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Background & objectives: Dengue virus (DENV) transmission is known to be influenced by the 
environmental conditions. During 2017, the Viral Research and Diagnostic Laboratories (VRDLs) tested 
78,744 suspected dengue fever (DF) patients, of whom, 21,260 were laboratory confirmed. The objectives of 
the study were to evaluate the hypothesis that spatial heterogeneity existed for DF patients and to identify 
significant determinants of DENV transmission in various districts across the Indian States during 2017.
Methods: Laboratory confirmed DF cases were analysed from 402 districts spread across the Indian 
States. The determinants for DF transmission included in the model were population density, proportion 
of population living in rural areas, proportion of forest cover area to the total geographical area, 
proportion of persons not able to read and write and who were aged greater than seven years; the 
climatic variables considered were minimum, maximum and average temperature, precipitation and 
cumulative rainfall. The spatial heterogeneity was assessed using spatial regression analysis.
Results: DF cases showed strong spatial dependency, with Moran’s I=4.44 (P<0.001). The robust measure 
for spatial lag (6.55; P=0.01) was found to be the best model fit for the data set. Minimum temperature 
and cumulative rainfall were significant predictors.
Interpretation & conclusions: A significant increase in the number of dengue cases has occurred when the 
minimum temperature was 23.0-25.8°C and the cumulative rainfall 118.14-611.64 mm across the Indian 
districts. Further in-depth investigations incorporating more number of demographic, ecological and 
socio-economic factors would be needed for robust conclusions.
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Dengue disease is an important public health 
problem in India. The incidence of dengue has 
increased 30-fold in the last 50 yr with increasing 
geographic expansion to new places and in the current 
decade, from urban to rural settings1. In the early 
20th century, dengue was endemic in a few southern 
(Maharashtra, Karnataka, Tamil Nadu and Puducherry) 
and northern States (Delhi, Rajasthan, Haryana, Punjab 
and Chandigarh). It has spread to many other States in 
India, including the Union Territories2.

The transmission of dengue virus (DENV) is 
influenced by the environmental conditions; short-term 
changes in weather, particularly temperature, 
precipitation and humidity are correlated with dengue 
incidence3. The intensity and pattern of occurrence of 
dengue are dependent on interrelated human, vector, 
environment and virus-related factors4-6. These factors 
have been considered as drivers of the spatial patterns 
of transmission7. Social factors such as educational 
status of the household members and demographics 
have been found to be negatively correlated with 
increased dengue burden8. It has been reported that 
DENV evolution first started with Aedes albopictus in 
the forests of Southeast Asia, and later as Ae. aegyti 
and its transmission was more in forest cover areas9,10. 
Further, weather variables predicted the intensity and 
timing of outbreaks (OB), which included minimum, 
maximum and mean temperature; relative humidity; 
wind velocity and precipitation11. Considering the rising 
incidence of DENV infection in India, this study was 
conducted to find out environmental factors associated 

with the DENV transmission. The main objectives of 
this study were to evaluate the hypothesis that spatial 
heterogeneity existed in distribution of dengue fever 
(DF) cases and to identify significant determinants of 
DF transmission in different districts in India. This study 
was undertaken at 51 Viral Research and Diagnostic 
Laboratories (VRDLs) in 26 States across the country 
established under the Department of Health Research 
and Indian Council of Medical Research (DHR/ICMR), 
Government of India, New Delhi, India. 

Material & Methods

The study was conducted after obtaining the ethical 
clearance from the Institutional Ethics Committee 
of the ICMR-National Institute of Epidemiology, 
Chennai, India. During 2017, 51 VRDLs (41 medical 
college level, 5 State level and 5 regional level) were 
functional. Besides the 26 States where these VRDLs 
were located, these laboratories also provided diagnosis 
to suspected DF patients from five neighbouring States. 
Thus, 402 districts from 31 Indian States were included 
in developing the model.

Data source: During 2017, the Viral Research and 
Diagnostic Laboratory Network (VRDLN) investigated 
78,744 suspected DF patients for NS1 antigen and/or 
IgM antibodies, of whom, 21,260 (27%) were found 
to be positive. It was also observed that the median 
time from the onset of symptom to the presentation 
was five days [Inter quartile range (IQR) of 3-7 days]. 
Information about time (date of onset of illness and 
date of seeking care), place (village, sub district/
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tehsil and district) and person (age and sex) collected 
from each suspected DF patient was extracted and used 
for developing the model.

