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Abstract

Humans generally prefer social over nonsocial stimuli from an early age. Reduced prefer-

ence for social rewards has been observed in individuals with autism spectrum conditions

(ASC). This preference has typically been noted in separate tasks that measure orienting

toward and engaging with social stimuli. In this experiment, we used two eye-tracking tasks

to index both of these aspects of social preference in in 77 typical adults. We used two mea-

sures, global effect and preferential looking time. The global effect task measures saccadic

deviation toward a social stimulus (related to ‘orienting’), while the preferential looking task

records gaze duration bias toward social stimuli (relating to ‘engaging’). Social rewards were

found to elicit greater saccadic deviation and greater gaze duration bias, suggesting that

they have both greater salience and higher value compared to nonsocial rewards. Trait

empathy was positively correlated with the measure of relative value of social rewards, but

not with their salience. This study thus elucidates the relationship of empathy with social

reward processing.

Introduction

We are a social species. Humans, from an early stage, generally prefer attending to and inter-

acting with conspecifics compared to objects [1,2]. This preference for social stimuli has been

termed “social preference” and “social motivation” in different theoretical accounts, and is

vital for our engagement with the social world [3]. A lack of preferential processing of social

stimuli can lead to deficits in learning from one’s social environment, and consequent social

behavioural deficits in adulthood. One account of conditions marked by deficits in empathy

(such as Autism Spectrum Conditions (ASC) and Psychopathy) suggests that empathy deficits

seen in these conditions can arise from a core deficit in social reward processing [4].

This suggestion is consistent with previous work showing that individuals with high trait

empathy have a greater reward-related ventral striatal response to social rewards such as happy

faces [5]. Variations in a key gene expressed within the human reward system (Cannabinoid
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Receptor gene, CNR1) were found to be associated with differences in eye-gaze fixation and

neural response to happy faces (but not disgust faces) in three independent samples [6,7,8]. In

a recent study, Gossen et al. found that individuals with high trait empathy showed greater

accumbens activation in response to social rewards compared to individuals with low trait

empathy [9].

These studies leave two questions unanswered. First, are rewarding social stimuli preferred

when contrasted with an alternative rewarding non-social stimulus? Previous work discussed

above has used paradigms where only rewarding social stimuli were presented [6,7,8] or where

social stimuli were presented on their own [8]. Studies that have presented social vs nonsocial

stimuli simultaneously, typically have not used stimuli that were rewarding per se [10,11], but

see Sasson & Touchstone [12]. From early on in development, social reward signals play a cru-

cial role in learning about objects and people in the external environment through their rein-

forcing properties [13]. If an individual has reduced sensitivity to social reward signals this

may lead to atypical social behaviour, as seen in ASC.

Second, does a preference for social rewards manifest through quicker orienting to social

rewards, or a longer engagement with social rewards, or both? Both of these phenomena have

been observed in infants [14], as well as in young children [12]. It is useful to think of the ori-

enting response as one more related to the salience of the stimuli, while the engagement

response as more related to the value of the stimuli. Salience, in this context, refers to motiva-

tional salience, or “extrinsic salience”, i.e. a measure of how important a given stimulus is to

the observer [15,16], rather than a stimulus property. On the other hand, ‘value’ of a stimulus

refers to how pleasant/unpleasant it is. Salience and value for nonsocial rewards (e.g. food) has

been widely studied in primates, and shown to be encoded differently in the brain [17,18].

However, these processes and individual differences thereof, have not been systematically

delineated in the domain of social reward processing in humans.

In this paper, we report two experiments designed to measure two metrics of social reward

processing, and relate individual differences in these metrics to trait empathy. The first of

these experiments is based on a global effect or centre of gravity effect paradigm [19,20]. In

this paradigm, two stimuli are presented peripherally while the participant is asked to make a

saccade to a pre-specified target or to simply choose their own target. The saccade tends to

deviate (“get pulled”) away from the target toward the distractor stimulus [21,22]. Initial sac-

cade latencies in the global effect task are usually short (~180-230ms) and are known to be

influenced more by image saliency [23]. This paradigm thus allows for direct attentional com-

petition between social and nonsocial reward targets. The extent to which the saccade gets

deviated toward social images compared to nonsocial images can then be used as a metric for

relative salience of social rewards.

