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Objective. Peri-implantitis (PI) is one of the main reasons for dental implant failure. Until now, the etiology and pathogenesis of PI
remain unclear. Methods. In this study, we used differentially expressed genes (DEGs) analysis and gene function enrichment
analysis to assess the expression profile of peri-implant bone tissue and gingiva in PI public data from the Gene Expression
Omnibus (GEO) database. Then, we used gingival tissues from patients with PI and healthy individual to construct gene
coexpression networks to reveal the biological functions of the genes in PI using RNA sequencing data. Afterward, key gene
modules were selected to reveal the critical biological process or signaling pathway using Hallmark’s gene enrichment and
expression analysis of the related pathway members in PI. Results. DEGs were enriched in the formation of cellular responses
to external stimuli in bone tissue. Cytokine production, lymphocyte activation, immune response-regulating signaling pathway,
and blood vessel development were the top GO biology process or pathways of the DEGs in gingival tissue. Weighted gene
coexpression network analysis (WGCNA) of RNA-seq data was used to assess the results of correlation analysis between
modules and traits and correlation analysis between modules and functions. kMEpurple, kMEgreen, and kMEred modules
were selected as the key gene modules. Signaling pathways and gene expression analysis were performed on selected modules,
such as IL2/STAT5 signaling pathway, TNFα signaling pathway via NFκB, and angiogenesis were enriched in kMEpurple
module. Hedgehog signaling pathway, Wnt β-catenin signaling pathway, and IL2/STAT5 signaling pathway were enriched in
kMEgreen module. Peroxisome, IL2/STAT5 signaling pathway, and epithelial-mesenchymal transformation process were
enriched in kMEred module. All the enrichment results of key modules contained IL2/STAT5 signaling pathway. Conclusion.
Differential gene and enrichment analysis based on public data showed differences in gene expression patterns and biological
process between bone and gingival tissues in PI. This spatial-temporal heterogeneity is reflected in the formation of cellular
responses to external stimuli, which was enriched in bone tissue, but cytokine production, lymphocyte activation, immune
response regulating signaling pathway, and blood vessel development were enriched in gingival tissue. WGCNA and Hallmark
gene sets enrichment analysis of the gingival tissue expression profile and showed that IL2-mediated activation of immune cells
could be a critical mechanism in PI. As a new clinical treatment alternative, we suggest that IL2/STAT5 pathway blockers
could be helpful in the treatment of PI.
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1. Introduction

Dental implant, because of its advantages, such as perfect
retention, less damage to adjacent teeth, and less foreign
body sensation, has been widely used to reconstruct aesthetic
and functional problems that result from teeth loss in clinic
[1]. However, peri-implantitis (PI) characterized by infec-
tion of soft tissue and bone resorption is considered to be
the result of an imbalance between the bacterial challenge,
and the host response can affect the long-term success rate
of dental implant, which is one of the main reasons for the
failure of implant [2].

Bacterial invasion in the tissue surrounding implants can
trigger an immune response. This response can remove
harmful substances such as bacteria and toxins. However,
the cytokines, proteases, and prostaglandins produced dur-
ing this process can accelerate the destruction of tissue
around the implants [3]. With the growing popularity of
dental implants, PI has attracted considerable attention,
but the etiology and pathogenesis are still unclear [4].

Weighted gene coexpression network analysis
(WGCNA) [5] aims to find gene modules for coexpression
and to explore the relationship between gene networks and
phenotypes of interest, as well as the hub genes in the net-
work. WGCNA could avoid the extensive false-positive
and false-negative results of prior biological methods and
exclude unreasonable statistical filtering in differential gene
analysis. WGCNA has been widely used in cancer research,
developmental biology, and systems biology [6, 7]. However,
WGCNA is rarely used in the study of oral diseases.

In this study, we analyzed the expression profiles of
peri-implant bone tissue and gingiva in PI from the
GEO database using differentially expressed gene analysis
and gene function enrichment analysis. Then, WGCNA
was used to reveal the biological functions of the genes
in PI. Owing to the similarity between genes and genes
in the expression profiles data of probe-based PCR micro-
arrays, the WGCNA of microarray data was failed to
screen out gene modules and gene module members with
biological significance. Therefore, we collected gingival tis-
sues from patients with PI and healthy individual to con-
struct gene coexpression network by RNA sequencing
data. Next, we selected key modules to reveal the critical
biological process or signaling pathway by Hallmark gene
sets enrichment analysis and expression analysis of related
pathways members in PI. In this study, we wish that high-
throughput sequencing technology can be used to analyze
the core issues that are plaguing the study of PI. Further,
avoiding problems caused by defective technical means
within basic medical research of peri-implantitis.

