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Abstract

Analyses of similarities and changes in protein conformation can provide important information regarding protein function
and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to
quantify the similarities of different protein conformations. However, instead of examining individual conformations it is in
many cases more relevant to analyse ensembles of conformations that have been obtained either through experiments or
from methods such as molecular dynamics simulations. We here present three approaches that can be used to compare
conformational ensembles in the same way as the root mean square deviation is used to compare individual pairs of
structures. The methods are based on the estimation of the probability distributions underlying the ensembles and
subsequent comparison of these distributions. We first validate the methods using a synthetic example from molecular
dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure
determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of
conformations better than standard single-molecule refinement.
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Introduction

Protein structures play an important role in molecular biology,

and are used for example in protein engineering studies, in drug

design and as basis for understanding biological mechanisms at the

molecular level. However, not only the average structure but also

the dynamics around this structure plays a role in function [1].

These dynamical features of proteins may be highlighted by

presenting ensembles of conformations instead of individual

representative structures. Such ensembles can either be deter-

mined experimentally [2–8] or using methods such as molecular

dynamics (MD) simulations [1]. In addition to the intrinsic

dynamics of protein molecules, additional variability in experi-

mental structures may also arise from uncertainties and statistical

noise during experiments and structure determination. In order to

reflect this variability, experimental structures should in general be

presented as ensembles of conformations [4,9,10].

The ability to compare different protein conformations is an

important tool in structural biology [11]. For example, the

structural changes that occur between the apo- and ligand-bound

forms of a protein may provide important clues as to the

mechanism of binding. Also, structural similarity between proteins

is often used as a starting point for determining and understanding

function. Such comparisons typically rely on the calculation of the

root mean square deviation (RMSD), or other structural similarity

measures, between the atomic coordinates of the different

conformations [12].

In a pioneering study, Brüschweiler extended the RMSD

measure to ensembles of conformations [13]. In particular, he

defined an inter-ensemble RMSD (eRMSD), whose square value

is the average mean square deviation between conformations in

two ensembles. A very similar measure has recently been used to

compare multiple sets of MD trajectories [14] and different

methods for protein structure determination [7]. One drawback of

the eRMSD is that in general it is non-zero even when the two

ensembles are identical, making it difficult to use the eRMSD

quantitatively. Also, as the calculations involve the (isotropically

distributed) covariance matrices, the eRMSD potentially neglects

important contributions from higher order moments of the

distributions of conformations. A related measure that has been

used to examine convergence of molecular simulations is also

based on the covariance matrix [15,16], and may hence suffer

from the same problems.

We here describe three alternative methods to compare

ensembles of conformations. The methods are all based on the

idea that two ensembles can be compared by estimating the

probability densities underlying the ensembles. Using distance

measures for probability densities that are based in information

theory we can then provide a direct measure of the similarity

between protein ensembles.

We first explore the properties of the methods and validate them

by examining approximately normally distributed conformations

obtained from MD simulations. We then use the methods to revisit

the problem of ensemble averaging during protein structure

determination from NMR data[17,18]. In particular, we explore

to what extent structure determination methods are able to

recover the correct distribution of conformations using experi-

mental data as input. This is an important problem that has so far

received very little attention due to the lack of methods for

estimating and comparing distributions of conformations. Using

synthetic data we find that an ensemble that has been determined

by ensemble-refinement is more similar to a reference ensemble

than an ensemble determined using standard single-molecule

refinement.
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Methods

Overall strategy for ensemble comparison
Our strategy towards a quantitative comparison of conforma-

tional ensembles is first to estimate a probability density for each

ensemble and subsequently to compare these densities. We thus

view a particular set of conformations as a sample from an

underlying distribution and aim to model this distribution based

on the sample at hand. By comparing the probability densities we

are not only able to test whether the conformations in the two

ensembles are similar, but also whether they occur with the same

frequency. The latter point is an important criterion in many

applications such as for example in the analysis of convergence of

MD simulations [19] as well as of methods for protein structure

determination [7,9].

The problem of comparing two ensembles is thus broken down

into two steps [20]. We first estimate the densities from the

ensembles and secondly we compare the individual densities. The

three methods described further below present three complemen-

tary methods for estimating the densities, and we here first focus

on how to compare the individual probability densities.