In the second experiment, we used a preferential looking task, widely utilised in develop-

mental psychology to index preference [24,25]. In a preferential looking task two images are

presented side by side and participants are provided with no instructions. This provides an

unconstrained setting for participants to fixate wherever they like, and allows them to switch

back and forth between the two pictures, for a long duration (usually > = 5s). Gaze duration in

tasks of this type correlates strongly with self-reported choices and preference ratings [26], and

has been suggested to encode relative value [27,28]. In the current study, we utilised this para-

digm to measure preferential gaze duration for social compared to nonsocial reward images,

as a putative index of relative value for social compared to nonsocial stimuli.

In order to address the key questions using the paradigms described above, it was necessary

to develop a set of stimuli with social and nonsocial rewarding content, that were age-appro-

priate for an adult sample. A scrambled version of these images was also created to control for
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the impact of low-level visual features on any comparison between image types (details of

image matching parameters are described below in the methods section).

We hypothesised that social rewards will be associated with greater gaze duration bias and

saccadic deviation compared to nonsocial rewards, and that trait empathy will be positively

correlated with the measures of social preference. We did not have a prior hypothesis on

whether empathy will be related to the measures related to salience or value of social rewards,

in the absence of prior behavioural data.

Materials and methods

Stimuli

40 pairs of positively valenced images were chosen for their social or nonsocial content. Social

content was defined as images where one or more humans were visible in the image (e.g.

happy couples, babies), while nonsocial content included objects and food items targeted to

appeal to a range of individuals (e.g. cupcakes, cars). A subset of these images (15 social, 21

nonsocial) were drawn from the International Affective Picture System [29], while the rest

were drawn from publicly available creative common licensed images databases such as Flickr

(stimuli set available upon request).

Each social reward image was paired with a specific nonsocial reward image such that they

were closely matched on a number of psychological (arousal, valence) and stimulus parameters

(contrast, and stimulus saliency). The extent of matching in each of these parameters for each

pair of images is depicted in Fig 1. The global RMS and Local RMS contrast were computed as

described in [30]. Image saliency (a characteristic of the image calculated based on its low-level

visual features) was calculated using the Koch toolbox [31]. The Koch toolbox uses a steerable

pyramid approach to combine the input image contrast, spatial frequency, orientation, and

color into a single map that represents total saliency at each image point. Please note, however,

that “image saliency” as calculated by the Koch toolbox is a property solely of the image, and is

different from our use of the term “salience”, which refers to a property of the image in relation

to the observer (how important/relevant an image is to the observer). The ratio for every

matching parameter was calculated for each pair of stimuli, and this ratio was tested using a

one-sample t-test against a test value of 1 (i.e. representing no difference in the value of the

matching parameter). The confidence intervals for all of these ratios overlap the value of 1, sug-

gesting that there was no significant difference on any of these parameters between social and

nonsocial reward images. Self-reported valence ratings of the same stimuli in a similar but

independent sample support the claim that they are rated as significantly positive (this data is

available at https://github.com/bhismalab/EyeTracking_PlosOne_2017). On a 9 point likert

scale, where a 5 rating conveys a neutral valence, and 6 or higher conveys a rewarding image,

the average rating for social images given by 100 participants was 6.4, and for nonsocial images

was 6.32. No significant difference in valence ratings were noted between social and nonsocial

images (t(99) = 1.027, p = .307).

In addition, all image pairs were converted into grid-scrambled 10-pixel mosaics to create a

control stimuli set, to control for the effect of low level properties of the stimuli such as con-

trast or colour on any of the measures of interest. All 40 image pairs were used in both tasks

described below.