2. Material and Methods

2.1. Microarray Data Acquisition. Gene expression data were
obtained from the Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/gds/). The datasets
GSE57631 and GSE33774 were queried in the database using
“peri-implantitis” as the search term. GSE57631contains 2
healthy peri-implantation bone tissues (BT_HI) and 6 peri-

implantitis bone tissues (BT_PI) of expression profiling by
array. GSE33774 contains 8 healthy peri-implantation gingi-
val tissues (GT_HI) and 7 peri-implantitis gingival tissues
(GT_PI) of expression profiling by array.

2.2. Microarray Data Analysis. Z-score was used to normal-
ize the data. Then we used the differential genes analysis of
expression matrix GEO2R (http://www.ncbi.nlm.nih.gov/
geo/geo2r/). All the genes expression profiles were normal-
ized using the R software package. Principal component
analysis (PCA) and clustering analysis of expression patterns
were performed using omicshare (http://www.omicshare
.com).

2.3. Functional Enrichment Analysis of Microarray Data.
Functional enrichment analysis was performed using the
Metascape database (http://metascape.org/). KEGG path-
way, GO biological processes, reactome gene sets, canonical
pathways, and CORUM ontology were selected as sources.
Terms with a P value <0.01, a minimum count of 3, and
an enrichment factor > 1:5 were collected and grouped into
clusters based on their similarities. Kappa scores were used
as a metric of similarity when performing hierarchical clus-
tering on the enriched terms, and sub-trees with a similarity
of >0.3 were considered a cluster. The most statistically sig-
nificant term within a cluster was chosen to represent the
cluster. All the visualizations were performed using R
software.

2.4. Weighted Gene Coexpression Network Analysis of
Microarray Data. WGCNA is an algorithm used in gene
coexpression network identification in profiles with different
traits. In this section, R software package WGCNA was used
to construct weighted coexpression networks to find key
gene modules of interested within different traits.

2.5. Sample Collection. Gingival tissue samples of PI and
healthy individual admitted to the Affiliated Stomatological
Hospital of Guangxi Medical University were collected from
December 2017 to December 2018. Inclusion criteria of gingival
samples were described in the consensus report of the work-
group 4 in the 2017 World Workshop on the Classification of
Periodontal and Peri-Implant Diseases and Conditions [2].

To obtain PI samples, the inflamed soft tissues around the
implants were removed during an open surgical debridement
following currently approved protocols. Gingival tissues from
patients without any clinical infection were used a control.
Control patients were operated due to wisdom teeth removals
or teeth needed to be removed for orthodontics.

All the patients aged 18 years and above who did not
smoke or drink alcohol were included, while we excluded
patients with systemic diseases and other oral diseases, such
as common mucous membrane disease, jaw cyst, and
tumors. This study has been reviewed and approved by the
Ethics Committee of Guangxi Medical University (2017-
No. 165). All the patients agreed to participate in the study
and signed informed consent before surgical intervention.

2.6. RNA Sequencing. Gingival tissue gene expression profil-
ing was performed using RNA sequencing. Library
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construction was performed following the manufacturer’s
instructions provided by Illumina (San Diego, CA, USA).
Samples were sequenced on an Illumina HiSeq 2500
instrument.

2.7. Weighted Gene Coexpression Network Analysis and
Functional Enrichment Analysis of RNA-Seq Data. Same as

WGCNA microarray data. The number of genes arranged in
the constructed modules and functional enrichment analysis
was performed on genes in these modules. The corresponding
genes’ information was mapped to Metascape (http://
metascape.org/).

Hallmark gene sets were used as gene annotation source.
Since the construction of the Molecular Signatures Database

Table 1: List of top 20 differentially expressed genes.

