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A B S T R A C T

Living organism is an intelligent system coded by hierarchically-organized information to perform precisely-
controlled biological functions. Biophysical models are important tools to uncover the design rules underlying
complex genetic-metabolic circuit interactions. Based on a previously engineered synthetic malonyl-CoA switch
(Xu et al., PNAS, 2014), we have formulated nine differential equations to unravel the design principles under-
lying an ideal metabolic switch to improve fatty acids production in E. coli. By interrogating the physiologically
accessible parameter space, we have determined the optimal controller architecture to configure both the
metabolic source pathway and metabolic sink pathway. We determined that low protein degradation rate, me-
dium strength of metabolic inhibitory constant, high metabolic source pathway induction rate, strong binding
affinity of the transcriptional activator toward the metabolic source pathway, weak binding affinity of the
transcriptional repressor toward the metabolic sink pathway, and a strong cooperative interaction of transcrip-
tional repressor toward metabolic sink pathway benefit the accumulation of the target molecule (fatty acids). The
target molecule (fatty acid) production is increased from 50% to 10-folds upon application of the autonomous
metabolic switch. With strong metabolic inhibitory constant, the system displays multiple steady states. Stable
oscillation of metabolic intermediate is the driving force to allow the system deviate from its equilibrium state and
permits bidirectional ON-OFF gene expression control, which autonomously compensates enzyme level for both
the metabolic source and metabolic sink pathways. The computational framework may facilitate us to design and
engineer predictable genetic-metabolic switches, quest for the optimal controller architecture of the metabolic
source/sink pathways, as well as leverage autonomous oscillation as a powerful tool to engineer cell function.
1. Introduction

In recent years, there is an influx of applying dynamic control theory
to optimize metabolic pathways for production of various chemicals
(Venayak et al., 2015; Xu, 2018; Xia et al., 2019). The marriage of
intelligent control with synthetic biology have fruited a large volume of
experimental and computational works that allow us to embrace a “dy-
namic” perspective to engineer cell metabolism (Zhang et al., 2012; Xu
et al., 2014a,b; Gupta et al., 2017). The notion of “metabolic homeo-
stasis” is a result of the dynamic interplay of the various biomolecules
inside the cell (Xu, 2018; Lv et al., 2019). Take the glycolytic pathway as
an example, oscillating metabolic flux could arise due to the feedback
inhibition of the phosphofructokinase by cellular energy levels (specif-
ically, ATP, ADP and AMP) (Sel’kov 1968; Bier et al., 2000; Chandra
et al., 2011; Gustavsson et al., 2014). Another classical example is the Lac
operon, hysteresis and multiple steady states could arise due to the
positive feedback loop of the intake of the inducer (IPTG or lactose) by
m 1 April 2020; Accepted 4 Apri
ier B.V. on behalf of Internationa
lactose permease encoded by LacY (Yildirim andMackey, 2003; Santill�an
et al., 2007; Stamatakis and Mantzaris, 2009). Inspired by this phe-
nomena, early synthetic biology effort is spent extensively on con-
structing artificial genetic circuits by mimicking the electrical
counterparts of the physical word (Andrianantoandro et al., 2006).
Combing with mathematical modeling, a collection of classical work has
emerged in the early 2000s, including the well-known toggle switch
(CHEN and BAILEY, 1994; Gardner et al., 2000), repressilator (Elowitz
and Leibler, 2000) and metabolator (Fung et al., 2005) et al. These
seminal works have encouraged us to employ biophysical models to
quantitatively unravel and test the complicated molecular interactions
underlying many perplexing biological problems, which marks the birth
of synthetic biology.

With about one decade, the post-term impact of synthetic biology
starts yielding fruits in the metabolic engineering field (Keasling, 2010).
From a control perspective, metabolic enzyme could be the “actuator”
that performs chemical conversion (i.e. kinase phosphorylation,
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chromatin deacetylation) or the “transducer” that generates secondary
messenger (i.e. cAMP or acetyl-CoA) (Smolke and Silver, 2011; Michener
et al., 2012). Moving beyond the logic circuits engineering (AND, OR,
NOT, NOR gates et al.) (Tamsir et al., 2011; Wang et al., 2011; Moon
et al., 2012), metabolic engineers have been able to harness various
regulatorymechanisms, including repression (Liu et al., 2015), activation
(Doong et al., 2018), attenuation (Benzinger and Khammash, 2018) or
RNA silencing (Yang et al., 2018a,b), to rewire carbon flux and dynam-
ically control cell metabolism. A number of control architectures
(Oyarzún and Stan, 2013; Liu et al., 2015; Oyarzún and Chaves, 2015;
Venayak et al., 2015; Chaves and Oyarzún, 2019) have emerged and been
applied to relieve metabolic burden (Ceroni et al., 2018), eliminate in-
termediate toxicity (Xu et al., 2014a,b), decouple cell growth from
metabolite production (Bothfeld et al., 2017; Doong et al., 2018), elim-
inate metabolic heterogeneity (Xiao et al., 2016; Rugbjerg et al., 2018a;
Rugbjerg et al., 2018b; Wang and Dunlop, 2019). The interdisciplinary
connection among control theory, genetic principles, ecological and
evolutional rules open a new venue for us to design and engineer pre-
cisely controlled genetic-metabolic circuits to reprogram biological
functions (Calles et al., 2019). Engineering such decision-making func-
tions to rewire the genetic (information) flow to redirect/optimize
metabolic flux will enable us to deliver intelligent microbes for a broad
range of applications, ranging from biocomputation, bioremediation,
biosensing, biosynthesis to therapeutics (Nikel et al., 2016; Gao et al.,
2019a, 2019b; Grozinger et al., 2019).