Given two ensembles, A and B, and an estimate of the

corresponding density functions, pA and pB, the similarity between

A and B is given as the distance between pA and pB. We here use

the word distance in a more general meaning including for

example measures that may not be a metric in the mathematical

sense. Several methods exist for comparing probability densities

[21]. Because we want to be able to apply the methods generally

we chose measures from information theory that do not rely on a

particular form of the probability density. A standard measure of

the similarity of two probability densities is the Kullback-Leibler

divergence [22,23]:

DKL pA,pBð Þ~
ð

pA xð Þlog
pA xð Þ
pB xð Þ dx ð1Þ

While the Kullback-Leibler divergence is not a true metric it is

commonly used as a measure of the similarity between two

distributions. In particular DKL pA,pBð Þ is zero only when pA~pB,

and is positive otherwise.

In an information theory context, DKL pA,pBð Þ is also known as

the relative entropy, and is related to the information lost about pA

if only pB is known [23]. In thermodynamics, the Kullback-Leibler

divergence can be thought of as the (non-equilibrium) free-energy

difference between the two ensembles [24,25]. Thus, DKL is a

natural choice for a method for comparing two protein ensembles.

If the score is zero the two ensembles represent the same amount

of information and have been derived from the same free energy

surface.

A noteworthy property of DKL is that it is not symmetric, i.e. in

general DKL pA,pBð Þ=DKL pB,pAð Þ. One approach to obtain a

symmetric measure is to use the so-called J-divergence defined as

the average of DKL pA,pBð Þ and DKL pB,pAð Þ [22,26].

Another symmetrized, and ‘smoothed’, version of DKL is the

related Jensen-Shannon divergence [27,28]:

DJS pA,pBð Þ~0:5: DKL pA, pAzpBð Þ=2ð ÞzDKL pB, pAzpBð Þ=2ð Þð Þ ð2Þ

In addition to being symmetric, it can be shown that the Jensen-

Shannon divergence is the square of a metric [29]. We in general

prefer the Jensen-Shannon divergence because it is well-defined

even in the situation where one density is zero in regions where the

other is not.

For probability distributions of discrete variables the integrals in

the calculations of DKL and DJS are substituted by summations.

Calculation of ensemble similarities
We devised three complementary methods for calculating

ensemble similarities. These three methods (harmonic ensemble

similarity (HES), a clustering based similarity and a dimensionality

based similarity) are all described in more detail in the results

section and we here provide only some of the more technical

details. We applied all three methods to a series of protein

ensembles that were generated as described in the subsection

Molecular dynamics and structure determination below.

First, the harmonic ensemble similarity was calculated using Eq.

7. In those calculations the mean positions of the Ca atoms were

estimated as the averages over the ensemble. The covariance

matrices were estimated using a recently described shrinkage

approach [30,31]. Estimates of the errors of DHES of the full

ensembles A–C were obtained as the standard deviation over 100

bootstrap samples [32] from the ensembles. Also, we validated that

the values calculated using the shrinkage estimator gave very

similar results to the standard calculations of covariances when the

ensembles were large.

Secondly, the clustering based ensemble similarities were

calculated using the recently described Affinity Propagation (AP)

clustering algorithm [33] and a discretized version of Eq. 2 to

estimate the Jensen-Shannon divergence between the ensembles.

In the case of the three reference ensembles A–C we used the Ca

RMSD as input to the algorithm. For the calculations used to

analyse ensemble averaging in structure determination we

calculated the RMSD over all non-hydrogen atoms. We used

the negative RMSD between two conformations as a measure of

their similarity. The number of clusters in the AP algorithm is

determined by the preference for each conformation to act as a

cluster centre, and we varied this number to obtain different

number of clusters. The results for the reference ensembles A–C

were obtained using preferences between 2100 and 20.1, and the

results in the study of ensemble refinement were obtained using

values between 2100 and 20.5. We also tested the clustering

method described for analysing convergence [19], and obtained

similar results although the method was not as efficient as AP for

separating the B and C ensembles.

The final method for calculating ensemble similarities is based

on a dimensionality reduction approach and consists of two steps.