Gene Description logFC P value FDR

BT_HI-vs-BT_PI

ZMPSTE24 Zinc metallopeptidase STE24 0.05436861 0.000425 0.418

TUBB4B Tubulin beta 4B class IVb 0.067058028 0.000776 0.418

EIF3M Eukaryotic translation initiation factor 3 subunit M 0.163804868 0.000305 0.418

RAB10 RAB10, member RAS oncogene family 0.144274808 0.000823 0.418

SF3A3 Splicing factor 3a subunit 3 0.040577086 0.001089 0.418

AP1G1 Adaptor related prot 0.056817586 0.001125 0.418

C20orf203 Chromosome 20 open reading frame 203 -0.129391728 0.000552 0.418

MIR15B microRNA 15b -0.141409803 0.000692 0.418

MIR214 microRNA 214 -0.115661557 0.000828 0.418

MIR99A microRNA 99a -0.073109217 0.001108 0.418

OCIAD1 OCIA domain containing 1 0.123431672 0.001013 0.418

CAV1 Caveolin 1 0.093133672 0.00071 0.418

BRK1 BRICK1 subunit of SCAR/WAVE actin nucleating complex 0.065658554 0.000527 0.418

PPP6C Protein phosphatase 6 catalytic subunit 0.03378179 0.000684 0.418

PSMB3 Proteasome subunit beta 3 0.135521691 0.000908 0.418

PSMD10 Proteasome 26S subunit, non-ATPase 10 -0.152847334 0.000283 0.418

HIST1H2BG Histone cluster 1 H2B family member g 0.112335029 0.000385 0.418

SNRPG Small nuclear ribonucleoprotein polypeptide G 0.149342222 0.000241 0.418

DCTN5 Dynactin subunit 5 0.119709276 0.000526 0.418

CAPZA1 Capping actin protein of muscle Z-line subunit alpha 1 0.145481101 0.000343 0.418

GT_HI-vs-GT_PI

NEFM Neurofilament, medium polypeptide -1.4062788 0.00000032 0.0106

MAPT Microtubule associated protein tau -1.83338262 0.00000206 0.0246

MERTK MER proto-oncogene, tyrosine kinase 1.01973984 0.00000295 0.0246

MRC1 Mannose receptor, C type 1 1.01068439 0.00000588 0.029

GLIPR2 GLI pathogenesis related 2 0.86823054 0.00000688 0.029

SLC2A3 Solute carrier family 2 member 3 1.26464786 0.00000736 0.029

SLCO2B1 Solute carrier organic anion transporter family member 2B1 0.84589762 0.00000911 0.029

SRPX2 Sushi repeat containing protein, X-linked 2 1.27391664 0.00000938 0.029

CD14 CD14 molecule 1.33965561 0.00000996 0.029

MSR1 Macrophage scavenger receptor 1 1.17709016 0.00001044 0.029

C1QB Complement C1q B chain 0.83761875 0.00001224 0.0313

STAC2 SH3 and cysteine rich domain 2 -1.18651859 0.00001325 0.0313

CHRNA3 Cholinergic receptor nicotinic alpha 3 subunit -0.94702121 0.00001433 0.0313

CTGF Connective tissue growth factor 1.32968345 0.00001505 0.0313

CASP10 Caspase 10 0.66524239 0.00001683 0.033

TLR4 Toll like receptor 4 1.40463223 0.00001948 0.036

MS4A6A Membrane spanning 4-domains A6A 0.91872666 0.00002886 0.0494

C3AR1 Complement component 3a receptor 1 1.07948921 0.00003202 0.0494

CMAHP Cytidine monophospho-N-acetylneuraminic acid hydroxylase, pseudogene 0.79185305 0.00003378 0.0494

SRGN Serglycin 1.37684391 0.00003424 0.0494
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Figure 1: Continued.
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(MSigDB), it has been widely used as biological processes
and diseases databases in metabolic disease and cancer.
However, the increasing heterogeneity within gene sets is
harmful to the utility of the database. Concerned with this
situation, the hallmark gene sets were created as a part of
MSigDB [8]. Each hallmark conveys a specific biological
process and displays a coherent expression, which provides
refined inputs for gene enrichment analysis. P value ≤0.05
after the correction was used as a threshold. The modules
of interest were visualized using R software.

2.8. Statistics. The GraphPad Prism (Prism 8 for Windows,
GraphPad Software Inc., San Diego, CA, USA) software
was used for statistical analysis. Data obtained from the
experiments are reported as the mean ± standard deviation
(SD). The difference between the two groups was deter-
mined using Student’s t-test. A P value of less than 0.05
was considered statistically significant.

3. Results

3.1. Differential Expression Gene Analysis from Microarray
Data. We analyzed the expression profiles of genes in 2
healthy peri-implant bone tissue samples, 6 peri-implantitis
bone tissues samples, 8 healthy gingival tissue samples, and
7 peri-implantitis gingival tissues samples. The results
showed that 930 upregulated mRNAs and 1189 downregu-

lated genes were identified in BT_HI-vs-BT_PI. Then 1735
significantly upregulated genes and 715 downregulated
mRNAs were identified in GT_HI-vs-GT_PI. The list of
top 20 DEGs is showed in Table 1.