One of the essential tasks for metabolic engineers is to dynamically
allocate carbon flux, so that the limited cellular resources could be har-
nessed to maximize the production of the target molecules (Xu et al.,
2013a,b, Wan et al., 2019). Considering that the cell’s goal is to prolif-
erate, there is always a tradeoff or conflicts between cell growth and
metabolite overproduction. This will require us to equip the cells with
various sensors to detect a broad range of environmental cues, cellular
stimuli or metabolite intermediates (Zhang et al., 2015; Wan et al.,
2019), in such a way the cell can autonomously adjust gene expression or
cell metabolism to compensate the loss or eliminate the surplus of
enzyme activity. To achieve this, a number of control architectures,
including the incoherent feedforward loop (Dunlop et al., 2010; Harrison
and Dunlop, 2012), the invertor gate (Liu et al., 2015), the metabolic
toggle switch (Soma et al., 2014) and the metabolic valve (Solomon and
Prather, 2011), have been implemented to improve the cellular tolerance
to biofuels, or improve chemical production.
2

One of the highly studied dynamic control system is centering around
the malonyl-CoA node (Xu et al., 2014a,b; Feh�er et al., 2015; Albanesi and
de Mendoza, 2016; David et al., 2016). Malonyl-CoA is the essential
metabolic building blocks for synthesizing advanced biofuels (Xu et al.,
2013a,b), lipids (Qiao et al., 2017; Xu et al., 2017), polyketides (Zhou
et al., 2010; Liu et al., 2019), oleochemicals (Xu et al., 2016), flavonoids
(Xiu et al., 2017) and cannabinoids (Luo et al., 2019) et al. High level of
malonyl-CoA benefits the production of these metabolites (Yang et al.,
2018a,b) but also inhibits cell growth (Xu et al., 2014a,b; Liu et al., 2015).
Up to date, the FapR-derived malonyl-CoA sensor has been successfully
applied to mammalian cell (Ellis and Wolfgang, 2012), E. coli (Xu et al.,
2014a,b; Yang et al., 2018a,b) and yeast (Li et al., 2015; David et al.,
2016). In particular, a recent development of the malonyl-CoA oscillator
(Xu et al., 2014a,b) has garnered significant attractions and allows us to
study the optimal configurations of the controller architecture (Fig. 1). By
integrating genetic and metabolic circuits, we have been able to experi-
mentally construct and validate a malonyl-CoA oscillatory switch that was
engineered to improve fatty acids production in E. coli (Xu et al., 2014a,b).
Experimentally, we have engineered malonyl-CoA-responsive promoters
that could be upregulated or down-regulated by FapR, and the activation
or the repression could be abolished by malonyl-CoA. This dual direction
ON-OFF control mimics the amino acid feedforward and feedback regu-
lation that are naturally occurring in many bacteria.

One essential question is how to effectively configure the regulatory
architecture of the metabolic source pathway and the metabolic sink
pathway. To unravel the design principles underlying the malonyl-CoA
switch, we set about to establish a biophysical model (system of ODE
equations) and interrogated a broad range of parameter spaces, including
the protein degradation rate (D), malonyl-CoA inhibitory constant (1/K1)
and malonyl-CoA source pathway induction rate (β2). We also deter-
mined the optimal regulatory architecture for both the malonyl-CoA
source pathway (ACCase) and the malonyl-CoA sink pathway (FAS),
defined by the FapR-UAS dissociation constant (K4), FapR-fapO dissoci-
ation constant (K3) as well as the FapR-fapO Hill cooperativity coefficient
(n). Our aim in this work is to understand how autonomous oscillation
may contribute to optimal metabolite (fatty acids) production in strain
engineering. The computational framework may facilitate us to design
and engineer predictable genetic-metabolic switches, quest for the
optimal controller architecture of the metabolic source/sink pathways, as
well as leverage autonomous oscillation as a powerful tool to engineer
cell function.
Fig. 1. A malonyl-CoA switch to dynami-
cally control fatty acids biosynthesis. (A)
Autonomous ON-OFF control of malonyl-
CoA. FapR activates pGAP promoter and
upregulates the transcription of the malonyl-
CoA source pathway (ACC) which generates
malonyl-CoA; FapR represses T7 promoter
and shuts down the transcription of the
malonyl-CoA sink pathway (FAS) which
consumes malonyl-CoA. The FapR bindings
sites on the ACC operon is an upstream
activation sequence (UAS). The FapR bind-
ing sites on the FAS operon is the fapO
operator. Malonyl-CoA is the effector mole-
cule (ligand) that antagonizes the activity of
FapR. (B) Four possible genetic configura-
tions of malonyl-CoA controller, which could
be explored by changing the sign of the Hill
coefficients (n and p) listed in Eqn. 4 and
Eqn. 5. The black arrow with red cross in-
dicates either transcriptional activation or
repression. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the Web version of this
article.)
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2. Computational method and system equations