First, we use the Stochastic Proximity Embedding (SPE) algorithm

[34,35] to represent the high-dimensional conformation space in a

low-dimensional subspace. The algorithm attempts to find low

dimensional projections that minimize the stress function in Eq. 8

in the results section. By minimizing S we obtain low dimensional

vectors whose pairwise distances are close to the conformational

similarities. The basic step in the SPE algorithm involves an

update of the positions of the vectors in the subspace. The size of

this update is determined by a learning rate which we decreased

from 1.0 to 0.001 over 500 steps. At each value of the learning rate

we performed 6?106 update steps for the calculations using

ensembles A–C (total of 7500 conformations) and 2?106 update

steps for the calculations using the reference and NOE-derived

ensembles (total of 2307 conformations). We verified that these

values of the parameters in SPE were sufficient to find low values

of S, and that the results could be reproduced using multiple

independent runs.

In the second step of the calculations we use kernel density

methods to estimate the densities in the projected subspaces [36–

38]. The results described here were obtained using Gaussian

kernels, and in the case of density estimates in dimensions larger

Similarity for Ensembles
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than one we used product kernels. We used a plug-in estimator for

the kernel bandwidths [39], but have verified that other kernel

types and bandwidth estimates give very similar results.

For comparison with the ensemble RMSD method we

calculated the squared value of the eRMSD using its definition

[13]:

eRMSD A,Bð Þ2~ MNð Þ{1
XM,N

l,k~1

RMSD al ,bk
� �2 ð3Þ

where al is the l’th structure in the A ensemble, bk is the k’th

structure in the B ensemble, and M (N) is the number of

conformations in the A (B) ensemble.

Molecular dynamics and structure determination
In this section we describe how the different structural

ensembles used in the study were generated. For the first

validation part of our study we generated three ensembles (A–C)

of the GB1 domain of protein G using MD simulations. The

starting structure for the simulations was the first model in the

PDB entry 3GB1. We used the polar hydrogen model [40] and a

potential of mean force description of the solvent [41]. In addition

we applied mass weighted harmonic restraints with energy:

E~k
X

mi xi{x
ref
i

� �2

ð4Þ

In this equation mi is the mass of the i’th atom, xi is its position

and x
ref
i is the position in the reference conformation. The

strength of the restraints is determined by k, the force constant,

chosen to be 0.1, 0.01 and 0.001 in ensemble A, B and C,

respectively. The structure was first heated to 300 K over a period

of 0.2 ns and then equilibrated for further 2 ns at this temperature

before final sampling for 10 ns. Structures were saved every 4 ps

giving rise to 2500 structures in each ensemble.

In the second part of our study we analysed to what extent

structure determination methods can recover the correct distribu-

tion of conformations. We thus generated a reference ensemble of

the GB1 domain using an MD simulation with the CHARMM22

topology format and force-field [42] with a modified backbone

potential [43] and a generalized Born solvent model [44]. The

lengths of bonds involving hydrogen atoms were fixed [45], but no

additional restraints were used. The structure was heated to 300 K

during 0.2 ns and then equilibrated for 2 ns before sampling for

59 ns. Structures were extracted every 40 ps giving rise to an

ensemble consisting of 1475 conformations which we subsequently

used to generate synthetic NOE restraints. The native conforma-

tion remained stable throughout the simulation. For example, the

all-atom (excluding hydrogens) RMSD to the starting conforma-

tion is 1.460.1 Å (average and standard deviation over the full

59 ns), with no trend of an increasing RMSD during the

simulation. In the projections of this ensemble that we describe

below, the distribution of conformations appears bimodal. This is

caused by a slight structural rearrangement that occurs after 37 ns

of the simulation. The rearrangement is localized to residues 10,

11, 40 and 41 which are located close to each other in the

structure of Protein G. We note that the corresponding residues in

the related GB3 domain have been shown by NMR spectroscopy

to display long-timescale motion. The average overall RMSD to

the native state is the same before and after the rearrangement.

For the generation of a synthetic NOE dataset we calculated the

distances between all pairs of protons in each conformation, and

then determined effective distances [46] as Sr{3T{1=3. All pairs

where this ‘average’ distance was larger than 5 Å were discarded,

leaving a total of 2221 distance restraints (symmetry related methyl

and ring-protons were treated using pseudo-atoms [47]). Finally,

we classified the pseudo-NOE distance restraints as strong (1.8–

2.4 Å), medium (2.4–3.8 Å) and weak (3.8–5.0 Å), and these

values were then used as lower and upper bounds in structure

determination. While this method for estimating NOEs from MD

simulations neglects certain dynamical effects [48] it has been

shown to work well in practice [49], in particular as the goal is

here to generate a synthetic dataset [50] and not to predict

experimental NOEs.