To test the quality of the two-trait sample groups within
expression profiles, the principal component analysis was
used, as showed in Figure 1(a). The results of PCA analysis
showed that the healthy bone tissue expression profiles and
PI bone tissue of patients’ expression profiles could be well
distinguished, but there was a significant overlap between
PI gingival tissue and healthy gingival tissue.

The expression pattern clustering the two-trait sample
groups were shown in Figure 1(b). Clustering analysis of
the expression patterns of genes with significant differences
can adequately find the common points of expression
among different genes and infer the similarity of gene func-
tions according to the similarity of expression patterns.
According to the results of the clustering analysis of expres-
sion patterns, the expression trends of gene groups with sim-
ilar expression patterns in each sample can be expressed by
curves. The distance calculation algorithm was used, the
sample was Spearman, the gene was Pearson, and the clus-
tering method was Hcluster.

3.2. Functional Enrichment Analysis of DEGs from
Microarray Data. To test the biological function of the iden-
tified genes, information from differentially expressed genes

GO:0040017: Positive regulation of locomotion
GO:0002764: Immune response-regulating signaling pathway
GO:0001816: Cytokine production
GO:1901699: Cellular response to nitrogen compound
GO:0019221: Cytokine-mediated signaling pathway
GO:0010942: Positive regulation of cell death
GO:0001568: Blood vessel development
GO:0002274: Myeloid leukocyte activation
GO:0060627: Regulation of vesicle-mediated transport
GO:0019882: Antigen processing and presentation
R-HSA-5653656: Vesicle-mediated transport
GO:0046649: Lymphocyte activation
GO:0030029: Actin filament-based process
GO:0042330: Taxis
GO:0043062: Extracellular structrure organization
R-HSA-109582: Hemostatis
GO: 0050900: Leukocyte migration
GO: 0051345: Positive regulation of hydrolase activity
GO: 0007169: Transmembrane receptor protein tyrosine kinase signaling pathway
GO: 0048729: Tissue morphogenesis

BT
_P

I_
vs

_B
T_

H
I

BT
_P

I_
vs

_G
T_

H
I

0 2 3 4 6 10 20

−log10 (P)

(c)

Figure 1: Visualization of differentially expressed gene and enrichment analysis. (a) Principal component analysis of microarray expression
profiles of bone and gingival tissue. (b) Cluster analysis of microarray expression profiles of bone and gingival tissue. (c) Heatmap of
enriched terms across the differentially expressed gene, colored by P values.

5Computational and Mathematical Methods in Medicine



were applied to the enrichment analysis using Metascape.
Reactome gene sets, canonical pathways, CORUM, gene
ontology (GO), and Kyoto encyclopedia of genes and
genomes (KEGG) were used to obtain comprehensive func-
tional annotations from multiple gene repositories for
enrichment analysis.

The top 10 GO terms and pathways with the lowest P
value of each group were shown in Table 2, and the results
of the two groups enrichment were shown in Figure 1(c).
DEGs were enriched in the formation of cellular responses
to external stimuli in bone tissue. Moreover, cytokine pro-
duction, lymphocyte activation, immune response regulating
signaling pathway, and blood vessel development were the
top GO biology process or pathways of DEGs in gingival tis-
sue. It is suggested that the differential biological processes
involved in the expression of gingival tissue genes and bone
tissue genes may be the mechanism of spatiotemporal het-
erogeneity in peri-implantitis.

3.3. Weighted Gene Coexpression Network Analysis of
Microarray Data. The individual gene variance in each sam-
ple was calculated according to the normalization of the
expression profile. The unsigned network was constructed,
selecting genes with a standard deviation higher than 1.2.
The expression profiles and traits data consisted of 23 sam-
ples, 18357 genes, and 4 traits. Cluster analysis of all the
samples was shown in Figure 2(a).

To ensure that the network is unsigned, the soft thresh-
old value β = 6 was chosen. The expression profiles were
transformed into the adjacency matrix and later transformed

into the topological matrix. Based on the topological overlap
measure (TOM), we used the average-linkage hierarchical
clustering method to cluster genes. According to the stan-
dard of a hybrid dynamic cut tree, the minimum number
of bases for each gene network module was 30. After deter-
mining the gene module with a dynamic splicing method,
we calculate the eigengenes of each module, then cluster
the modules, merge the nearer modules into new modules,
and set the height = 6:94e − 17. Only three modules were
obtained, as shown in Figure 2(b), in which the grey module
is unable to aggregate into the gene set of other modules.

