
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18165  | https://doi.org/10.1038/s41598-024-67497-6

www.nature.com/scientificreports

A data‑driven approach to detect 
upper limb functional use 
during daily life in breast cancer 
survivors using wrist‑worn sensors
Jill Emmerzaal 1, Benjamin Filtjens 2,3, Nieke Vets 1, Bart Vanrumste 2, Ann Smeets 4, 
An De Groef 1,5,7* & Liesbet De Baets 6,7

To gain insights into the impact of upper limb (UL) dysfunctions after breast cancer treatment, this 
study aimed to develop a temporal convolutional neural network (TCN) to detect functional daily UL 
use in breast cancer survivors using data from a wrist‑worn accelerometer. A pre‑existing dataset of 
10 breast cancer survivors was used that contained raw 3‑axis acceleration data and simultaneously 
recorded video data, captured during four daily life activities. The input of our TCN consists of a 3‑axis 
acceleration sequence with a receptive field of 243 samples. The 4 ResNet TCN blocks perform dilated 
temporal convolutions with a kernel of size 3 and a dilation rate that increases by a factor of 3 after 
each iteration. Outcomes of interest were functional UL use (minutes) and percentage UL use. We 
found strong agreement between the video and predicted data for functional UL use (ICC = 0.975) and 
moderately strong agreement for %UL use (ICC = 0.794). The TCN model overestimated the functional 
UL use by 0.71 min and 3.06%. Model performance showed good accuracy, f1, and AUPRC scores 
(0.875, 0.909, 0.954, respectively). In conclusion, using wrist‑worn accelerometer data, the TCN model 
effectively identified functional UL use in daily life among breast cancer survivors.

The upper limbs (ULs) are essential to our everyday life. To clean our houses, to complete work tasks, to drink, 
to eat, to scratch, to help or touch other people, etc. Usually, we are unaware of how much we use our ULs until 
we are unable to properly use them. Life events such as surgery or treatment for breast cancer are moments that 
might suddenly affect UL function.

After breast cancer treatment, an estimated 30–50% of women suffer from persistent UL  dysfunction1. This 
persistent dysfunction goes beyond the natural healing time of tissue after surgery or radiotherapy, and it is 
considered one of the most troublesome long-term complications after breast cancer  treatment1–3. Women suf-
fering from UL dysfunction are less able to perform their daily tasks, have an increased risk for chronic pain, 
and suffer from participation difficulties, which lead to a decrease in their quality of  life1,3.

This impact on everyday life is currently only assessed using questionnaires. While questionnaires are easily 
administered and provide valuable information on a person’s perception of UL function, they have important 
drawbacks such as recall bias and self-presentation bias (i.e. disclose only what the person wants to or is con-
sciously aware of). Next to questionnaires, clinic-based assessments of body function, e.g. UL range of motion 
and activity or functional task performance, can measure the capability of a patient but might be poor indicators 
of actual UL use in daily  life4–6. Thus, assessment of behaviour in a natural setting is vital, to assess the real-world 
impact of surgery on UL use and to evaluate UL  recovery7.

To assess UL function, a few definitions need to be addressed. UL function is previously defined by the func-
tional arm activity behavioural observation system (FAABOS) and distinguishes functional and non-functional 
 use8. Functional UL use enables interactions with the environment with purpose and can be task-oriented (e.g. 
opening a jar) or not-task oriented (e.g. touching face)8. Non-functional UL use is an action that has no or 
minimal function (e.g. arm swing during walking)8. The total amount of functional arm movements is defined 
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by David et al. as UL use’ in people with  hemiparesis7. However, assessing UL use in daily life, which involves 
distinguishing functional and non-functional UL use from each other, is extremely  challenging7,9–12. These chal-
lenges in daily life encompass the lack of control over the environment and limitations in sensing  modalities7,12. 
For example, when using accelerometers, a bus ride will induce many instances of acceleration not associated with 
functional  movement12. Distinguishing the accidental acceleration induced by external forces from acceleration 
signals induced by a decisive action is not a trivial undertaking.