The synthetic data were subsequently used as input to a

structure determination protocol. To diminish the bias introduced

by using the same force field to generate the data and in the

structure determination protocol we used a different solvation

model [5,51,52] in these calculations. Structure calculation was

performed using biased MD [53] with NOE distance restraints

using a simulated annealing protocol described previously [5]. In

these ensemble simulations Nrep conformations are simulated in

parallel. In practice, if Ncyc cycles of simulated annealing are

carried out one obtains an ensemble consisting of Nrep
:Ncyc

conformations. In this formulation Nrep~1 corresponds to

standard structure determination methods. We carried out

Ncyc~64, 64, 32, 32 and 16 simulated annealing cycles in

simulations with Nrep~1, 2, 4, 8 and 16 molecules, respectively,

and thereby obtained five different ensembles of GB1.

All simulations were performed using the CHARMM molecular

dynamics program [54].

Results

As described in the Methods section, the overall strategy for

comparing structural ensembles is to model each ensemble as a

probability distribution, and then to compare these distributions.

The previous sections outlined the methods used to compare the

probability distributions, and hence the remaining problem is to

estimate the densities from the ensembles. The following three

sections describe three different, yet complementary, approaches

for estimating probability densities from protein ensembles. In

each section we describe the underlying idea and apply the

method to compare three test-ensembles that we generated to test

the methods. In the final part of the Results section we apply all

three methods to a common problem relating to ensemble

refinement using NMR data.

Harmonic ensemble similarity
We model the protein ensemble as generated from a probability

density function. The form of such density functions are, however,

in general unknown and must either be guessed or inferred from

the sample. A commonly used approximation is to assume that the

ensemble is derived from a multivariate normal distribution [55].

When the parameters in this distribution are estimated from the

ensemble, this is known as the quasi-harmonic approximation

because anharmonic contributions may be incorporated indirectly

via the estimated parameters [55]. In this framework, the

probability of observing a conformation, x, is given by:

p xð Þ~ 1

2pð Þn=2 Sj j1=2
exp {

1

2
x{SxTð ÞTS{1 x{SxTð Þ

� �
ð5Þ

Here n is the number of degrees of freedom, Æxæ are the mean

coordinates, S is the covariance matrix that contains information

about the fluctuations of the ensemble, |S| is its determinant and

Similarity for Ensembles
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S{1 is the inverse of S. That is, if we assume that an ensemble A is

drawn from an underlying Gaussian distribution pA xð Þ, we can

estimate pA by estimating SxTA and SA from the ensemble.

When pA and pB are multivariate normal distributions an

analytical solution can be found to the Kullback-Leibler

divergence between the two [21,56].

DKL pA ,pBð Þ~ 1

2
SxTA{SxTBð ÞTS{1

B SxTA{SxTBð Þzlog
S{1

B

�� ��
S{1

A

�� ��
 !

ztr SAS
{1
B {In

� � !
ð6Þ

Here SxTA and SxTB are the means of the two distributions, SA

and SB are the covariance matrices, In is the identity matrix of size

n, and tr() denotes the trace of a matrix.

We have been unable to derive a closed-form expression for DJS

between two normal distributions. Instead we use the symmetrized

J-divergence defined as the average of DKL pA,pBð Þ and

DKL pB,pAð Þ. In the case of two multivariate normal distributions

we term this average the harmonic ensemble similarity (DHES ):

DHES pA,pBð Þ~ 1

4
SxTA{SxTBð ÞT S{1

A zS{1
B

� �
SxTA{SxTBð Þ

�
ztr S{1

A SBzSAS{1
B {2In

� �� ð7Þ

The first term in DHES is related to the Mahalanobis distance

between the two distributions [57], and is zero only when the two

means are identical. This term can be interpreted as a generalized

RMSD between the two mean conformations, giving different

weights to each atom depending on how much it fluctuates. The

second term in DHES depends only on the covariances of the two

ensembles, and is zero when SA~SB. DHES is therefore a

measure of the similarity between two ensembles that gives weight

to both differences in the mean conformation as well as differences

in the fluctuations away from this mean. Thus, DHES will be zero

only when both the mean structures and the fluctuations are

identical in the two ensembles. The harmonic ensemble similarity

score only explicitly includes the first two moments of the

distribution of conformations. In this sense, it is similar in spirit

to the eRMSD [13] and the covariance-overlap [16], and may not

be applicable for ensembles that have more complicated

distributions of conformations. A strength of DHES is, however,

that it is a direct measure of the similarity of the distribution

functions, and therefore has a clear statistical meaning. Further,

DHES is zero when the two ensembles are identical and non-zero

otherwise.