The gene significance of the members of module blue
and turquoise was shown in Figure 2(c). The scatter plot of
module kME value and gene significance value shows that
higher the core value, smaller the P value, and the module
members are more representative of the module
characteristics.

3.4. Weighted Gene Coexpression Network Analysis of RNA-
Seq Data. To test the quality of RNA sequencing within
expression profiles, the principal component analysis was
used, as shown in Figure 3(a). The results of PCA analysis
showed that healthy gingival tissue expression profiles and
PI gingival tissue of patients’ expression profiles could be
well distinguished, compared with the microarray data.
Cluster analysis of all the samples was shown in
Figure 3(b), and the gene dendrogram with traits was shown
in Figure 3(c). It could be seen that genes were allocated to
11 modules, which could be used for function and module
correlation analysis. According to the eigengenes of each

Table 2: List of top 10 enriched GO terms and pathways.

GO Category Description Count % Log10 (P) Log10 (q)

BT_HI-vs-BT_PI

R-HSA-8953897 Reactome gene sets Cellular responses to external stimuli 105 5.1 -15.97 -11.66

hsa04141 KEGG pathway Protein processing in endoplasmic reticulum 46 2.23 -12.45 -9.03

GO:0006888 GO biological processes ER to Golgi vesicle-mediated transport 54 2.62 -12.3 -8.94

R-HSA-6798695 Reactome gene sets Neutrophil degranulation 86 4.18 -10.54 -7.42

R-HSA-5619115 Reactome gene sets Disorders of transmembrane transporters 43 2.09 -9.82 -6.99

GO:0048514 GO biological processes Blood vessel morphogenesis 105 5.1 -8.45 -5.95

GO:0006412 GO biological processes Translation 108 5.25 -8.39 -5.91

GO:0044257 GO biological processes Cellular protein catabolic process 110 5.34 -7.33 -5.06

R-HSA-72766 Reactome gene sets Translation 52 2.53 -6.6 -4.44

GO:0060627 GO biological processes Regulation of vesicle-mediated transport 81 3.93 -6.57 -4.42

GT_HI-vs-GT_PI

GO:0002274 GO biological processes Myeloid leukocyte activation 194 8.1 -45.73 -41.42

GO:0046649 GO biological processes Lymphocyte activation 200 8.35 -40.59 -36.88

GO:0040017 GO biological processes Positive regulation of locomotion 162 6.76 -33.22 -29.8

GO:0050900 GO biological processes Leukocyte migration 143 5.97 -31.7 -28.56

GO:0001568 GO biological processes Blood vessel development 183 7.64 -29.38 -26.44

GO:0043062 GO biological processes Extracellular structure organization 124 5.18 -28.7 -25.81

GO:0001816 GO biological processes Cytokine production 179 7.47 -25.89 -23.11

R-HSA-109582 Reactome gene sets Hemostasis 147 6.14 -23.42 -20.68

GO:0002764 GO biological processes Immune response-regulating signaling pathway 153 6.39 -22.13 -19.41

GO:0030029 GO biological processes Actin filament-based process 164 6.84 -21.6 -18.9
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Figure 2: Weighted gene coexpression network analysis of microarray data. (a) Sample dendrogram and trait heatmap: the red
representation in the graph is marked as nonzero samples in the trait data. (b) Gene dendrogram with trait: this figure is divided into
three parts. The first part is the phylogenetic clustering tree of genes. The second part shows the module color display of the
corresponding genes. The third part shows the correlation between the genes in each character-related sample and its module. The
redder the color, the more positive the correlation. The negative correlation is blue. (c) Gene saliency map of module blue and turquoise
members: scatter plot of module kME value and gene saliency value, higher the core value, smaller the P value, and the module members
can represent the module characteristics better.
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Figure 3: Continued.
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module, the correlation between these modules and each
trait was calculated, as shown in Figure 3(d).