Fortunately, advances in advanced data analysis methods such as machine learning are on the rise within 
a clinical setting and provide new opportunities regarding the assessment of real-life UL functional use. We 
applied a pre-trained machine learning model developed by Lum et al.12, to detect functional UL use in daily life 
in breast cancer  survivors13. Lum’s  model12 is a decision tree model trained on healthy controls and neurological 
patients in a controlled setting. Predictions on functional/non-functional UL use are made per 4-s epoch and 
the label is given on the most common prediction in that  epoch12. Whilst this method was shown to be accurate 
in a controlled setting for healthy individuals, the accuracy and especially the f1-score decreases drastically in 
breast cancer survivors in a real-world  setting13. The f1-score describes the harmonic mean of the precision and 
recall—confidence in the true positives while balancing the false  positives14. We concluded that a pre-trained 
lab-based model might not be sensitive enough to be used in daily  life13. This indicates we might need a more 
powerful tool to correctly estimate functional UL use in daily life. Such a potentially powerful tool for time-series 
data could be a deep learning model.

The use of deep learning in industry and research has been on the rise since  201215. Machine learning and 
deep learning are related fields within artificial intelligence that use data to train an algorithm to make predic-
tions or decisions. Deep learning represents more advanced model architectures that can automatically learn 
patterns and representations directly from the data, in comparison with machine learning which uses more 
superficial models that rely on predefined features manually extracted from the  data16. A fundamental aspect of 
both machine learning and deep learning is the interaction between optimisation and generalisation—i.e. how 
well can we train a model on the training data (optimisation), and how well the model responds to new, unseen 
data (generalisation). Machine learning and deep learning models achieve generalisation by learning models that 
can interpolate between the different training examples—the model can make sense of things that are close to 
what it has seen  before15. However, deep learning models have more parameters and hence require more  data15,16.

Studies by Kaggle competitions—a machine learning platform that organises competitions—showed that 
in the last decade, the winning teams predominantly used deep learning models over machine  learning15. This 
rise in using deep learning coincides with the technological advances that have been made in recent years. The 
long short-term memory (LSTM) algorithm, which is used for time-series analysis, was developed in  199717 
and had to be run on a room-sized computer. Advances in datasets and technology currently make it possible 
to run small deep-learning models on laptops, which made this technique more accessible to a wider range of 
researchers and clinicians. This resulted in a boost of deep learning models applied in health care and health 
care applications. Using the simple search terms “Deep learning” and “Health Care” in PubMed shows a clear 
increase in publication count in the last decade (Fig. 1).

One specific deep neural network architecture that may be relevant for detecting functional UL use in daily 
life is a temporal convolutional neural network (TCN)  model18. TCN model’s leverage hierarchical architec-
tures to automatically learn features at different temporal resolutions. They accomplish this by utilising dilated 
 convolutions19, which increase the receptive field, or field of view (i.e. the region in the input that affects a certain 
output value). This hierarchical feature learning capability enables TCN models to capture both short-term and 
long-term temporal dependencies, allowing them to extract meaningful representations from sequential data. 
TCN models have shown to outperform recurrent neural network architectures, such as  LSTMs17 and gated 
recurrent units (GRUs)20, on various sequence modelling  benchmarks21. Given the TCN model’s previous suc-
cesses, we believe that this model’s architecture might be suited to distinguish functional and non-functional 
UL use.

Given all this, this research introduces novelty through (1) Addressing the critical need for objective assess-
ment of UL dysfunctions in breast cancer survivors, essential for tailored rehabilitation plans; (2) Proposing 

Figure 1.  Overview of the number of publications per year using the terms “Deep learning” and “Health care” 
in PubMed. Data downloaded on June 24, 2023.
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accelerometry for minimally disruptive evaluation of UL functional use in daily life settings. However, available 
existing research suggest that laboratory-developed analysis methods are inadequate for real-life scenarios in 
breast cancer survivors. Thus, novel methods are needed to accurately detect UL functional use outside laboratory 
settings. (3) Using a TCN model that incorporates sequential data capable of using both long- and short-term 
dependencies might be more relevant than looking at individual data points, and (4) Employing deep learning 
enables the model to learn directly from the data, a crucial capability in this field where determining relevant 
features to detect UL functional use is challenging.

To summarise, the goal of this study was to develop a TCN model to predict functional UL use in daily life 
in breast cancer survivors using wrist-worn accelerometer data. If this can be done successfully, it enables clini-
cians and researchers to gain more insight into the impact of UL dysfunction in daily life in women who received 
breast cancer treatment, and into their recovery trajectory.