Global effect (GE) task

The GE task was based on a modified version of the original task that has been used in study-

ing response to emotional stimuli [22]. The stimuli were presented as shown in Fig 2. Each

trial began with the presentation of a central fixation cross, which subtended a visual angle of 1
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degree. After 800–1200 ms this disappeared and immediately reappeared 6 degree of visual

angle to the left or right of centre on the horizontal meridian. Participants were instructed to

look at wherever the fixation cross reappeared. This required making a target-directed saccade

from the center to the periphery of the screen.

Each of the 40 pairs of (social and nonsocial) images was presented in its scrambled and

unscrambled form, thus comprising 80 trials. Stimulus type (scrambled/unscrambled, social/non-

social) and spatial location (left/right, top/bottom) were counterbalanced across participants.

Fig 1. Parameters of matching of social and nonsocial images. The ratio of a number of parameters were calculated for each pair of images (1

social, 1 nonsocial) used as stimuli in both the tasks. These consisted of psychological parameters (arousal and valence ratings) as well as image

parameters (Global Root Mean Square[RMS] contrast, local RMS contrast, and stimulus saliency). Error bars denote 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0185146.g001
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Freeview (preferential looking) task

The stimuli were presented as shown in Fig 3. The 40 pairs of images (social and nonsocial) and 40

control pairs of scrambled images were presented in a pseudorandom sequence side by side (see

Fig 3). Each trial began with the presentation of a central fixation cross (“+” 0.28 degree of visual

angle). Once participants fixated on the cross an automated drift correct procedure was performed

using four head cameras that corrected for any slight movements of the participants. Following

this, the fixation cross was removed and a pair of social and nonsocial images (each image 5.59 deg

x 4.19 deg) were immediately presented for 5 seconds to the left and right. During the trial the par-

ticipant was free to look wherever they chose. This was followed by a 1500ms intertrial interval.

Procedure

After giving informed consent participants were briefed about both tasks. Head movements

were constrained with a chin-rest, which held participants so their eyes were in-line with the

Fig 2. The layout of a trial in the Global Effect task. The angle of deviation towards the top or bottom image

is calculated as the difference between the participant’s first saccade (represented by a black circle) and the

shortest path between the initial location of the fixation cross and the location where it reappears (on the left or

right of the screen). Social and nonsocial reward images appeared in vertical pairs as shown, which were

presented to the right or the left of the initial fixation cross for an equal number of times (40 times each).

Participants were instructed to look only at the fixation cross, and ignore the images. The full set of stimuli is

available on request from the first author.

https://doi.org/10.1371/journal.pone.0185146.g002
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horizontal meridian of the screen, at a viewing distance of 1m. The eye-tracker was calibrated

using a standard 9 point grid, carried out at the beginning of the experiment. Calibration was

only accepted once there was an overall difference of less than 0.5 degree between the initial

calibration and a validation retest: in the event of a failure to validate, calibration was repeated.

The order of the two tasks was counterbalanced across participants.

Eye movements were recorded using a head-mounted, video-based, eye-tracker with a sam-

pling rate of 500 Hz (Eyelink II, SR Research). Viewing of the display was binocular and we

recorded monocularly from observers’ right eyes. Stimuli were presented in greyscale on a 21”

colour monitor with a refresh rate of 75 Hz (DiamondPro, Sony) using Experiment Builder

(SR Research Ltd.).

Participants completed the Empathy Quotient (EQ)[32]questionnaire online.

Participants

77 participants (42 females; mean age = 21 years, 1 month, s.d. = 3 years and 5 months) drawn

from in and around the University of Reading campus completed the FV task. One partici-

pant’s data in the FV task was removed because gaze data was captured on less than 75% of

scrambled trials. 74 of the FV participants completed the GE task. GE data for 7 participants

were discarded due to capturing fixations on fewer than 75% of scrambled or unscrambled tri-

als. All participants had normal or corrected to normal vision. Of the remaining participants,

68 FV (38 female) and 61 GE (33 female) participants completed the online EQ questionnaire.

The study was approved by the University of Reading Research Ethics Committee.