2.1. Assumptions to develop the system equations

To simplify the biochemical and genetic events, we made eight as-
sumptions to extract the basics of the genetic-metabolic circuits (Fig. 1):
(a) We assume the number of DNA binding sites, specifically, FapO and
UAS, far exceeds the number of transcriptional factor FapR in the system.
Therefore, the repression rate of FAS or the activation rate of ACC are
independent of the number of FapO and UAS in the system. (b) Glycolytic
pathway (9 reactions) could be lumped into one single reaction to
forming acetyl-CoA from glucose by PDH. (c) Fatty acids biosynthesis
could be lumped into one single reaction to forming fatty acids (FA) from
malonyl-CoA by FAS. (d) Malonyl-CoA depletion rate due to the forma-
tion of malonyl-CoA-FapR complex is negligible in the mass balance
equation of malonyl-CoA (Eqn. 7). (e) The total enzyme or FapR con-
centration are approximately equivalent to the free enzyme or free FapR
concentrations. (f) For non-regulated protein production (i.e. FapR and
PDH), the production rate is cell growth-associated, therefore the pro-
duction rate is proportional to the cell growth rate. (g) For regulated
protein production (i.e. FAS and ACC), the production rate consists of
both leaky expression (which is growth-associated) and regulated
expression (which is non growth-associated) in the mass balance equa-
tions. (h) The cytosol is a homogenous and well-mixed system without
mass transfer or diffusion limitations, where D could be interpreted as the
dilution rate for CSTR or degradation constant for batch culture.

2.2. Formulation of the kinetic rate and mass balance equations

We formulated the kinetic rate models (Table 1) on the basis of
Michaelis-Mention equation for enzyme-substrate equations, Monod ki-
netics (Xu, 2020a, 2020b) with metabolite (Malonyl-CoA) inhibition for
cell growth, Hill-type equations for enzyme kinetics and metabolite-TF
binding. Specifically, Eqn. 1 describes the specific growth rate, which
follows Monod growth with glucose as limiting nutrients and
malonyl-CoA as inhibitory factor; Eqn. 2 describes the mass balance for
cell growth; Eqn. 3 describes the growth-associated production of FapR
and the depletion of FapR due to the formation of FapR-Malonyl-CoA
complex; Eqn. 4 describes the growth-associated production (leaky
Table 1
Equations used to define the autonomous oscillatory genetic-metabolic circuits.

Equation
No.

Equations used in this work

1
μ ¼ μmax S�

CMalCoA

K1
þ 1

�
ðKS þ SÞ

2 ∂
∂t XðtÞ ¼ D ðX0 � XðtÞÞþ μ XðtÞ

3 ∂
∂tCFapRðtÞ ¼ α1 μ XðtÞ� D CFapRðtÞ� k1 CFapRðtÞ CMalCoAðtÞm

Km
2 þ CMalCoAðtÞm

4 ∂
∂tCFASðtÞ ¼ β1�

CFapRðtÞ
K3

�n

þ 1
� D CFASðtÞþ α2 μ XðtÞ

5 ∂
∂tCACCðtÞ ¼ β2�

K4

CFapRðtÞ
�p

þ 1
� D CACCðtÞþ α3 μ XðtÞ

6 ∂
∂tCFAðtÞ ¼ k2 CFASðtÞ CMalCoAðtÞq

Kq
m þ CMalCoAðtÞq

� D CFAðtÞ
7 ∂

∂t
CMalCoAðtÞ ¼ k3 CACCðtÞ CAcCoAðtÞr

Kr
5 þ CAcCoAðtÞr � D CMalCoAðtÞ�

k2 CFASðtÞ CMalCoAðtÞq
YPS1 ðKq

m þ CMalCoAðtÞqÞ
8 ∂

∂tCAcCoAðtÞ ¼ k4 CPDHðtÞ SðtÞu
Ku
6 þ SðtÞu � k3 CACCðtÞ CAcCoAðtÞr

Kr
5 þ CAcCoAðtÞr � D CAcCoAðtÞ

9 ∂
∂tCPDHðtÞ ¼ α4 μ XðtÞ� D CPDHðtÞ

10 ∂
∂t SðtÞ ¼ D ðS0 � SðtÞÞ� μ XðtÞ

YXS
� k4 CPDHðtÞ SðtÞu

YPS2 ðKu
6 þ SðtÞuÞ

3

expression) of FAS and the regulated expression of FAS repressed by
FapR; Eqn. 5 describes the growth-associated production (leaky expres-
sion) of ACC and the regulated expression of ACC activated by FapR; Eqn.
6 describes the production rate of fatty acids (FA) from malonyl-CoA;
Eqn. 7 describes the mass balance for malonyl-CoA, accounting for
both the malonyl-CoA source (ACC) pathway and the malonyl-CoA sink
(FAS) pathway; Eqn. 8 describes the mass balance for acetyl-CoA, ac-
counting for both the acetyl-CoA source (PDH) pathway and the
acetyl-CoA sink (ACC) pathway; Eqn. 9 describes the PDH production
rate which is proportional to the cell growth rate; and Eqn. 10 describes
the mass balance for glucose, accounting for the consumption rate due to
cell growth and acetyl-CoA production. For all the mass balance equa-
tions (Eqn. 2 to Eqn. 10), we also considered the dilution or degradation
terms. Biomass and cell concentration in the feeding stream of the system
were designated as S0 and X0.

2.3. Computational methods

Matlab R2017bwas used as the computational package on aWindows
7 professional operation system. The CPU processor is Intel Core i3-6100
with 3.70 GHz. The installed memory (RAM) is 4.0 GHz. Matlab symbolic
language package coupled with LaTex makeup language were used to
compile the equations (Table 1). ODE45 solver was used to simulate and
predict the system behavior. Matlab plot function was used to output the
solutions and graphs. Matlab codes will be shared upon request. Bio-
logical parameters for Fig. 2 to Fig. 10 could be found in the supple-
mentary files. Most of the parameters were assigned on the basis of
BioNumbers database (Milo et al., 2009). Jacobian matrices were eval-
uated according to a reported numerical method. Calculate Jacobian of a
function numerically at a given condition (https://www.github.co
m/auralius/numerical-jacobian)).