Method
Dataset
This is a secondary analysis from an existing  dataset13. The study was approved by the local ethical committee of 
the University Hospital Leuven (s66248) and is part of a larger project at the University Hospital Leuven aim-
ing to identify persistent upper limb dysfunction in breast cancer survivors (UPLIFT-BC, clinicaltrails.com: 
NCT05297591)22. The inclusion and exclusion criteria are in Table 1.

All experiments were conducted following the Declaration of Helsinki, and all participants provided written 
informed consent before the start of the study.

Test protocol
The participants were instructed to perform four specific activities of daily living (ADL) in their own home 
environment. The ADL tasks included a laundry activity, a kitchen activity, a shopping activity, and a bedmaking 
activity. Details about the activities are in Table 2. To mimic daily life as closely as possible, the only instructions 
that were given are the ones described in Table 2 combined with “perform the activity as you would normally 
do.” No further instructions were given. In between activities, the participants were instructed to walk to a chair 
and sit down to increase the amount of non-functional UL use. During that time the participant was encour-
aged to interact with the researcher to provoke habitual arm movements such as hand gestures during talking.

All participants were equipped with an accelerometer on each wrist (ActiGraph wGT3X-BT, sample fre-
quency: 30 Hz, ActiGraph Corporation, Pensacola, FL) and were simultaneously filmed (Sony FDR-AX33, 25 
fps). The ADL tasks (inclusive walking bouts between activities and the sitting moments) were performed and 
filmed as one consecutive measurement. The accelerometers and video were synchronized using 3–5 fast repeti-
tive arm movements at the beginning of the measurement and at the end. To ensure that data remained synchro-
nised throughout the measurement, spot checks were performed when the participants did not move their arms.

Functional UL use was annotated per arm by a single researcher (JE) with Adobe Premier Pro (version 2023) 
and was considered the ground truth. As described in the introduction, arm use was defined by the  FAABOS8 that 
distinguishes functional (i.e. task-specific movement with interaction with the environment) from non-functional 
(e.g. arm swing during walking) UL use. When a functional activity with the upper limbs was noticed, the start 
and end time were noted using timeline markers indicating whether left, right, or both showed functional UL 
use. When the upper limbs or hands were not visible, a timeline marker was placed with the label “unknown”. The 
frames with unknown labels were removed from both the video and accelerometer data during model evaluation. 

Table 1.  Inclusion criteria.

Inclusion Exclusion

Unilateral breast surgery > 1 month ago Distant metastases

Proficient in the Dutch language

History of breast surgery

Planned bilateral surgery

Neurological or rheumatological disease

Table 2.  Descriptions of performed activities of daily living.

Activities Description

Laundry activity
(1) Move clothes from a closet or basket into a washer, and close the washer, (2) remove the clothes from the washer, 
put them in the dryer and close the door, and (3) remove the clothes from the dryer and fold them or hang them 
back in the closet

Kitchen activity (1) Load and unload four or five items from the dishwasher, (2) cut an apple or equivalent, (3) pick up one item 
from the floor and (4) use a broom, dust mop, or vacuum to sweep the floor

Shopping activity
(1) Gather four or five items out of the supply closet in their grocery store bag or box, (2) place them into the car, 
step into the car, then step out, and remove the groceries from the car, and (3) put the groceries back in the supply 
closet

Bed making activity (1) Remove the sheets and pillowcases from their bed and (2) replace them
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After completing the video annotation, the timeline markers were exported to a CSV file for further analysis in 
MATLAB (MATLAB 2021b, The MathWorks, Inc. Natick, Massachusetts, USA).

The raw acceleration data was extracted from the accelerometers and the start point was synchronised with 
the video data by identifying the start of the calibration movement at the beginning of the measurement in both 
the acceleration and video data. The 3-axis acceleration data were centralised by subtracting the mean value of 
each signal to remove the constant bias. A single deep-learning model was used for the left and right acceleration 
data by flipping the transverse axis of the left accelerometer.

Deep neural network architecture
Data-driven deep learning approaches, such as recurrent neural networks (RNNs)23 and convolutional neural 
networks (CNNs)24, have shown great success in many problems that contain temporal  information25. Unlike 
RNNs, convolutional models ensure a fixed length for the gradient path between the output and input, regard-
less of the sequence length. This characteristic helps prevent issues such as vanishing and exploding gradi-
ents, which commonly affect  RNNs21. CNNs can capture long-term dependencies efficiently by utilizing dilated 
 convolutions19, which has enabled state-of-the-art results in various human activity recognition tasks based on 
wearable sensor  data26–29.