Data analysis

The data was analysed and figures were generated with R using the ggplot2 [33] and grid [34].

The global effect in response to social stimuli was measured as the average deviation towards

social vs nonsocial images. During each trial the angle of the first saccade identified was calcu-

lated relative to how far it was off the line between where the fixation cross initially appears

and where it reappears, and whether it was toward the social or nonsocial image (See Fig 2).

Saccade start and endpoints were identified using the following criteria: 22˚/s velocity and

8000˚/s2 acceleration. If the initial saccade within a trial was identified before 70ms, or after

500ms had elapsed, the trial was excluded. On this basis, 92 of the 5360 trials were removed

(1.716%) across the participants (i.e an average of 1.373 trials per participant). A positive aver-

age deviation indicates a bias towards social stimuli whereas a negative value indicates a bias

towards nonsocial stimuli. Average deviation was calculated separately for scrambled and

unscrambled images.

Fig 3. The layout for a trial in the Freeview task. Participants were free to look at paired social and

nonsocial images that were presented side by side. The average duration participants spent looking at the

social vs. nonsocial images was measured. Images were presented for 5000ms. The full set of stimuli is

available on request.

https://doi.org/10.1371/journal.pone.0185146.g003
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Preferential looking for social stimuli in the FV task was calculated as the proportion of

gaze duration (dwell time) on social images on each trial using the following formula:

dwell time on social images
dwell time on social imagesþ dwell time on nonsocial images

For both the tasks, blinks were automatically discounted by software used (SR Research

DataViewer). Within the FV task, after blinks were processed, the shortest fixation was 32ms,

which is equivalent to 16 consecutive timestamps on a 500Hz eyetracker. No trials were

excluded due to missing data.

All test statistics presented in the following section are 2-tailed.

Results

Global effect task

For unscrambled images, a one sample t-test against a test value of 0 (which corresponds to no

significant deviation toward social/nonsocial image) found that average deviation was signifi-

cantly more toward social than nonsocial images (t (66) = 8.409, p< .001, Cohen’s d = 1.027).

This was not true for scrambled images (t (66) = -.392, p = .697, Cohen’s d = .048; see Fig 4A).

A direct comparison of the extent of deviation toward social images in the unscrambled and

the scrambled conditions revealed a significant difference in average deviation (t(66) = 7.371,

p< .001; Cohen’s d = 1.253; see Fig 4A).

There was no correlation between EQ and the average deviation toward social reward

images for unscrambled (r (59) = .059, p = .652) or scrambled images (r (59) = -.114, p = .382).

Freeview task

One sample t-tests against a test-value of .5 (corresponding to equal proportion of dwell time

to social and nonsocial images) found that the proportion of gaze duration to social images

was significantly higher for both unscrambled images (mean = .57; t (75) = 6.664, p< .001,

Cohen’s d = .764) and scrambled images (mean = .523; t (75) = 4.362, p< .001, Cohen’s d = .5;

see Fig 4B). A paired samples t-test found that proportion of gaze duration to social images

was greater for unscrambled images than scrambled images (t (75) = 4.285, p< .001, Cohen’s

d = .652; see Fig 4B).

There was a positive correlation between EQ and proportion of gaze duration to social

images in unscrambled images (r (66) = .278, p = .022), but no significant correlation between

EQ and proportion of gaze duration to social images in scrambled images (r (66) = -.198, p =

.106; see Fig 5). To directly test the difference between these two dependent correlations Stei-

ger’s Z was calculated [36]. This showed a significant difference between the correlations (Stei-

ger’s Z = 2.95, p = .003).