Initial states determine the final states for dynamic system. In this
work, the initial conditions were taken on the basis of physiologically
accessible dataset of biochemical systems. Most of the numbers were
consistent with biochemical engineering textbooks, including Shuler &
Kargi, Bioprocess engineering; and Blanch & Clark, Biochemical Engi-
neering et al. These initial conditions comewith SI unit and is provided in
the SI file.

3. Results and discussion

3.1. Effect of protein/metabolite degradation rate (dilution rate) on system
dynamic behavior

To understand the system dynamics, we probed a number of param-
eter space to generate the dynamic pattern that meets our design and
control criteria. A list of parameters could be found in the supplementary
files. We first investigated how protein/metabolite degradation rate
impacts the system dynamics (Fig. 2). For all the simulations, we used six
species, including regulator protein FapR, fatty acid synthase (FAS),
acetyl-CoA carboxylase (ACCase), target product fatty acids (FA), in-
termediates malonyl-CoA (MalCoA) and acetyl-CoA (AcCoA), to repre-
sent the system.

Under the prescribed parameter conditions (supplementary files)
with protein degradation rates ranging from 0.15 to 0.60 (the unit is
inverse of time), we evaluated the trajectory of the numerical solutions of
the system ODE equations (Table 1). For relatively high degradation rate
(D � 0.2), we observed that the system solutions are approximately
behaving like a damped oscillator (Fig. 2). On the other hand, the low
degradation rate (or longer residence time, i.e. D ¼ 0.15 in Fig. 2) allows
the system to oscillate stably with fixed frequency and amplitude, leading
to the highest fatty acids production (Fig. 2). For example, fatty acids
production at low protein degradation rate (D ¼ 0.15) is about 10-folds
higher than the fatty acids production at high protein degradation rate
(D ¼ 0.6). This is not counterintuitive as low degradation rate allows the
protein catalysts stay longer in the system (Gao et al., 2019a, 2019b).

https://www.github.com/auralius/numerical-jacobian
https://www.github.com/auralius/numerical-jacobian
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Fig. 2. Effect of protein/metabolite degradation rate (dilution rate) on system dynamic behavior. Protein degradation rates have been labelled with different color.
Low degradation rate (D ¼ 0.15) leads to relatively stable oscillation. High degradation rate (D � 0.2) leads to damped oscillation. The units are arbitrary units.
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this article.)
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And the stable oscillation indicates that the designed control scheme
could perform alternating ON-OFF control of the malonyl-CoA source
pathway and malonyl-CoA sink pathway. Interestingly, the fatty acids
production pattern is closely related with the malonyl-CoA sink pathway
(FAS), but doesn’t correlate well with the activity of the malonyl-CoA
source pathway (ACC). This is rooted in our initial assumptions that
sufficient malonyl-CoA will inhibit cell growth. As a result, the inter-
mediate acetyl-CoA and malonyl-CoA displays distinct oscillating
pattern, with the stable oscillation (D ¼ 0.15) leading to better control.

We also explored whether we could further improve fatty acids pro-
duction by using even smaller degradation rate (i.e. D ¼ 0.1, Fig. 3).
Interestingly, decreasing the degradation rate to 0.1 allows FapR to
quickly accumulate in the system from t ¼ 20. We could notice that a
spike of fatty acids production at t ¼ 20, but the entire control system
collapses (D¼ 0.1, Fig. 3) at t> 20, due to the overdosed FapR repressing
the expression of the malonyl-CoA sink pathway (FAS). Accompanying
with increased FapR, themalonyl-CoA source pathway (ACCase) was also
overdosed (D ¼ 0.1, Fig. 3) due to the activating action of FapR toward
the expression of ACCase. However, malonyl-CoA was not accumulated
in the system due to the antagonist effect of FapR toward malonyl-CoA.
Taken together, the low degradation rate (D ¼ 0.1) allows the cell to
only build biomass, but generates little final products (Fatty acids in this
study). In summary, the range of degradation rate of the sensor protein
(FapR) and the malonyl-CoA source pathway (ACCase) determines
whether the designed control scheme will work or fail.

Phase-plane represents the solution constraints between the inter-
acting components, at different parameter conditions (such as dilution
rate or binding affinity) (Xu, 2020a, 2020b). We further performed a
4

phase-plane analysis to interrogate the solutions of above ODEs (Fig. 4).
On the FAS-FapR phase plane, the system is attracted to periodic limit
cycle of clockwise motion. The horizontal (x-axis) projection of the
elliptic cycle forms a negative slope with FapR (x-axis), indicating that
FapR represses the expression of FAS. On the ACCase-FapR phase planes
(Fig. 4), the system is attracted to periodic limit cycle of counterclock-
wise motion. The horizontal (x-axis) projection of the elliptic cycle forms
a positive slope with FapR, indicating that FapR activates the expression
of ACCase. Similarly, on the MalCoA-FapR phase plane (Fig. 4), the
system is attracted to periodic limit cycle of counterclockwise motion.
The horizontal (x-axis) projection of the elliptic cycle forms a negative
slope with FapR, indicating that FapR acts as an antagonist for
malonyl-CoA. Under D ¼ 0.15, we observed that the system leads to
stable oscillation (Fig. S1).