Our model is a temporal convolutional neural network (TCN)18 that takes a sequence of acceleration data as 
input and transforms it through temporal convolutions. The input sequence can be represented as a 2D matrix 
X ∈ RT×Cin , where T  represents the number of samples and Cin represents the 3-axis acceleration features. 
The output can also be represented as a 2D matrix Y ∈ RT×L , where L  represents the two output classes (i.e. 
functional- and non-functional UL use). The TCN model is tasked to learn the mapping f : X → Ŷ  so that the 
predicted output Ŷ  closely matches the ground truth labels Y  , which was the expert visual assessment of the 
video data.

The first layer of our TCN model is a non-dilated temporal convolutional layer with a kernel size of k that 
maps the input to a C-dimensional feature map, with C the number of convolutional filters. This feature map then 
goes through a series of B ResNet-style TCN blocks, which are supplemented with skip-connections30. Each TCN 
block applies a dilated valid temporal convolution with a kernel size of k and a dilation factor of d = kB , followed 
by a 1x1 convolution. Each convolution operation is followed by batch  normalisation31, rectified linear units 
(ReLU)32, and  dropout33. Finally, the last layer implements a 1x1 convolution and a SoftMax activation function to 
output a prediction for all samples in the input sequence, exploiting both past and future temporal information.

Implementation details
Our TCN implementation uses dilated and valid temporal convolutions. Dilated convolutions entail that each 
convolution operation considers a local receptive field determined by the kernel size and dilation rate. Valid 
convolutions entail that the input is not padded before performing the convolution operation. As a result, the 
temporal dimension of the output feature maps gradually decreases after each convolutional layer. Therefore, we 
slice the residuals to match the shape of subsequent feature maps.

During inference, the model efficiently processes entire accelerometer sequences. To avoid losing samples to 
valid convolutions, replication padding is applied at the input boundaries of a sequence. Our TCN implemen-
tation was based on the work of Pavllo et al.34. For visualization of the network structure during training and 
inference we refer to Appendix 6 of their  work34.

Our TCN model was trained for 10 epochs with the Adam  optimizer35. We used the cross-entropy loss func-
tion and set the learning rate to 0.0005. The “unknown” data samples were included during training to not disrupt 
the temporal consistency of the input data. Though, they were excluded from the calculation of the cross-entropy 
loss. Our architecture contained four ResNet-style TCN blocks. The convolutional layers had 128 filters, each 
with a kernel of size 3, resulting in a receptive field of 243 samples or 8.1 s. The dropout was set to 0.5. Our model 
was implemented using PyTorch version 1.10.136. It was trained and evaluated using a leave-one-subject-out 
cross-validation approach to assess its ability to generalize to subjects that had not been seen before. A visual 
overview of our TCN architecture is given in Fig. 2.

Outcome and metrics
The main outcome of this paper is the functional upper limb use expressed in minutes and as a percentage per 
participant per wrist. As described in the introduction, functional UL use is defined as the total duration of 
functional arm movements expressed in minutes. Since measuring time is not the same for every participant in 
the data set, we also calculated the percentage of functional UL use. This is the percentage of functional UL use 
to the total measuring time of a certain participant per wrist. To assess the agreement between the annotated 
data and the predicted data by the model of the main outcome measures, we calculated the intraclass correlation 
coefficient with a two-way random effect (ICC(2,1)). The strength of the agreement was defined as: < 0.5: poor, 
0.5–0.75: moderate, 0.75–0.9: good, and ≥ 0.9:  excellent37.

To visualise and analyse the error between the two methods (annotated vs. predicted) we create Bland–Alt-
man  plots38. These plots show the average error in minutes for functional UL use and the average error in the 
percentage of functional UL use. The line of equality shows where the error between annotations and prediction 
would be zero (Annotation – Model = 0)39. If the line of equality falls outside of the confidence interval of the 
mean, this could indicate that the bias is  substantial39. The limit of agreement shows within which interval 95% 
of the differences of the second method, compared to the first method,  fall39.