Discussion

In this study we developed a new set of ecologically valid stimuli depicting of social and nonso-

cial rewards. Using two separate tasks with this stimulus set in the general population, we

found that social reward images evoked greater saccadic deviation and preferential looking

than nonsocial reward images, after having controlled for differences in low-level visual prop-

erties. This result supports similar work on dynamic scenes which showed that low-level stim-

ulus features are not able to explain the gaze response to social stimuli [37]. Importantly, the

preferential gaze bias toward social reward images was proportional to individual differences

in trait empathy. This relationship with empathy was seen only with the measure of
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engagement (i.e. the preferential gaze experiment), and not for the measure of orientation (i.e.

the experiment measuring saccadic deviation).

Humans orient quickly to social stimuli from an early age, across sensory modalities

[38,39,40]. Typically developing children orient more to social stimuli, when these are presented

within an array of nonsocial stimuli [41]. Orienting responses are driven primarily by the

salience of the target, and hence these results suggest that social stimuli are generally regarded

as more salient than nonsocial stimuli. However, none of these paradigms have measured the

global effect which relies on quick saccades that are influenced more by image saliency [23].

These results are therefore consistent with the literature on infants and young children, and

points to a higher salience of social compared to nonsocial reward images in adults.

Relative gaze duration in paradigms where two stimuli are presented simultaneously may

index the relative value of the two targets and two computational models have been proposed

(gaze cascade and drift diffusion models) to relate gaze duration bias and the relative value of

targets [27,28]. Preferential looking paradigms have been used widely in developmental psy-

chology, where it has been shown that infants look longer at social compared to nonsocial sti-

muli [40,42,43]. This suggests that in typically developing infants social stimuli in general have

a higher value than nonsocial stimuli. However, these stimuli are usually not matched for

visual properties. Our results are consistent with these results, and show that social rewards

may have a higher value than nonsocial rewards. Importantly, this difference was not driven

by a difference in stimulus arousal/valence, or by differences in low-level properties of the

images that we tested.

Fig 4. Bias to social stimuli in the Global Effect and Freeview task. (a) The average angle of deviation towards social images during the Global Effect

task. There was a significant sociality bias for average deviation on unscrambled images (mean = 1.433˚, standard deviation = 1.395˚, standard error = .17˚,

p < .001), but not scrambled images (mean = -.044˚, standard deviation = .913˚, standard error = .111˚; p = .697). The error bars reflect within- subject

errors, calculated using the Cousineau[35] method. (b) Bar graph of the proportion of duration looking to social images during the Freeview task. Proportion

of gaze duration was significantly longer to social images for unscrambled (mean = .57, standard deviation = .092, standard error = .011, p < .001) and

scrambled images (mean = .523, standard deviation = .046, standard error = .005, p < .001). Values above the dotted line at .5 indicate a bias to social

images.

https://doi.org/10.1371/journal.pone.0185146.g004
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Empathy was found to be directly proportional to the gaze duration for social compared to

nonsocial reward images. This suggests that highly empathic individuals may attribute a

greater value to social rewards compared to nonsocial rewards. This is consistent with experi-

ments which found greater striatal activation to happy faces in individuals with high trait

empathy [5]. Janowski et al. [44] showed that empathic choice is influenced by processing of

value in the medial prefrontal cortex in a choice task. Jones & Klin [42] showed that infants

who go on to develop autism show a progressively reduced gaze fixation toward faces when

presented simultaneously with objects in a naturalistic video. Individuals with ASC score low

in questionnaire measures of empathy [32]. These converging lines of evidence suggest that

individuals low in empathy might show reduced gaze duration for social vs nonsocial stimuli,

a suggestion supported by our results. However, it leaves open a question about the direction

of this relationship. Is a reduced responsivity to social rewards early in life responsible for

Fig 5. Correlations between trait empathy and proportion of gaze duration to social images. Greater empathy was significantly associated

with more time spent looking at social images than nonsocial images when they are unscrambled (black line and circles; r(66) = .277, p = .022) but

not scrambled (grey line and triangles; r(66) = -.198, p = .106).

https://doi.org/10.1371/journal.pone.0185146.g005
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lower levels of trait empathy as an adult, or does trait empathy determine the level of relative

responsivity to social rewards? From a developmental perspective, responsivity to social

rewards should occur prior to all the components of empathy being developed (especially the

more cognitive components such as theory of mind). Accordingly, we speculate that the for-

mer alternative has a higher probability; though this question can only be answered in future

longitudinal studies. Further work should explore if these effects are magnified or reduced, if

nonsocial reward images are chosen to be of high interest to individual participants, similar to

the approach taken by Sasson and colleagues [12,45](. Another potential avenue for explora-

tion would be to test if such indices of social preference hold true if stimuli of neutral or nega-

tive valence are used.