Geocoding: Four hundred and two districts were 
converted into point features that contained location 
(latitude and longitude) and spatial geometry using 
ArcGIS software (Environmental Systems Research 
Institute, ArcGIS Desktop: Release 10, 2010)12. Since 
the data pertained to only 402 districts, using the point 
shape file and the software GeoDa version 1.8.14 
software13, the Thiessen polygons were formed by 
drawing boundaries according to the distribution of the 
available data points for 2017, with one polygon per 
district (Fig. 1) covering the entire/maximum area of 
VRDLN data availability.

Covariate selection was based on review of 
literature for socio-demographic risk factors associated 
with DF and essentially with the available data. The 
determinants included in the model were population 
density (POPDENS) (i.e., number of inhabitants/
km2); proportion of population who lived in rural areas 
(RURAL), proportion of forest cover area to the total 
geographical area (FCA); proportion of persons who 
were not able to read and write and who were aged 
greater than seven years (ILLIT). The data for the above 
determinants were obtained from ‘India population 
2017 portal’14. The four climatic variables considered 
were minimum temperature (MIN), maximum 
temperature (MAX), average temperature (AVG) 
and precipitation (PRECIP). These were downloaded 
from AccuWeather website15 for the respective time 

Fig. 1. Thiessen polygons for suspected dengue fever reported by the Virus Research and Diagnostic Laboratories in 402 districts across 
Indian States, 2017.
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Table I. District level summary statistics of the variables
Variable under study Definition Mean SD Minimum Maximum
Dengue cases (DENG) Proportion (%) of laboratory confirmed cases  

among the suspected cases
0.2032 0.2380 0.00 1.00

Population density (POPDEN) Number of inhabitants per square kilometer 809.78 1806.75 13.00 19652.00
Rural population (RURAL) Proportion (%) of population live in rural areas 70.79 22.50 0.00 98.44
Forest cover area (FCA) Proportion (%) of forest cover area to the total 

geographical area
25.67 92.65 0.02 1823.20

Illiterate (ILLIT) Proportion (%) of persons not able to read and  
write aged >seven years

26.99 9.85 3.74 59.14

Weather factors
Monthly average minimum 
temperature* (MIN)

Mean of daily minimum temperature for a given 
month (°C)

21.61 3.56 1.75 25.75

Monthly average maximum 
temperature* (MAX)

Mean of daily maximum temperature for a given 
month (°C)

31.65 2.68 17.50 36.50

Monthly average 
temperature* (AVG)

Mean of daily temperature for a given month (°C) 26.63 3.00 9.75 30.00

Monthly cumulative 
rainfall* (CRAIN)

Monthly cumulative rainfall (mm) 49.51 59.75 1.57 611.64

Precipitation* (PRECIP) The amount of precipitation in a month (mm) 131.44 74.80 10.75 391.25
*Average for the month from August 2017 to November 2017. SD, standard deviation. Source: Refs 14-17 

Fig. 2. Number of patients tested for dengue virus per month and percentage of positive tests.

point and districts. The cumulative rainfall (CRAIN) 
was obtained from India Meteorological Department 
website16/local government website dashboards17. 
Since dengue positivity was higher during the months 
of August to November, with 18,265 (79%) patients 
occurring during this period (Fig. 2), average values 
for the four climatic variables for the months of August 

to November 2017 were considered for analysis. The 
summary statistics of the variables are shown in Table I.

Statistical analysis: The software tool GeoDa13 was 
used for exploratory spatial data analysis including 
data manipulation, mapping and spatial regression 
analysis. The spatial neighbours were obtained 
using the Thiessen polygons and rook’s weight of 
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1st order. Using the software, ordinary least square 
(OLS) regression and spatial regression models were 
constructed considering district-wise proportion of 
dengue cases (DENG) as dependent variable and 
POPDEN, RURAL, ILLIT, FCA, MIN, MAX, AVG, 
CRAIN and PRECIP as independent variables.

As a first step, the OLS model and its fit under 
classical Best Linear Unbiased Estimator assumptions 
was examined (the random errors have a mean of zero, 
constant variance and follows normal distribution). 
The step-wise technique was used to select a minimal 
adequate model with the smallest Akaike’s information 
criterion (AIC)18 value, with P=0.10 and 0.05 as 
the entry and removal criteria, respectively. The 
error variance could well be affected by the spatial 
dependence in the data set. The spatial independency 
of residuals was evaluated using spatial autocorrelation 
coefficient, Moran’s I, which was expressed as:

( )( ) ( )2I = n w x - x x - x / w x - xij i j ij ii j i j i
∑∑ ∑∑ ∑

   
     

Where n was the total number of districts in the study; i 
and j represented different districts; xi was the residual 
of i and x  was the mean of residuals; wij was a measure 
of spatial weights of i and j19.