To analytically identify the steady state, we need to derive the
Jacobina matrix and analyze the eigenvalue of the Jacobian matrix at
each of the steady states. If all the eigenvalues are negative or the real
parts of all eigenvalues are negative (for imaginary eigenvalues), this will
be a stable steady state. Graphically, steady states represent time-
invariant solutions along the time-axis. The trajectory of stable steady
states will asymptotically or periodically converge to a fixed point or
travel on an orbit (a limit cycle). By analyzing the Jacobian matrices, two
pure imaginary eigenvalues with zero real parts were arrived (Supple-
mentary Notes 1), indicating a stable oscillation under D ¼ 0.15. The
phase portraits allow us to understand the motion of system dynamic
behavior, it may also serve as diagnosis for troubleshooting the design-
build-test cycle in genetic circuit engineering.

We next investigated how the malonyl-CoA dissociation constant
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Fig. 3. Effect of protein/metabolite degradation rate on system dynamic behavior. Protein degradation rates have been labelled with different color. Low degradation
rate (D ¼ 0.10) leads to a collapsed system: too much FapR represses the expression of FAS, activates the expression of ACC and quickly antagonize the resulting
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(K1) impacts the system dynamics (Fig. 5). The malonyl-CoA dissocia-
tion constant (K1) describes the inhibitory strength of malonyl-CoA to
cell growth: small dissociation constant (K1) indicates a high binding
affinity and high inhibitory strength. A number of dissociation con-
stants ranging from 0.10 to 4.0 (in the units of concentration) were
investigated (Fig. 5). As expected, strong inhibition (K1 ¼ 0.10) will
sequestrate the cell at a low growth rate and lead to constant expression
of FapR, FAS and ACCase (Fig. 5), indicating that the expression of FAS
5

and ACCase are independent of the control scheme. As the inhibition
becomes weaker (K1 ¼ 0.50 and 1.00), the solution of the system ODEs
oscillates with increased amplitude, albeit the frequency of the oscil-
lation remains unchanged. A perfect ON and OFF control of FAS and
ACCase expression is taking place when a medium strength of inhibition
(K1 ¼ 2.0) is used. This medium strength of inhibition confers the
system to oscillate stably with improved fatty acids production (Fig. 5),
albeit the fatty acids increase is less than 50%. When the dissociation



0 20 40 60 80

time

0

2

4

6

8
Fa

pR
 c

on
ce

nt
ra

tio
n

FapR concentration vs time

0 20 40 60 80

time

1

1.5

2

2.5

3

3.5

FA
S 

co
nc

en
tra

tio
n

FAS concentration vs time

0 20 40 60 80

time

0

2

4

6

8

AC
C

as
e 

co
nc

en
tra

tio
n

ACCase concentration vs time

0 20 40 60 80

time

0

5

10

Fa
tty

 a
ci

ds

Fatty acids vs time

0 20 40 60 80

time

0

10

20

30

40
M

al
C

oA
 c

on
ce

nt
ra

tio
n

MalCoA vs time

0 20 40 60 80

time

0

5

10

15

20

Ac
C

oA
 c

on
ce

nt
ra

tio
n

AcCoA concentration vs time

K
1

 = 0.10

K
1

 = 0.50

K
1

 = 1.00

K
1

 = 2.00

K
1

 = 4.00

Fig. 5. Effect of malonyl-CoA dissociation constant (K1) on system dynamic behavior. Malonyl-CoA dissociation constants (K1) have been labelled with different color.
Low dissociation constants (K1 ¼ 0.5, 1.0 and 2.0) lead to stable oscillation. High dissociation constant (K1 ¼ 4.0) leads to damped oscillation. Medium strength of
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constant takes a larger number (K1 ¼ 4.0), the systems behave like a
damped oscillation that is approximately approaching to the optimal
design scheme (K1 ¼ 2.0). This analysis indicates that a medium
strength of dissociation constant (K1) should be used. In practice, one
can always use adaptive lab evolution to screen conditionally tolerant
phenotype that meets the K1 selection criteria.

Similarly, we could perform a phase-plane analysis (Fig. 6). The
phase-planes suggest that the optimal control scheme (K1 ¼ 2.0, the
purple cycles) only permits a very narrowed space of FAS, ACCase and
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Fig. 6. The phase-plane portraits for FA-FAS, FA-ACCase and FA-MalCoA. Low malon
malonyl-CoA inhibition, leads to multiplicity of steady states pattern between FAS-FA
to color in this figure legend, the reader is referred to the Web version of this articl
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MaloCoA solutions. Interestingly, for low malonyl-CoA dissociation
constant (K1¼ 0.5), the system exhibits a looping behavior on the FAS-FA
and MalCoA-FA phase plane. Plotting the steady state solutions of fatty
acids, FAS and malonyl-CoA, we observed looping pattern of solutions in
the 3-D space, this may also imply a hysteretic state of the system (Aris
et al., 2019) (Supplementary Notes 2 and 3). It simply means that strong
malonyl-CoA inhibition (i.e. K1 ¼ 0.3 or 0.5) will lead to multiplicity of
steady states (Figs. 6 and 7), which is a critical factor to evaluate the
dynamics of the system behavior.
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Fig. 7. The 3-D phase-plane portraits for fatty acids, FAS and malonyl-CoA, with
malonyl-CoA inhibition constant (K1) varying from 0.1 to 1.5. A specific tra-
jectory for K1 ¼ 0.3 is added to the above solution space, marked in blue color.
Other parameters used here are the same as the parameters used in Fig. 5. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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Literature reports that feedback inhibition of free fatty acid on FAS
complex plays a major role in regulating FA synthesis. Specifically, it is
generally believed that acyl-ACPs or acyl-CoAs will feedback inhibit
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acetyl-CoA carboxylase in E. coli (Davis and Cronan, 2001). Since
acyl-CoA/ACP could be hydrolyzed to free fatty acids by acyl-CoA thio-
esterase tesA (which is constitutively overexpressed in the published
paper PNAS, 2014), we believe the feedback inhibition of acyl-CoA/ACP
on FAS complex could be minimized when tesA was overexpressed. In
this synthetic system, the malonyl-CoA inhibitory effect on FAS was
translated to the malonyl-CoA inhibitory effect on cell growth: cell
growth is associated with how much of membrane lipids (phospholipids
synthesized from acyl-CoAs/acyl-ACPs) were made. Therefore, the
malonyl-CoA/ACP feedback inhibitory effect on FAS (cell growth) plays a
critical role to determine the system dynamics.