In order to demonstrate the ability of DHES to quantify the

similarity between ensembles, we used MD simulations to generate

three sets of conformations, termed A, B and C, of the 56 residue

GB1 domain of Protein G. In each of the three simulations we

applied mass-weighted harmonic restraints to all atoms, and the

three simulations differed by the force-constant used for these

restraints as follows A (k = 0.1), B (k = 0.01) and C (k = 0.001). As

the force constant is decreased, the amplitude of atomic

fluctuations become larger and the ensembles thus become

increasingly more ‘broad’. We extracted 2500 structures from

each MD simulation and all of these structures were used in the

calculations described below unless otherwise stated. By construc-

tion, the three ensembles were generated so that A and C would

both be more similar to ensemble B than to each other. In practice

we find that the three ensembles have similar average structures,

with the Ca RMSDs of the mean structures being 0.2 Å (A vs. B),

0.7 Å (A vs. C) and 0.6 Å (B vs. C). On the other hand the

ensembles differ in how ‘broad’ they are. For example the mean

pairwise RMSD within ensemble A is only 0.3 Å, whereas it is

0.5 Å and 0.9 Å for B and C, respectively. Representative

structures from the three ensembles are shown in Fig. 1A–C.

We note that the harmonic restraints do not ensure that the

ensembles conform precisely to a multivariate normal distribution

because of the additional presence of the MD force field.

In the comparison of the three ensembles we focus on the 56

Ca-atoms giving a total of n = 3?56 = 168 degrees of freedom (x,y,z

coordinates for each Ca-atom). As input to the calculation of DHES

we need to estimate the mean and the covariance matrix of these

degrees of freedom from the three ensembles. The mean

conformation was estimated as the average over the ensemble.

The standard maximum-likelihood method for estimating the

covariance matrix, S, involves the calculation of each of the matrix

elements sij~S xi{SxiTð Þ xj{SxjT
� �

T individually. However,

while this estimate of S is (almost) unbiased for an infinitely large

dataset, it is known that a more robust overall estimate for S can

be obtained using a so called shrinkage estimate when the number

of data points is small compared to the number of degrees of

freedom [58]. The idea behind the shrinkage approach is that an

improved (in terms of total mean square error) estimate can be

obtained by simultaneously estimating all elements of the

covariance matrix. Importantly, the standard (maximum likeli-

hood) estimate of S becomes singular when the number of

structures is less than then number of degrees of freedom making it

complicated to estimate S{1 (and |S|). As we wish to develop a

method that can also be applied to small ensembles such as those

determined directly from experiments we therefore used a recently

developed shrinkage estimates for the covariance matrices [30,31],

and from these we estimated the similarity between all pairs of

ensembles using Eq. 7. These calculations show that ensemble A is

more similar to ensemble B (DHES A,Bð Þ~93+1) than to

ensemble C (DHES A,Cð Þ~650+10), and also that ensemble C

is more similar to B (DHES B,Cð Þ~118+2) than to A. We also

calculated the two terms in Eq. 7 separately and found that they

are of comparable magnitude with the first term making up

between 40%–58% of DHES . These results are in full agreement

with the visual inspection of the ensembles in Fig. 1, and are also in

line with the way the ensembles were generated. For comparison,

we also calculated the interensemble eRMSD score as described

previously [13]: eRMSD(A,B) = 0.45 Å, eRMSD(A,C) = 0.94 Å, and

eRMSD(B,C) = 0.91 Å. The eRMSD thus gives a similar ordering

as the harmonic ensemble similarity score, although ensemble C is

found to be only slightly more similar to B than to A. However,

while the self-similarity using DHES is always zero, this is not the

case for the eRMSD: eRMSD(A,A) = 0.26 Å, eRMSD(B,B) = 0.50 Å,

and eRMSD(C,C) = 0.92 Å. Taken literally, this means that

ensemble C is more similar to B than to itself, which makes it

more complicated to use the eRMSD to rank the different

similarities.