kME was used to evaluate the value of effective connec-
tivity between hub genes and to identify module members.
Selecting the kME > 0:7 as the members of the modules, also
named hub genes, can represent better the expression trend
of the entire module. To reveal the functional correlation
with gene module members, all the modules hub members

were representative members of the module for gene enrich-
ment analysis; the results were shown in Figure 3(e) and
Table 3. Considering the results of the correlation analysis
between modules and traits, and correlation analysis
between modules and functions, the kMEpurple, kMEgreen,
and kMEred modules were selected as the key gene modules.
The gene significance of the members of the three modules
was shown in Figure 4(a).
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Figure 3: Weighted Gene coexpression network analysis of RNA-seq data. (a) Principal component analysis of RNA-seq expression profiles
of gingival tissue. (b) Sample dendrogram and trait heatmap of RNA-seq data. (c) Gene dendrogram with a trait of RNA-seq data. (d)
Module-trait correlation thermograms: correlation of thermograms between modules and given traits. The closer the correlation between
trait and module to the absolute value of 1; the trait is related to the gene function of the module. (e) Heatmap of enriched terms across
module gene members, colored by P values.
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Table 3: Enrichment analysis results of modules.

Module GO Description Log10 (P)

kMEblack

GO:0002250 Adaptive immune response -7.69

GO:0042113 B cell activation -6.40

GO:0097190 Apoptotic signaling pathway -6.12

GO:0002285 Lymphocyte activation involved in immune response -4.83

GO:0001816 Cytokine production -4.63

kMEblue

GO:0001816 Cytokine production -35.63

GO:0030155 Regulation of cell adhesion -33.09

GO:0002250 Adaptive immune response -32.10

GO:0002366 Leukocyte activation involved in immune response -28.75

GO:0019221 Cytokine-mediated signaling pathway -26.74

kMEcyan

GO:0002366 Leukocyte activation involved in immune response -14.65

GO:0019221 Cytokine-mediated signaling pathway -14.53

hsa04060 Cytokine-cytokine receptor interaction -13.45

GO:0042330 Taxis -11.47

GO:0009617 Response to bacterium -10.84

kMEdarkred

R-HSA-6809371 Formation of the cornified envelope -6.80

GO:0042552 Myelination -3.54

GO:0008203 Cholesterol metabolic process -3.36

GO:0016485 Protein processing -2.38

M5885 NABA matrisome associated -2.22

kMEgreen

GO:0008544 Epidermis development -26.58

GO:0001942 Hair follicle development -12.11

GO:0048729 Tissue morphogenesis -9.51

GO:0008610 Lipid biosynthetic process -6.79

GO:0000904 Cell morphogenesis involved in differentiation -6.75

kMElightcyan

GO:0042113 B cell activation -10.34

GO:0002366 Leukocyte activation involved in immune response -8.24

GO:0002253 Activation of immune response -8.06

R-HSA-1280218 Adaptive immune system -7.80

GO:0002250 Adaptive immune response -7.76

kMElightgreen

GO:0070268 Cornification -13.86

GO:0008544 Epidermis development -11.51

GO:0070841 Inclusion body assembly -6.97

R-HSA-1461957 Beta defensins -4.12

GO:0033559 Unsaturated fatty acid metabolic process -2.86

kMEmidnightblue

GO:0009617 Response to bacterium -7.61

GO:0002366 Leukocyte activation involved in immune response -7.51

hsa05150 Staphylococcus aureus infection -6.94

GO:0007249 I-kappaB kinase/NF-kappaB signaling -6.77

GO:0001816 Cytokine production -6.55

kMEpurple

GO:0000904 Cell morphogenesis involved in differentiation -4.37

GO:0048729 Tissue morphogenesis -3.87

GO:0048598 Embryonic morphogenesis -3.62

GO:0022604 Regulation of cell morphogenesis -3.52

GO:0030155 Regulation of cell adhesion -3.29

kMEred

R-HSA-156902 Peptide chain elongation -7.09

R-HSA-201681 TCF dependent signaling in response to WNT -4.97

GO:0033131 Regulation of glucokinase activity -3.45
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3.5. Signaling Pathway Analysis and Gene Expression
Analysis of Key Gene Modules. The Hallmark gene sets were
used as a source to reveal the critical biological process or
signaling pathway of key gene modules using gene enrich-
ment analysis. As shown in Figure 4(b), IL2/STAT5 signal-
ing pathway, TNFα signaling pathway via NFκB, and
angiogenesis were enriched in kMEpurple module. Hedge-
hog signaling pathway, Wnt β-catenin signaling pathway,
and IL2/STAT5 signaling pathway were enriched in kME-
green module. Peroxisome, IL2/STAT5 signaling pathway,
and epithelial-mesenchymal transformation process were
enriched in kMEred module. All the enrichment results of
key modules contained IL2/STAT5 signaling pathway. It is
suggested that IL2-mediated activation of immune cells
could be a critical mechanism in PI.