Three caveats need to be considered in relation to the results discussed above. First, it is

important to match stimuli as closely as possible on both psychological (such as arousal and

valence) as well stimulus parameters (such as RMS & local RMS) in paradigms such as ones

reported in this paper. However, the issue of ‘perfect’ matching of all stimulus parameters

remains thorny, since it would not be difficult to contrive an image based metric that would be

associated with a statistical difference between the image sets (e.g., an algorithm that looked

for colours that correspond to flesh tones, or a measure that used a simple face detector). Sec-

ond, while the proportional gaze duration for social over non-social reward images in the

unscrambled condition was significantly greater than that observed in the scrambled condi-

tion, it was noted that the proportion of gaze duration for social reward images was signifi-

cantly >50% for both scrambled and unscrambled conditions. This unexpected observation

could be due to the size (10px x 10px) of the blocks used to scramble the pictures. While the

overall image is rendered completely unrecognisable due to the scrambling process, it might

nonetheless be possible to detect few recognisable features (e.g. flesh tone colours) from even

the scrambled images. In comparison to the scrambled version of the non-social images, the

social images might therefore have attracted more preferential gaze duration. Third, even

though the inferences in this study are drawn on the processing of social vs nonsocial rewards,

due to the rewarding nature of the images used, it is not possible to rule out an alternative

interpretation based on the social content of the images alone. Future experiments with simi-

larly matched pairs of rewarding and non-rewarding social and nonsocial stimuli will be

needed to test between these alternative potential explanations.

Conclusion

In this set of two experiments we used a new set of images of social and nonsocial rewards and

showed that social rewards are associated with greater saccadic deviation and higher gaze

duration compared to nonsocial rewards. This social advantage persists even after minimising

differences in arousal/valence of these images and low level visual properties. We found that

trait empathy was correlated positively to the gaze duration bias for social rewards, but not

with the saccadic deviation toward social rewards. This results points to a potential distinction

between two important aspects of social reward processing (i.e. salience and value), and clari-

fies their relationship with phenotypic dimensions relevant to ASC. Future research should

directly test these different parameters of social reward processing in individuals with atypical

empathy profiles, such as those with ASC and Psychopathy.
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23. Schütz AC, Trommershäuser J, Gegenfurtner KR. Dynamic integration of information about salience

and value for saccadic eye movements. Proc Natl Acad Sci U S A. 2012 May 8; 109(19):7547–52.

https://doi.org/10.1073/pnas.1115638109 PMID: 22529390

24. Batki A, Baron-Cohen S, Wheelwright S, Connellan J, Ahluwalia J. Is there an innate gaze module? Evi-

dence from human neonates. Infant Behav Dev. 2000 Feb; 23(2):223–9.

25. Fantz RL. Pattern vision in young infants. Psychol Rec [Internet]. 1958 [cited 2015 Jul 11]; Available

from: http://psycnet.apa.org/psycinfo/1959-07498-001

26. Taylor C, Schloss K, Palmer SE, Franklin A. Color preferences in infants and adults are different. Psy-

chon Bull Rev. 2013 Oct; 20(5):916–22. https://doi.org/10.3758/s13423-013-0411-6 PMID: 23435629

27. Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in simple

choice. Nat Neurosci. 2010 Oct; 13(10):1292–8. https://doi.org/10.1038/nn.2635 PMID: 20835253

28. Shimojo S, Simion C, Shimojo E, Scheier C. Gaze bias both reflects and influences preference. Nat

Neurosci. 2003 Dec; 6(12):1317–22. https://doi.org/10.1038/nn1150 PMID: 14608360

29. Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Technical manual

and affective ratings. 1999; Available from: http://www.hsp.epm.br/dpsicobio/Nova_versao_pagina_

psicobio/adap/instructions.pdf

30. Bex PJ, Makous W. Spatial frequency, phase, and the contrast of natural images. J Opt Soc Am. 2002;

19(6):1096a.