The values of Moran’s I would be approximately 
between +1 (positive autocorrelation) and −1 (negative 

autocorrelation), and the expected value in the absence 
of autocorrelation was (−1)/(n−1). Positive spatial 
autocorrelation meant similar values tended to occur in 
adjacent areas, while negative autocorrelation implied 
nearby locations tended to have dissimilar values. If 
no spatial autocorrelation was found, then the spatial 
arrangement would be completely at random19.

The relationship between proportion of dengue 
cases (DENG) by district and set of determinants 
were explored using the spatial regression approach. 
Two distinct spatial regression models, i.e., spatial 
lag model and spatial error models were examined13. 
The spatial lag model is appropriate when the value 
of an event in one region is directly influenced by the 
values of the same event in its neighbouring regions. 
Spatial error model is appropriate when the concern 
being to adjust for the bias occurring from spatial 
autocorrelation or spatial dependency. A diagnostic test 
for spatial lag and error models, namely, Lagrange’s 
multiplier (LM) test for both the models was applied. 
Further a modified LM test (i.e., Robust LM test) for 
both spatial lag and error model was attempted if both 
the models were significant. Finally, the best model 
fit was with the higher values of R2 values (significant 
P value), higher Log likelihood and the lower AIC 
value. Spatial regression diagnostics were examined 
using Jarque-Bera test (a goodness of fit test to check 
for normality of errors), Breusch-Pagan test (test for 

Table II. Summary of ordinary least square, spatial lag and spatial error model
Variable under study Coefficient OLS model Coefficient Spatial lag model Coefficient Spatial error model

SE P SE P SE P
Constant 0.277 0.188 0.141 0.110 0.183 0.546 0.263 0.204 0.192
Average minimum temperature (MIN) 0.024* 0.007 0.005 0.024* 0.006 0.004 0.024* 0.007 0.004
Average maximum temperature (MAX) −0.020 0.009 0.068 −0.01 0.009 0.284 −0.021* 0.010 0.047
Cumulative rainfall (CRAIN) 0.001 0.001 0.052 0.001* 0.001 0.049 0.001* 0.001 0.04
Jarque-Bera test 2.76 - 0.251 - - - - - -
Breusch-Pagan test 27.47 - 0.053 - - - - - -
Moran’s I 4.44* - <0.001 - - - - - -
Adjusted R2 0.53 - - 0.68 - - 0.68 - -
Lag coefficient (ρ/λ) - - - 0.29 - <0.001 0.30 - <0.001
Log likelihood 20.21 - - 28.50 - - 27.96 - -
Akaike info criterion −32.41 - - −47.00 - - −47.02 - -
Lagrange multiplier - - - 20.86* - <0.001 17.20* - <0.001
Robust lagrange’s multiplier - - - 6.55* - 0.01 2.89 - 0.09
Number of observations 402 - - 402 - - 402 - -
*Significant coefficients. OLS, ordinary least square; SE, standard error
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heteroskedasticity which measures the normality of the 
error terms) and Lagrange Multiplier (a diagnostic test 
for spatial lag and error models)13.

The AIC is the measure of relative goodness 
of fit of a statistical model. In the general case, 
AIC=2k–2ln (L); where k denotes the number 
of parameters in the statistical model, and L, the 
maximized value of the likelihood function for the 
estimated model. Given a set of models for the data, the 
preferred model is the one with the minimum AIC value.

Results

Of the nine determinants, only four determinants 
viz., minimum temperature, maximum temperature, 
precipitation and cumulative rainfall were found 
suitable for the model fit. The OLS model explained 
53 per cent of variation in the dataset (Table II). It was 
also observed that the correlation coefficients between 
the proportion of dengue cases within district (DENG) 
and with the four determinants were significantly high 
(P<0.05). 

Other diagnostics of the model were also 
examined. The Jarque-Bera test score (2.763; P=0.251) 
indicated normality of the error term and the low 
probability of the Breusch-Pagan test (27.47; P=0.053) 
and non-significant points showed the non-existence 
of heteroskedasticity. A significant Moran’s I value 
of 4.44 (P<0.001) indicated a strong positive spatial 
autocorrelation of the residuals (Table II). It was 
also observed that the OLS model overestimated the 
coefficients; hence, the spatial lag and error models 
were considered better for capturing the spatial effect 
in the model.

