and corn grains locally produced

have posed a severe health risk to the local residents (Figure 4),

in agreement with the conclusion of Jin et al. (2009). Although

the ingested dose of heavy metals from cereals is not equal to

the absorbed pollutant dose in reality due to a fraction of intake

heavy metals being excreted (Balkhair and Ashraf, 2016;

Yaradua et al., 2020), if considering dietary intakes from the

locally produced non-cereal foods consumption such as

vegetables, meat, eggs, and milk, THQ of metals, especially

Cd, is certainly higher and the health risk even more severe.

Consequently, effective mitigation measures are necessary to

cure Cd-contaminated soils and to reduce the metal

transferring from soil to crops in this region.

5 Conclusion

The soils from a heavily industrialized and intensively

cultivated area in the Chengdu Plain have been experiencing a

considerable accumulation of heavy metals comparison with the

background values. These enrichments are not entirely reflected

to crops metals burdens due to difference in bioavailability and/

or mobility among metals and/or in physiological properties

between crops. Health risk identified by the estimated daily

intake (EDI) and target hazard quotients (THQ) suggest that

potential health risk to the local inhabitant is mainly from Cd

exposure, resulting from rice consumption. Mitigation strategies

to curtail Cd-contaminated soils and crops Cd burdens need

careful tailoring to meet the needs of health and safety in this

region in the future.
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