31. Walther D, Koch C. Modeling attention to salient proto-objects. Neural networks. 2006 Nov 30; 19

(9):1395–407. https://doi.org/10.1016/j.neunet.2006.10.001 PMID: 17098563

32. Baron-Cohen S, Wheelwright S. The Empathy Quotient: An Investigation of Adults with Asperger Syn-

drome or High Functioning Autism, and Normal Sex Differences. J Autism Dev Disord. 2004 Apr; 34

(2):163–75. PMID: 15162935

33. Wickham H. ggplot2: elegant graphics for data analysis. Springer New York. 2009;

Individual differences in responsivity to social rewards: Insights from two eye-tracking tasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0185146 October 18, 2017 12 / 13

https://doi.org/10.1016/j.neuropsychologia.2008.07.016
https://doi.org/10.1016/j.neuropsychologia.2008.07.016
http://www.ncbi.nlm.nih.gov/pubmed/18706434
https://doi.org/10.1001/archgenpsychiatry.2010.113
https://doi.org/10.1001/archgenpsychiatry.2010.113
http://www.ncbi.nlm.nih.gov/pubmed/20819977
https://doi.org/10.1007/s10803-013-1910-z
https://doi.org/10.1007/s10803-013-1910-z
http://www.ncbi.nlm.nih.gov/pubmed/23918441
https://doi.org/10.1037/a0024023
http://www.ncbi.nlm.nih.gov/pubmed/21668098
https://doi.org/10.1016/j.bbr.2012.07.030
http://www.ncbi.nlm.nih.gov/pubmed/22846849
https://doi.org/10.1002/hbm.20274
http://www.ncbi.nlm.nih.gov/pubmed/16779798
https://doi.org/10.3389/fnhum.2013.00894
http://www.ncbi.nlm.nih.gov/pubmed/24416006
https://doi.org/10.1126/science.1226405
http://www.ncbi.nlm.nih.gov/pubmed/23042897
https://doi.org/10.1523/JNEUROSCI.5695-12.2013
https://doi.org/10.1523/JNEUROSCI.5695-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658166
http://www.ncbi.nlm.nih.gov/pubmed/7135840
http://www.ncbi.nlm.nih.gov/pubmed/2617863
http://www.ncbi.nlm.nih.gov/pubmed/12480069
https://doi.org/10.1037/a0032185
http://www.ncbi.nlm.nih.gov/pubmed/23527504
https://doi.org/10.1073/pnas.1115638109
http://www.ncbi.nlm.nih.gov/pubmed/22529390
http://psycnet.apa.org/psycinfo/1959-07498-001
https://doi.org/10.3758/s13423-013-0411-6
http://www.ncbi.nlm.nih.gov/pubmed/23435629
https://doi.org/10.1038/nn.2635
http://www.ncbi.nlm.nih.gov/pubmed/20835253
https://doi.org/10.1038/nn1150
http://www.ncbi.nlm.nih.gov/pubmed/14608360
http://www.hsp.epm.br/dpsicobio/Nova_versao_pagina_psicobio/adap/instructions.pdf
http://www.hsp.epm.br/dpsicobio/Nova_versao_pagina_psicobio/adap/instructions.pdf
https://doi.org/10.1016/j.neunet.2006.10.001
http://www.ncbi.nlm.nih.gov/pubmed/17098563
http://www.ncbi.nlm.nih.gov/pubmed/15162935
https://doi.org/10.1371/journal.pone.0185146


34. Team RC. R: A language and environment for statistical computing. 2012;

35. Cousineau D. Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s

method. Tutorials in quantitative methods for psychology. 2005; 1(1):42–5.