3.2. Effects of FapR-UAS interaction on system dynamics

We next explored how the gene expression of the malonyl-CoA source
pathway (ACCase) impacts the system dynamics. According to the orig-
inal design and Eqn.5, expression of ACCase is governed by the FapR-UAS
interactions. The system equation for ACCase (Eqn. 5) accounts for both
the growth-associated leaky expression (α3) and the FapR-activated
regulatory expression (β2, p and K4). In all our simulations, we assume
stringent regulation and the leaky expression is negligible (α2 ¼ α3 ¼
0.05). We will specifically investigate how the ACCase induction rate (β2)
and the FapR-UAS dissociation constant (K4) impact the system dynamics
(Fig. 8 and Fig. 9).

We investigated a number of ACCase induction rates (β2, in the units
of concentration per time), ranging from 0.50 to 4.0 (Fig. 8). As the
ACCase induction rate increases (β2) from 0.50 to 4.0, the expression of
malonyl-CoA source pathway (ACCase) is upregulated, leading to
improved fatty acids production (Fig. 8). For example, the fatty acids
production is increased up to 2-fold when the ACCase induction rate (β2)
increases from 0.5 (blue line, Fig. 8) to 4.0 (purple line, Fig. 8). On the
other hand, the amount of regulator protein FapR decreases with
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Fig. 9. Effect of FapR-UAS dissociation constant (K4) on system dynamics. Tighter FapR-UAS binding is advantageous to fatty acids production.
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increasing ACCase induction rate (β2) (Fig. 8), possibly due to the
antagonist effect of malonyl-CoA. However, this monotonic correlation
was not found for the species MalCoA and AcCoA, due to the complicated
autoregulation of malonyl-CoA in the control system. Furthermore, under
low ACCase induction rates (i.e. β2 ¼ 0.5, 1.0 and 2.0), the oscillation
damped periodically with decreasing amplitude. Under high ACCase
induction rate (i.e. β2 ¼ 4.0), the oscillation damped quickly to reach its
steady state (Fig. 8). This result indicates that a high ACCase induction
rate (β2) is essential for the proper function of the control scheme.

As FapR is the activator for the ACC operon, and the DNA binding site
for FapR is a UAS (upstream activation sequence). We next investigated
how the FapR-UAS dissociation constant (K4) impacts the system dy-
namics (Fig. 9). A smaller FapR-UAS dissociation constant (K4) indicates
a tighter binding between FapR and UAS (the inverse of the dissociation
constant quantifies the binding affinity). As the binding between FapR
and UAS becomes tighter (K4 decreases from 8.0 to 1.0), the expression of
the malonyl-CoA source pathway (ACCase) is strongly activated, leading
to increased fatty acids production (Fig. 9). For example, the fatty acids
production is increased up to 2.2-fold when the FapR-UAS dissociation
constant (K4) decreases from 8.0 (purple line, Fig. 9) to 1.0 (blue line,
Fig. 9). Under high FapR-UAS binding affinity (K4 ¼ 1.0), the oscillation
damped quickly to reach its steady state; under low FapR-UAS binding
affinity (K4 ¼ 4.0 or 8.0), the oscillation retains periodic pattern with
fixed frequency and amplitude. This result indicates that a tighter FapR-
UAS binding is the critical factor to achieve the desired control scheme.

3.3. Effect of FapR-fapO interaction on system dynamics

We also attempted to understand how the gene expression of the
malonyl-CoA sink pathway (FAS) impacts the system dynamics. By
8

design, FapR is the repressor that is specifically bound to fapO and re-
presses the expression of the malonyl-CoA sink pathway (FAS). The
system equation for FAS (Eqn. 4) accounts for both the growth-
associated leaky expression (α2) and the FapR-repressed regulatory
expression (β1, n and K3). Transcriptional factor (FapR) and DNA
binding site (fapO) interactions are typically defined by the binding
affinity (inverse of the dissociation constant) and the Hill cooperativity
coefficient. By probing the physiologically accessible parameter space,
we will investigate how the FapR-fapO dissociation constant (K3)
impact the system dynamics (Fig. 10).