The gene expression of all the pathway members in dif-
ferent modules was plotted in Figure 5. The expression of
some genes was inconsistent in bone and gingival tissues.
More gene expressions were inconsistent in microarray
and RNA sequencing data. These results confirm once again
that difference in the expression of gingival tissue genes and
bone tissue genes could be the mechanism of spatiotemporal
heterogeneity in PI. The accuracy of gene expression profiles
detected with microarray is inconsistent with RNA
sequencing-based on next-generation sequencing.

4. Discussion

The development of molecular biology and bioinformatics
has revolutionized pathology. Diseases are no longer consid-
ered to be caused by abnormal expression or single genes
structural changes. Dynamic network relationships between
genes and multiple negative feedbacks of signal pathways
are considered important regulatory models of homeostasis
against pathological factors [9]. To analyze the dynamic
changes of gene expression profiles, weighted gene coexpres-
sion regulation analysis was created to explore the relation-
ship between gene networks and phenotypes. It includes
three steps: calculation of correlation coefficient between
genes, constructed coexpression network, and determination
of gene module with traits and function [5]. In this study, we
firstly used WGCNA to reveal the PI mechanism and then
identified IL2/STAT5 signaling pathway as a critical element
in three key modules.

Previous studies demonstrated that the expression of
cytokines stimulated by exogenous factors, degradation of
the extracellular matrix [10], and cellular oxidative stress

[11] is PI basic biological processes. This study confirmed
these conclusions through the analysis of public databases.
Moreover, through the comprehensive analysis of expression
profiles, we found differences in gene expression patterns
between bone and gingival tissues in PI. The differential
genes of bone tissue were related to vascular growth and
protein translation, processing, and transportation, while
the differential genes in gingival tissues are involved in
immune stress response. These differences in biological pro-
cesses and cellular behavior expose the role of spatiotempo-
ral heterogeneity in PI development. Previous studies have
not considered the effects of different tissue behavior on dis-
ease occurrence. The gingival tissue is the first barrier against
exogenous stimulants such as food debris, dental plaque
[12], and implant dissolution [13]. It also plays a pioneering
role in local tissue inflammation induced by host stress.
Moreover, fibroblasts have been identified to be involved in
PI pathogenesis by enhancing vascular and matrix degrada-
tion [14]. In clinical practice, uncontrolled PI has a poor
prognosis leading to bone resorption, implant loosening, or
loss. The proliferation of osteoclasts and apoptosis of osteo-
blasts is the cellular behaviors leading to this outcome. At
the molecular level, active protein translation, processing,
modification, and transport are the factors needed to com-
plete this process.

The results of functional module gene enrichment anal-
ysis showed that IL2/STAT5 signaling pathway, TNFα sig-
naling pathway via NFκB, and angiogenesis were enriched
in kMEpurple module. Hedgehog signaling pathway, Wnt
β-catenin signaling pathway, and IL2/STAT5 signaling path-
way were enriched in kMEgreen module. Peroxisome, IL2/
STAT5 signaling pathway, and epithelial-mesenchymal
transformation process were enriched in kMEred module.
All the enrichment results of key modules contain IL2/
STAT5 signaling pathway, has been suggested that IL2-
mediated activation of immune cells play a critical mecha-
nism in PI. IL2 receptor-dependent nuclear transcription
factor STAT5 plays a key role in activating Treg cells, and
Treg cells negatively regulate the body’s immune response
in vivo [15]. They usually play an important role in main-
taining self-tolerance and avoiding body-injury by the
immune response, but they also participate in immune sur-
veillance and chronic infection [16, 17]. As an important
pathway of host stress, the activation of Treg cells mediated
by IL2/STAT5 signaling pathway is activated in PI gingival
tissue. To some extent, this blocked the cascade amplifica-
tion of inflammation signal and alleviated local tissue

Table 3: Continued.