36. Steiger JH. Test for Comparing Elements of a Correlation Matrix. Psychol Bull. 1980; 87(2):245–51.

37. Coutrot A, Guyader N. How saliency, faces, and sound influence gaze in dynamic social scenes. J Vis.

2014 Jul 3; 14(8):5. https://doi.org/10.1167/14.8.5 PMID: 24993019

38. Dawson G, Meltzoff AN, Osterling J, Rinaldi J, Brown E. Children with autism fail to orient to naturally

occurring social stimuli. J Autism Dev Disord. 1998; 28(6):479–85. PMID: 9932234

39. Mosconi MW, Steven Reznick J, Mesibov G, Piven J. The Social Orienting Continuum and Response

Scale (SOC-RS): a dimensional measure for preschool-aged children. J Autism Dev Disord. 2009 Feb;

39(2):242–50. https://doi.org/10.1007/s10803-008-0620-4 PMID: 18648919

40. Johnson MH, Dziurawiec S, Ellis H, Morton J. Newborns’ preferential tracking of face-like stimuli and its

subsequent decline. Cognition. 1991 Aug; 40(1–2):1–19. PMID: 1786670

41. Sasson NJ, Turner-Brown LM, Holtzclaw TN, Lam KSL, Bodfish JW. Children with autism demonstrate

circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism

Res. 2008 Feb; 1(1):31–42. https://doi.org/10.1002/aur.4 PMID: 19360648

42. Jones W, Klin A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with

autism. Nature. 2013 Dec 19; 504(7480):427–31. https://doi.org/10.1038/nature12715 PMID:

24196715

43. Simion F, Regolin L, Bulf H. A predisposition for biological motion in the newborn baby. Proc Natl Acad

Sci U S A. 2008 Jan 15; 105(2):809–13. https://doi.org/10.1073/pnas.0707021105 PMID: 18174333

44. Janowski V, Camerer C, Rangel A. Empathic choice involves vmPFC value signals that are modulated

by social processing implemented in IPL. Soc Cogn Affect Neurosci. 2013 Feb; 8(2):201–8. https://doi.

org/10.1093/scan/nsr086 PMID: 22349798

45. Sasson NJ, Elison JT, Turner-Brown LM, Dichter GS, Bodfish JW. Brief report: Circumscribed attention

in young children with autism. Journal of autism and developmental disorders. 2011 Feb 1; 41(2):242–

7. https://doi.org/10.1007/s10803-010-1038-3 PMID: 20499147

Individual differences in responsivity to social rewards: Insights from two eye-tracking tasks

PLOS ONE | https://doi.org/10.1371/journal.pone.0185146 October 18, 2017 13 / 13

https://doi.org/10.1167/14.8.5
http://www.ncbi.nlm.nih.gov/pubmed/24993019
http://www.ncbi.nlm.nih.gov/pubmed/9932234
https://doi.org/10.1007/s10803-008-0620-4
http://www.ncbi.nlm.nih.gov/pubmed/18648919
http://www.ncbi.nlm.nih.gov/pubmed/1786670
https://doi.org/10.1002/aur.4
http://www.ncbi.nlm.nih.gov/pubmed/19360648
https://doi.org/10.1038/nature12715
http://www.ncbi.nlm.nih.gov/pubmed/24196715
https://doi.org/10.1073/pnas.0707021105
http://www.ncbi.nlm.nih.gov/pubmed/18174333
https://doi.org/10.1093/scan/nsr086
https://doi.org/10.1093/scan/nsr086
http://www.ncbi.nlm.nih.gov/pubmed/22349798
https://doi.org/10.1007/s10803-010-1038-3
http://www.ncbi.nlm.nih.gov/pubmed/20499147
https://doi.org/10.1371/journal.pone.0185146