We investigated a number of FapR-fapO dissociation constant (K3),
spanning from 0.50 to 8.0 (Fig. 10). A smaller FapR-fapO dissociation
constant indicates a tighter binding between FapR and fapO, thus the
FapR-fapO complex will function as a stronger roadblock to prevent FAS
transcription. As the binding between FapR and fapO becomes tighter (K3
decreases from 8.0 to 0.5), the expression of the malonyl-CoA sink
pathway (FAS) is strongly repressed (Fig. 10), leading to decreased fatty
acid accumulation. For example, the fatty acids production at low FapR-
fapO dissociation constant (K3 ¼ 0.50, blue curve) is less than 1/7 of the
fatty acid production at high FapR-fapO dissociation constant (K3 ¼ 8.0,
green curve) (Fig. 10). With weaker FapR-fapO binding (K3 ¼ 4.0 and
8.0), the ODE solutions for ACCase, MalCoA and AcCoA oscillate with
fixed frequency and amplitude, indicating the functionality of the ON-
OFF control toward both the malonyl-CoA source pathway (ACCase)
and the malonyl-CoA sink pathway (FAS). However, with tighter FapR-
fapO binding (K3 ¼ 0.5 and 1.0), the oscillation collapses at relatively
short period of time, indicating a faulted control scheme. This result
suggests that a weak binding between FapR and fapO (or a large FapR-
fapO dissociation constant) is the most important design criteria to
achieve the desired ON-OFF control scheme.
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3.4. Exploring the optimal controller architecture

The Hill cooperativity coefficient is a critical factor determining the
input-output relationship of biological signal transduction. Recent
studies demonstrate that lots of nonlinear and complicated biological
functions are arising from the cooperative assembly of biological mole-
cules (Bashor et al., 2019; Shaw et al., 2019), including DNA, RNA and
proteins. As such, we will investigate how the FapR-FapO Hill coopera-
tivity coefficient (n) impacts the system dynamics (Fig. 11). We choose a
number of FapR-fapO Hill cooperativity coefficients, ranging from �4 to
4. It should be noted that, our original mass balance equations (Eqn. 4
and Eqn. 5) only account for the fact that FapR represses the expression of
FAS and FapR activates the expression of ACC, which corresponds to a
positive Hill coefficient (n > 0 and p > 0).

The sign of the Hill coefficient is related with the genetic configu-
ration of the controller (Fig. 1B). For example, a positive Hill coefficient
(n) in the malonyl-CoA sink pathway (FAS) indicates that FapR represses
the transcriptional activity of FAS expression; while a negative Hill
coefficient (n) in the malonyl-CoA sink pathway (FAS) indicates that
FapR activates the transcriptional activity of FAS expression (Equation
4). Similarly, a positive Hill coefficient (p) in the malonyl-CoA source
pathway (ACC) indicates that FapR activates the transcriptional activity
of ACC expression; while a negative Hill coefficient (p) in the malonyl-
CoA source pathway (ACC) indicates that FapR represses the transcrip-
tional activity of ACC expression (Equation 5). By changing the sign of
the Hill coefficients for the malonyl-CoA sink pathway (FAS) and the
malonyl-CoA source pathway (ACC), we could explore the ‘optimal
controller’ structure in this study (Fig. 1B). Here we consider both
positive Hill coefficients (n ¼ 2.0 and 4.0) and negative Hill coefficients
9

(n ¼ �2.0 and �4.0) as well as no cooperation (n ¼ 0). By comparing
either the activating or repressing effect of FapR, we may interrogate
the topology of the optimal controller architecture that leads to
maximal fatty acids production.

As the FapR-fapO Hill cooperativity coefficient (n) increases from
�4.0 to 4.0, the regulatory action of FapR towards the malonyl-CoA sink
pathway (FAS) shifts from activation to repression. As a result, a signif-
icant increase in the FAS, ACCase expression and fatty acids production
are observed (Fig. 11). For example, almost 5-fold increase of fatty acids
is obtained when the FapR-fapO Hill cooperativity coefficient (n) in-
creases from �4.0 (blue line, strong activation) to 4.0 (green line, strong
repression). Under strong FapR activation (n¼�4.0), counterintuitively,
the expression of FAS is instead downregulated (Fig. 11). This could be
linked to the unbalanced induction rate (β) between the malonyl-CoA
source pathway (ACCase, β2 ¼ 2.0) and the malonyl-CoA sink pathway
(FAS, β1 ¼ 0.5). Even with highly cooperative activation of FAS by FapR
(n ¼ �4.0, blue line), the low induction rate of the malonyl-CoA sink
pathway (FAS) makes the expression of FAS unable to catch up with the
expression of ACCase (malonyl-CoA source pathway). As a result,
malonyl-CoA will build up but stay unchanged in the system (blue line in
Fig. 11) to inhibit cell growth, which will result in even lower level of
FapR (activator for FAS expression when n¼�4, blue line) and therefore
exacerbate the expression of FAS. On the contrary, highly cooperative
repression of FAS by FapR (n ¼ 4, green line) will make malonyl-CoA
level oscillate, which forms the driving force to dynamically link and
control the expression of the malonyl-CoA source pathway (ACCase) and
the malonyl-CoA sink pathway (FAS). This analysis indicates that a
control architecture consisting of upregulated metabolic source and
downregulated metabolic sink is an essential design criterion to build
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Fig. 11. Effect of FapR-fapO Hill cooperativity coefficient (n) on system dynamics. Strong repression (n¼ 4) leads to stable oscillation and drives the cell to make more
fatty acids.
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adaptive genetic-metabolic circuits. In addition, the stable oscillation of
the metabolic intermediate (i.e., malonyl-CoA) forms the driving force to
exert the ON-OFF dynamic control toward complex metabolic function in
the cell.