The LM test for both the models showed 
(Table II) that the test statistics was significant for 
both LM Spatial lag model (20.86; <0.001) and LM 
Spatial error model (17.20; <0.001). Both the models 
explained 68 per cent of the variation in the data set 
with an increased percentage of 15 per cent variation 
than the OLS model. Coefficients of the terms 
capturing spatial effects, viz., Ρ in spatial lag model 
(Ρ=029; P<0.001) and λ in spatial error model (λ=0.30; 
P<0.001) were also significant. The positive value 
of λ and Ρ indicated substantial spatial dependence 
in dengue cases across the neighbouring districts. 
The Robust LM of spatial lag model (6.55; P=0.01) 
was significant, whereas the Robust LM error model 
(2.89; P=0.09) was insignificant, which meant that 
in the presence of error-dependent variable, the 
spatial lag dependency disappeared. As a result, the 

general model fit improved for Robust LM spatial 
lag model, as indicated with the higher values of 
R2 (0.68), significant P=0.01, higher Log likelihood 
value of 28.5 and lower AIC value of −47.0. Hence, 
the spatial lag model was considered to be the best 
model fit rather than OLS and spatial error model. The 
determinants, minimum temperature and cumulative 
rainfall turned out to be significant predictors for the 
spatial lag model.

These analyses indicated that DF cases had a 
strong spatial clustering and were significantly higher 
in districts with higher minimum temperature and 
higher cumulative rainfall across the various districts 
studied.

Discussion

Our analyses indicated that DF cases diagnosed 
through the VRDLs were spatially clustered across 
the districts in India. The significant Moran’s I value 
showed that dengue cases occurred simultaneously in 
the same district or adjacent districts in India during  
2017. This may also be due to the fact that spatial 
clustering of any disease is inevitable since human 
population generally live in spatial clusters rather than 
random distribution in space20.

Exploring the 21,260 serologically positive dengue 
cases in the study area and their location ecological 
factors, it was observed from the data (data not shown) 
that significantly increased number of cases occurred 
with a minimum temperature ranging between 23.0 
and 25.8°C (χ2=11.92; P<0.001) and the cumulative 
rainfall of 118.14-611.64 mm (χ2=10.09; P<0.001) in 
the districts.

Many studies have examined the relationship 
between climatic factors and dengue at different 
geographic locations. High rainfall has been reported 
to be associated with dengue cases in Mexico21, Puerto 
Rico22, Taiwan23, Barbados24, Indonesia25, Thailand26, 
Trinidad27 and Venezuela28. Another study has shown that 
temperatures in the range of 22 to 31°C has provided 
a suitable environment for breeding and abundance of 
Aedes mosquito species and thereby increasing the risk 
of dengue cases29. A study from Lahore showed that 
minimum temperature had a significant positive effect 
whereas maximum temperature and wind showed 
a significant negative effect30. In a study conducted 
in Bhopal, India most dengue cases occurred in the 
period followed by peak rainfall, when mean minimum 
temperature had started falling, while mean maximum 
temperatures were still high31.
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The present study has supported the fact that high 
minimum temperature and increased cumulative rainfall 
have been conducive for the propagation of dengue 
virus transmission and led to a significantly increased 
dengue cases across the various districts in India. The 
maximum temperature in the present study reached to a 
maximum of 36.5°C. It has been shown that presumably 
high temperatures that exceed the optimum may lead to 
a lower transmission probability of dengue virus than 
expected under a constant temperature model32. The 
precipitation in the study area ranged between 11 and 
391 mm in a month. Heavy precipitation events may 
sometimes wash away the breeding sites of dengue7. 
These might be the reasons for non-significance of the 
dengue cases in the study area.

Our analysis had certain limitations. First, the 
analysis was based on the data collected from patients 
seeking care at the medical college hospitals and 
reported by the health authorities covered under 
VRDLN and might not include all the cases of DF 
spread over the entire country. Places where VRDLs 
are located are likely to have higher proportion of 
patients than the neighbouring districts or districts 
within neighbouring States. Second, relative 
humidity was found to be strongly associated 
with mosquito proliferation in several studies33,34. 
However, data about relative humidity were available 
for only 82 districts for 2017. In these 82 districts, 
relative humidity and rainfall were highly correlated 
(correlation coefficient=0.71, P<0.05).  Therefore 
rainfall data were included in the model. The data 
analysis was based on climate change variables for 
the four high positivity dengue months (August 
to December 2017) for the 402 districts; hence it 
might not represent the entire country. The patient’s 
information was geocoded using the address reported 
by the patient during the time of investigation 
and there might be a little shift from their exact 
location of residence. The study facts pertained to 
the ecological conditions for the year 2017. Further 
in-depth investigation by including more number of 
demographic, ecological and socio-economic factors 
in the analysis and for a longer period would be more 
precise for robust conclusions.
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