To assess model performance, we calculated accuracy, f1-score, and area under the precision-recall curve 
(AUPRC). Accuracy is defined as the percentage of all correctly labelled frames as a function of all frames in the 
time series. The f1-score is the harmonic mean of precision and recall—it shows the model’s confidence in the 
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true positives while balancing the false positives. The AUPRC is a useful metric for imbalanced classes when the 
focus is to find the positive—in our case, functional activity—classes. Perfect AUPRC equals one and indicates 
that all positive classes were found (perfect recall), without mislabelling any of the negative classes (perfect preci-
sion). The “unknown” samples were excluded from the model’s performance evaluation.

Results
Ten women participated in this study; their demographics are in Table 3. All participants received breast cancer 
surgery, of which six underwent a mastectomy and four breast conservative surgery. In all patients, axillary stag-
ing was performed with sentinel lymph node biopsy (n = 7) or axillary lymph node dissection (n = 3). (Neo)-adju-
vant treatment consisted of chemotherapy in four patients, radiotherapy in five and endocrine treatment in seven 
(four tamoxifen, and three aromatase-inhibitor). Most women underwent a combination of different treatment 
methods (Table 3). Self-reported UL function was measured with the Quick DASH  questionnaire39 with zero 
meaning no limitations in daily life. Applying a cutoff score of > 15/100 on the QuickDASH to identify patients 
with upper limb function  limitations40, we found that 30% of our participants experienced such dysfunctions.

In Figs. 2 and 3, we see the scatter plots and Bland Altman plots, respectively, for functional UL use and the 
percentage functional UL use of the annotated data and the predicted data. From the scatter plots, we see an 
overall overestimation of the functional UL use (left plot in Fig. 3) for the predicted data by the prediction model. 
This can also be seen in the larger overestimation of percentage functional UL use (right plot in Fig. 3). From 
the Bland–Altman plots (Fig. 4) we see the systematic overestimation for functional UL use by the prediction 
model, with an average bias of − 0.71 min (min) for functional UL use (functional UL use ranges from 12.11 to 
24.24 min, see Fig. 3, left) and − 3.06% for percentage functional UL use (percentage functional UL use ranges 
from 69.21 to 89.13%, see Fig. 3, right and Table S1). The limits of agreement range from − 2.51 to 1.09 min for 

Figure 2.  Our temporal convolutional neural network architecture. The input consists of a 3-axis acceleration 
sequence with a receptive field of 243 samples. The 4 ResNet TCN blocks perform dilated temporal convolutions 
with a kernel of size 3 and a dilation rate that increases by a factor of 3 after each iteration. As a result, the TCN 
model covers the entire receptive field of the input. Due to the valid convolutions, we slice the residuals to match 
the shape of subsequent feature maps.

Table 3.  Participant characteristics. P participant, L left; R right, ME mastectomy, BCS breast-conserving 
surgery, SN sentinel lymph node biopsy, ALND axillary lymph node dissection, Neo-adj. neo-adjuvant 
treatment, Adj. adjuvant treatment, CT chemotherapy, RT radiotherapy, TAM tamoxifen, AI Aromatase-
inhibitor, DASH disability of arm, hand and shoulder questionnaire and a higher score indicates more 
disability.

Subj ID Age (years) Operated side Surgery (Neo-) adjuvant treatment Quick DASH score (0–100)

P01 44 R ME + SN TAM 0

P02 48 L ME + SN Adj. CT + TAM 9.1

P03 50 R BCS + SN Adj. RT + TAM 38.6

P04 53 L ME + SN – 4.5

P06 52 L BCS + SN Adj. RT + TAM 13.6

P07 45 L ME + ALND Neo-adj. CT + Adj. RT + AI 11.4

P08 52 R ME + ALND Neo-adj. CT + Adj. RT 15.9

P09 43 R ME + SN TAM 0

P10 65 R BCS + SN Adj. RT + AI 15.9

P11 72 L BCS + ALND Neo-adj. CT + Adj. RT + AI 11.4
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functional UL use and − 11.05 and 4.93% for percentage functional UL use (Fig. 4 and Table S1). All individual 
time data can be found in the supplementary materials (Table S1).

Furthermore, we found an excellent agreement between the predicted data and the annotated data for 
functional UL use (ICC = 0.975 [0.88, 0.99]) and a good agreement for the percentage functional UL use 
(ICC = 0.794 [0.33, 0.93]). On average, the accuracy, F1-score, and AUPRC of our model’s metrics were good 
(accuracy = 0.857 ± 0.068; F1-score = 0.909 ± 0.04722, AUPRC = 0.954 ± 0.057).