4. Conclusions

With the better understanding of cellular regulation, metabolic en-
gineers have been able to engineer both the chemistry (the mass flow)
and the control modules (the information flow) inside the cell to design
intelligent cell factories with improved performance. Moving beyond
thermodynamic and stoichiometric constraints, living organisms could
be viewed as a smart system consisting of sensor (ligand binding domain
of transcriptional factors), transducers (DNA-binding domain of tran-
scriptional factors, kinase or enzyme et al.) and actuators (RNA poly-
merases). Along this direction, cellular regulation and feedback control
mechanisms have been exploited to construct genetic/metabolic circuits
that could sense/respond to environment, achieve adaptive metabolic
function and reshape cell fate for diverse biotechnological and medical
applications. As chemical engineers have done to program machine
language and control the mass and energy flow in a chemical plant, a
synthetic biologist could rewrite the genetic software and encode logic
functions in living cells to control cellular activity.

Biophysical and biochemical models are important tools to quanti-
tatively understand genetic circuit dynamics, metabolic network con-
straints, cell-cell communications (Dai et al., 2019) and microbial
consortia interactions (Kong et al., 2018; Tsoi et al., 2018). Based on a
previously engineered malonyl-CoA switch, nine differential equations
were formulated (Table 1) and employed to unravel the design principles
underlying a perfect metabolite switch. While the models present in the
current study were simple, they provide sufficient kinetic information to
10
predict the dynamic behavior of the published work. By interrogating the
physiologically accessible parameter space, we have determined the
optimal control architecture to configure both the malonyl-CoA source
pathway and the malonyl-CoA sink pathway. We also investigated a
number of biological parameters that strongly impact the system dy-
namics, including the protein degradation rate (D), malonyl-CoA inhib-
itory constant (1/K1), malonyl-CoA source pathway induction rate (β2),
FapR-UAS dissociation constant (K4), FapR-fapO dissociation constant
(K3) as well as the FapR-fapO Hill cooperativity coefficient (n). We
identified that low protein degradation rate (D), medium strength of
malonyl-CoA inhibitory constant (1/K1), high malonyl-CoA source
pathway induction rate (β2), strong FapR-UAS binding affinity (1/K4),
weak FapR-fapO binding affinity (1/K3) and a strong cooperative
repression of malonyl-CoA sink pathway (FAS) by FapR (n) benefits the
accumulation of the target molecule (fatty acids). The fatty acids pro-
duction could be increased from 50% to 10-folds with the different set of
parameters. Under certain conditions (i.e. strong malonyl-CoA inhibitory
constant 1/K1), the system will display multiplicity of steady states.
Stable oscillation of malonyl-CoA is the driving force to make the system
perform the ON-OFF control and automatically adjust the expression of
both the malonyl-CoA source (ACCase) and malonyl-CoA sink (FAS)
pathways.

In this work, we have chosen a number of biophysical parameters to
discuss the possible output of the malonyl-CoA switch. Genetically, these
parameters could be altered by web-lab experiments, including protein
engineering or degenerated repressor binding sites to change the biding
affinity between the interacting components et al. The computational
framework present here may facilitate us to design and engineer pre-
dictable genetic-metabolic switches, configure the optimal controller
architecture of the metabolic source/sink pathways, as well as reprogram
metabolic function for various applications.
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Appendix. Symbols and variables used in this work

μ specific growth rate
μmax maximum specific growth rate
α1 cell growth-associated FapR production rate constant (constitutive expression)
α2 cell growth-associated FAS production rate constant (leaky expression)
α3 cell growth-associated ACC production rate constant (leaky expression)
α4 cell growth-associated PDH production rate constant (constitutive expression)
β1 non cell growth-associated FAS production rate (regulated expression)
β2 non cell growth-associated ACC production rate (regulated expression)
K1 Malonyl-CoA inhibitory (dissociation) constant
K2 Mal-CoA and FapR saturation constant
K3 dissociation rate constant of free FApR toward fapO in the FAS operon (to repress FAS transcription)
K4 dissociation rate constant of free FapR toward UAS in the ACC operon (to activate ACC transcription)
K5 acetyl-CoA saturation (Michaelis) constant toward ACC
K6 glucose saturation (Michaelis) constant toward glycolytic pathway
KS Monod constant for glucose
Km Malonyl-CoA saturation (Michaelis) constant toward FAS
k1 FapR-inactivating rate constant due to the formation of MalCoA-FapR complex
k2 FA (fatty acids) production rate constant from Mal-CoA catalyzed by FAS
k3 malonyl-CoA production rate constant from acetyl-CoA catalzyed by ACC
k4 acetyl-CoA production rate constant from glycolysis catalzyed by PDH
S glucose concentration
S0 glucose concentration in the feeding stream
D dilution rate or degradation rate
X0 biomass concentration in the feeding stream
YPS1 malonyl-CoA to fatty acids conversion yield
YXS glucose to biomass conversion yield
YPS2 glucose to acetyl-CoA conversion yield
m malonyl-CoA-FapR (ligand-TF) Hill cooperativity coefficient
n FapR-FapO nucleoprotein complex Hill cooperativity coefficient
p FapR-UAS nucleoprotein complex Hill cooperativity coefficient
q malonyl-CoA-FAS (substrate-enzyme) Hill cooperativity coefficient
r acetyl-CoA-ACC (substrate-enzyme) Hill cooperativity coefficient
u glucose-PDH (substrate-enzyme, artificial reaction) Hill cooperativity coefficient
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