Figure 1. Representative structures from three ensembles
generated using molecular dynamics simulations. These ensem-
bles of the GB1 domain of protein G were obtained using MD
simulations in the presence of mass-weighted harmonic restraints of
increasing size. The three ensembles A, B and C were obtained using
force constants 0.1, 0.01 and 0.001, respectively.
doi:10.1371/journal.pone.0004203.g001

)
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In order to demonstrate that the calculations of DHES can be

carried out using smaller ensembles we repeated the calculations

using as little as 25 conformations extracted from each of the full

ensembles of 2500 conformations. We denote these subensembles

as A9, B9 and C9 and present the results as the average and

standard deviation over 100 randomly selected subensembles. The

resulting similarity scores are DHES A’,B’ð Þ~175+13,

DHES A’,C’ð Þ~1065+64 and DHES B’,C’ð Þ~200+16. While

there are numerical changes from the results of the full ensembles,

the overall trends are identical, including the observation that the

distance from B to its two ‘neighbouring’ ensembles (A and C) is

much smaller than the distance between A and C. These

observations are noteworthy as the calculations of DHES here

involve the estimation of the 1686168 covariance matrices from

only 25 conformations. In this case the maximum likelihood

estimate of S would have been singular making it impossible to

calculate its inverse and hence DHES . In contrast, the shrinkage

estimates of the covariance matrices are guaranteed to be positive

definite and hence invertible.

Ensemble similarity from conformational clustering
Although the calculations of DHES are very fast and

straightforward, there may be two potential problems in its

practical application. First is the assumption that the ensembles

can be described by a multivariate normal distribution. Although

anharmonic contributions are partially included by explicitly

estimating the covariances from the ensemble, the analytical

solution to DHES is based on the two ensembles being normally

distributed. The second problem in the calculation of DHES is that

in many cases the ensemble size may be considerably smaller than

the number of degrees of freedom (n). While we have

demonstrated above that the n6n covariance matrix can be

estimated from less than n conformations using the shrinkage-

approach, we have until now only looked at the fluctuations of the

Ca atoms in the ensembles making n = 3N where N is the number

of residues. However, in many cases it is of interest to include

fluctuations of side chain atoms in the comparison of the

ensembles. Even ignoring hydrogen atoms in the GB1 domain,

n.1000 making the estimation of the covariances from small

ensembles difficult.

Recently, a method has been proposed to analyse the

convergence of MD simulations. The idea is to quantify the co-

occurrence of conformations from the first and second half of a

simulation when the two halves are clustered together [19]. We here

modify and extend this approach to estimate the similarities

between two or more ensembles. To illustrate the method we first

calculate the Ca RMSDs between all pairs of the 7500 structures in

ensembles A, B and C. We then use a recently described clustering

algorithm termed Affinity Propagation (AP) [33] to divide the

conformations in to clusters. AP uses the similarities between pairs

of structures to decide which conformations should be clustered

together. The number of clusters, k, is chosen based on the

‘preference’ for each conformation to act as the centre of a cluster.

We set the preferences to a common value for all conformations so

that all conformations are equally likely to become cluster centres,

and vary the preference-value to obtain different levels of clustering.

After the structures are clustered we take the population, pX
i , of each

ensemble (X) in each cluster (i) as a probability distribution of

conformations. This idea is illustrated in Fig. 2A which shows the

populations of ensemble A, B and C in each of the 12 clusters

obtained using a common cluster-preference value of 210. At this

resolution all structures from ensemble A are found in clusters 1–3,

ensemble B populates clusters 1–5, and the broader ensemble C

populates 11 of the 12 clusters. Visual inspection of the co-

occurrences suggest that the overlap between ensemble A and B is

the largest, and further that the overlap between the C and B

distributions is larger than between C and A. We then take the

cluster populations for an ensemble X, pX ~ pX
i

� 	
, as a density

estimate over the discrete set of clusters. From these we then

quantify the ensemble similarities by calculating DJS between each

pair of ensembles, and find DJS A,Bð Þ~0:24, DJS A,Cð Þ~0:69 and

DJS B,Cð Þ~0:62 for k = 12.

At high values of the common cluster-preference value each

conformation ends up in its own cluster and hence k = 7500. In this

limit the three ensembles do not share any clusters making DJS

take on its maximal value. At low cluster-preferences all structures

group together into very few clusters making DJS become smaller.