Discussion
The goal of this study was to develop a TCN model to predict functional UL use in daily life in breast cancer 
survivors using wrist-worn accelerometer data compared to video annotated data. We found a strong agreement 
between the annotated video data and the predicted data for the TCN model of functional UL use (0.975) and a 

Figure 3.  Scatterplot of functional upper limb use (left) and percentage of functional upper limb use (right) for 
the annotated data and the predicted data. Every marker point represents an individual left, denoted as a circle, 
or right arm, denoted with x, of each participant.

Figure 4.  Bland–Altman plot of functional upper limb use (left) and percentage of functional upper limb use 
(right) for the annotated data and the predicted data. The Bland–Altman plot shows the error between the 
annotated data and the predicted data. The left arm data is represented with green circles and the right arm with 
the red crosses. The shaded green area is the average with the confidence interval. Shaded grey areas are the 
limits of agreement with the corresponding confidence interval. The equality line shows where the difference 
between annotation and prediction is 0. Every marker point shows the error between the annotated data and the 
predicted data for each arm of each participant.
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moderately strong agreement for the percentage of functional UL use (0.794). These high values coincide with 
good accuracy, f1, and AUPRC scores (0.875, 0.909, 0.954, respectively).

However, we found that our TCN model overestimated, on average, the amount of functional UL use by 
0.71 min or 3.06%. While this is a small percentage, the limits of agreement ranged from − 2.51 to 1.09 min 
and − 11.05 and 4.93%, where the negative number is an overestimation of the TCN model’s predictions. This 
indicates that the prediction model works better for some participants than others. More detailed inspection of 
our participants revealed that the left arms of P02, P04, P07, P09, and P10 and the right arm of P10 had absolute 
errors greater than 5% for percentage functional UL use, ranging from 6.12 to 10.33% (Fig. 4 and Table S1 in the 
supplementary materials). All these women, apart from subject 10, were operated on the left side. In those cases, 
the model predicted large, uninterrupted sections of functional UL use, whereas the video annotations showed a 
more intermittent functional UL use (example shown in Fig. 4) with functional UL use being interspersed with 
non-functional UL use. We hypothesise that arm swing during walking is likely misclassified by the prediction 
model as functional UL use. During the annotation process, the annotator (JE) noticed that some women walked 
with an abnormal arm swing, i.e. the arms were kept rigid and close to the torso at an elbow angle between 120 
and 90 degrees. Inspection of the video data confirmed that this arm position during walking is true for P02, 
P04, and P10 left arms, but not for P07 and P09. The acceleration signal of such an “arm swing” pattern (clas-
sified as non-functional UL use according to  FAABOS8) will be tough for a TCN model to distinguish from 
carrying a small item, like keys, in the hand (classified as functional UL use according to  FAABOS8) (see Fig. 5 
for an example).

Despite the overestimation of functional UL use, the TCN model shows promising results in distinguishing 
functional from non-functional UL use. The average error of the percentage functional UL use is far better using 
the TCN model (3.04%) than using the pre-trained decision tree model (14%) reported in Vets et al.13. While 
we compared one outcome to the outcome from Vets et al.13, we cannot comment on the superiority of the TCN 
model compared to a decision-tree model since the current state-of-the-art TCN model is trained, validated, 
and tested on the data presented here. The decision tree model is trained and validated on laboratory-based data 
from healthy controls from the study of Lum et al.12 and only tested on the data presented here. Thus, a direct 
comparison of the TCN model vs. the decision tree model and the models’ performance (e.g. accuracy, f1-score) 
would not be fair. However, since TCN models have steadfastly outperformed other deep learning models on 
various sequence modelling  benchmarks21, we can be confident that a simpler machine learning model, like a 
decision tree, would not show superior performance over a TCN model in such a complex task.