Module GO Description Log10 (P)

GO:0051013 Microtubule severing -3.32

GO:0090277 Positive regulation of peptide hormone secretion -3.28

kMEroyalblue

GO:0001503 Ossification -4.32

GO:0001501 Skeletal system development -3.78

hsa04514 Cell adhesion molecules (CAMs) -3.35

GO:0045596 Negative regulation of cell differentiation -3.02

GO:0010942 Positive regulation of cell death -2.21

11Computational and Mathematical Methods in Medicine



1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4
0.2

Module membership vs. gene significance
cor = 0.75, p = 1e-99

Module membership vs. gene significance
cor = 0.69, p < 1e-200

Module membership vs. gene significance
cor = 0.89, p = 4.3e-149

Module membership purple module
G

en
e s

ig
ni

fic
an

ce

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.40.20.0

0.2

0.0

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.40.20.0

0.2

0.0

Module membership green module

G
en

e s
ig

ni
fic

an
ce

Module membership red module

G
en

e s
ig

ni
fic

an
ce

(a)

Figure 4: Continued.

12 Computational and Mathematical Methods in Medicine



M5939: HALLMARK P53 PATHWAY
M5908: HALLMARK ANDROGEN RESPONSE
M5907: HALLMARK ESTROGEN RESPONSE LATE
M5947: HALLMARK IL2 STAT5 SIGNALING
M5890: HALLMARK TNFA SIGNALING VIA NFKB
M5934: HALLMARK XENOBIOTIC METABOLISM
M5944: HALLMARK ANGIOGENESIS
M5916: HALLMARK APICAL SURFACE

0.0 0.5 1.0 1.5 2.0 2.5
-log10 (P)

-log10 (P)

-log10 (P)

M5906: HALLMARK ESTROGEN RESPONSE EARLY

M5906: HALLMARK ESTROGEN RESPONSE EARLY

M5907: HALLMARK ESTROGEN RESPONSE LATE

M5907: HALLMARK ESTROGEN RESPONSE LATE

M5956: HALLMARK KRAS SIGNALING DN
M5892: HALLMARK CHOLESTEROL HOMEOSTASIS
M5919: HALLMARK HEDGEHOG SIGNALING
M5939: HALLMARK P53 PATHWAY
M5909: HALLMARK MYOGENESIS
M5942: HALLMARK UV RESPONSE DN
M5945: HALLMARK HEME METABOLISM
M5908: HALLMARK ANDROGEN RESPONSE
M5895: HALLMARK WNT BETA CATENIN SIGNALING
M5891: HALLMARK HYPOXIA
M5935: HALLMARK FATTY ACID METABOLISM
M5947: HALLMARK IL2 STAT5 SIGNALING

M5939: HALLMARK P53 PATHWAY
M5891: HALLMARK HYPOXIA

M5947: HALLMARK IL2 STAT5 SIGNALING
M5949: HALLMARK PEROXISOME

M5930: HALLMARK EPITHELIAL MESENCHYMAL TRANSITION

M5942: HALLMARK UV RESPONSE DN

0 2 4 6 8 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

(b)

Figure 4: Significance analysis and signaling pathway analysis of key gene Modules. (a) Gene saliency map of module purple, green, and red
members. (b) Column graphs of enriched terms across three modules genes members, colored by P values.
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necrosis caused by inflammation and infection. However,
this response is also an important way to induce host
immune tolerance, causing persistent infection, and repeated
clinical conditions [18]. This provides us with some clinical
implications: IL2/STAT5 pathway blockers such as
CMD178 [19] or pimozide [20] could be helpful in the PI
treatment and inhibit Treg cell activation at the pathway
and molecular level.

In summary, there were differences in gene expression
patterns and enriched biological process between bone and
gingival tissues in PI, which means that biological processes
and cellular behavior reveal the spatiotemporal heterogene-
ity in PI development. WGCNA and Hallmark gene enrich-
ment analysis of the gingival tissue expression profile
showed that IL2-mediated activation of immune cells could
be a critical PI mechanism. As a new clinical treatment alter-
native, it is suggested that IL2/STAT5 pathway blockers
could be helpful in PI treatment.

5. Conclusion

Differential gene and enrichment analysis based on public
data showed differences in gene expression patterns and bio-
logical process between bone and gingival tissues in PI. This
spatial-temporal heterogeneity is reflected in the formation
of cellular responses to the external stimuli, which was
enriched in bone tissue. In contrast, cytokine production,
lymphocyte activation, immune response regulating signal-
ing pathway, and blood vessel development were enriched
in gingival tissue. WGCNA and Hallmark gene enrichment
analysis of the gingival tissue expression profile showed that
IL2-mediated activation of immune cells could be a critical
PI mechanism. As a new clinical treatment, it is suggested
that IL2/STAT5 pathway blockers could be helpful in PI
treatment.
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