Though we found promising results, we must consider the data we used and the limitations that are associated 
with that. Our data was skewed to the functional activity side, where our participants performed roughly 80% 
functional UL use and only 20% non-functional UL use. With this, two issues arise. First, we need to be careful 
with the interpretation of the f1-score, as this score completely ignores the true negative  class14. Therefore, this 
metric is typically used when we have a positive minority class. Here, we have a positive majority class for the 
given dataset. However, when evaluating on a full-day basis, the functional activities would rather be the small-
est class and the f1-score would be the metric of choice. That is why we opted to use the f1-score in this study 
although our data distribution is not skewed towards the functional activity. Secondly, 20% of non-functional 
UL use data might not contain enough complexity to provide meaningful representations for the TCN model. 
Since we hypothesised that arm swing might be misclassified as functional UL use, we propose that future work 
could look at creating a more fine-grained model that also predicts arm swing during walking, thus predicting 3 
categories: (1) non-functional UL use, (2) functional UL use, (3) arm swing. Moreover, this dataset of 10 women 
should be enlarged with assessments that have longer measurement sessions including more non-functional UL 
use. By adding more participants and alternating between functional and non-functional UL use, we create more 
complexity in the model. Our second major limitation is that we only used specific activities that catered around 
house-work (i.e. bedmaking, kitchen, laundry activity, and shopping) and did not include any outdoor activities. 

Figure 5.  Example figure of the annotated versus predicted results with the corresponding accelerometer data. 
This person shows the largest difference between annotated %UL use and predicted %UL use. The top plot 
shows the acceleration signals in the x, y, and z directions. The middle plot shows the annotated labels and the 
bottom plot shows the predicted labels. Dark green is functional use, grey is non-functional use, and white is 
unknown.
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As mentioned in the introduction, activities such as bus riding that induce many instances of acceleration not 
associated with functional UL use should be considered in future work to include more complexity in the model. 
Therefore, we are relatively confident that the model can distinguish UL functional use during the household tasks 
from non-functional UL use. However, we need more data and research that also incorporates outdoor activities.

Future research
There’s a crucial need to better understand, evaluate and manage UL function in breast cancer survivors, given its 
significance to their well-being41 However, before developing care pathways, accurate assessment methods for UL 
dysfunctions must be established. Each survivor’s unique needs should be evaluated through a biopsychosocial 
approach to tailor treatment strategies effectively. In this, both subjective and objective measures of UL function 
may have value. The use of wrist-worn sensors for collecting objective data on UL function in daily life presents 
numerous opportunities to enhance rehabilitation outcomes. By providing continuous, detailed insights into a 
patient’s activities, these sensors have the potential to revolutionize rehabilitation practices. Firstly, an objective 
assessment enables the establishment of a baseline level of UL function, offering a clear understanding of the 
patient’s current functional status. Continuous monitoring of activity levels allows for the easy detection of both 
improvements and declines over time. Additionally, these sensors can identify compensatory behaviors that may 
hinder recovery, facilitating timely interventions. Second, with this data, it becomes possible to set realistic and 
personalized rehabilitation goals, complementing subjective reports with objective empirical data. Rehabilitation 
programs can then be tailored to address areas of limited use, ensuring a more targeted and effective approach to 
recovery. Last, ensuring accurate and detailed documentation of patient progress is useful for medical records. 
However, at this stage, objective assessment tools based on accelerometry data need further development. Our 
research shows that a TCN model has the potential to encompass various elements to allow for individualization 
of care. Just as a recent case study demonstrated the potential of a TCN model in personalizing cancer  therapy42, 
a similar approach could be employed for UL dysfunctions.

Therefore, the next step in research is to further optimize the current available TCN model. Future research 
should focus on including longer recording times and more various (outdoor) activities, such as riding the bus, 
that represent in- and outdoor real-life situations in order to integrate more complexity into the TCN model.

Conclusion
We can conclude that a TCN model is suited to detect functional UL use in daily life in breast cancer survivors 
using wrist-worn acceleration data as input. We found strong agreements between annotated data and data pre-
dicted by the TCN model, and we found an average overestimated UL functional use of only 0.71 min or 3.04% 
for the percentage functional UL use. Nonetheless, our results were not as good for every participant as can be 
seen by our limits of agreement ranging from − 11.05 to 4.93% for percentage functional UL use. Therefore, 
future work should consider developing a more fine-grained model, adding more participants with longer data 
sequences that contain more and longer sections of non-functional UL use together with data captured outdoors, 
in order that the model can extract meaningful representations from sequential data.

Data availability
The data that support the findings of this study are available from KU Leuven but restrictions apply to the avail-
ability of these data, which were used under license for the current study, and so are not publicly available. Data 
are however available from the authors upon reasonable request and with permission of KU Leuven. Requests 
can be sent to the corresponding author (an.degroef@kuleuven.be).
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