In this way, the cluster preference sets the resolution of the

algorithm. We therefore repeated the calculations at a range of

cluster preferences and calculated DJS (Fig. 2B). This plot shows

that at most resolutions, ensembles A and B are much more similar

than the other two pairs when seen from the perspective of co-

occurrence in the clusters. On the other hand ensemble C is

clearly different from ensembles A and B. At intermediate

resolutions it is clear that ensemble C is more similar to ensemble

B than to A.

Figure 2. Comparison of the three test ensembles using a method that quantifies the co-occurrence of structures during
conformational clustering. A: Populations of each of the ensembles A, B and C in each of the 12 clusters that we obtained using a cluster
preference of 210. B: Jensen-Shannon divergence between the three ensembles at a series of cluster preferences giving rise to between 2 and 7500
clusters.
doi:10.1371/journal.pone.0004203.g002
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An ensemble similarity score from dimensionality
reduction

One advantage of the clustering method described above

compared to the harmonic ensemble similarity score is that it does

not require that the ensembles are distributed according to a

normal distribution. A potential limitation of the approach is the

discreteness of the clusters which means that any conformational

differences between structures in the same cluster are ignored.

Similarly, any similarities between structures in separate clusters

are also ignored. We therefore sought an alternative approach

which would provide a continuous description of the distribution

of conformations. The main obstacle here is the so called ‘curse of

dimensionality’ which highlights the problem of estimating

densities in high dimensions without having astronomically large

samples [59]. For example, a 168-dimensional histogram with only

two bins in each dimension would have more than 1050 bins.

Dimensionality reduction methods such as principal compo-

nents analysis (PCA) and multi-dimensional scaling (MDS) have a

long tradition in structural biology, and can be used to represent

protein conformations in a subspace of dimension d that is much

smaller than the full n-dimensional configuration space [60,61].

MDS, for example, takes as input the pairwise similarities,

typically an RMSD, between all pairs of conformations and

provides a d-dimensional projection that aims to preserve these

distances as well as possible [60,62]. Recently, a connection

between clustering methods and dimensionality reduction ap-

proaches has been found. In particular it has been shown that

PCA can be thought of as a continuous solution to the K-means

clustering problem [63]. This observation suggests that dimen-

sionality reduction may be a natural extension to the clustering

method described above, and thereby provide a continuous

approach to estimate densities of high-dimensional data from small

samples.

An important underlying assumption of methods such as PCA

and MDS is that the conformational space is linear. In practical

terms this means, for example, that the algorithms give equal

weight to an RMSD of 1 Å and 10 Å between two conformations

when the projection is constructed, whereas it is clear that large

RMSD values are not very useful measures of the similarity

between conformations [64]. To overcome this problem one of us

has previously applied the non-linear projection method Isomap

[65] to represent protein topology space in three dimensions [66].

More recently, Isomap was extended and used to derive order

parameters to study protein folding [67].

Other non-linear projection methods exist, and we have here

chosen Stochastic Proximity Embedding (SPE) [34] because of its

advantageous scaling properties with sample size compared to

methods such as Isomap. Because of the stochastic nature of the

SPE algorithm it should be run multiple times to test the

reproducibility of the results. SPE takes as input the structural

similarity between all pairs of conformations, and uses an iterative

method to obtain a low-dimensional projection in which pairwise

distances are approximately preserved locally. We here define the

local neighbourhood as pairs of structures for which the Ca

RMSD is less than 1.5 Å, but we have verified that other

definitions gave very similar results.

The SPE algorithm represents each conformation as a d-

dimensional vector and finds a collection of vectors so that the

Euclidian distance between two vectors in the d-dimensional

projection is close to the RMSD between those two conformations

if they are neighbours of each other (i.e. the RMSD is within a

specified cut-off). Only for large values of d can all the restraints be

fulfilled perfectly. For smaller d we calculate the remaining ‘stress’,

S, as a measure of how well the restraints are fulfilled:

S~S dij{rij

� �2
rij

.
Srij ð8Þ

where the sums extend over the neighbours of each conformation

[34]. In Eq. 8 dij is the Euclidian distance between two points in the

low dimensional projection and rij is the RMSD between the two

conformations. In Fig. 3A we show the remaining stress as a

function of the dimension of the subspace used in the projection.

From this figure it is seen that the conformational ensembles can be

well represented in a subspace of dimension considerable smaller

than n = 168. In order to illustrate the low dimensional projections

we show in Fig. 3B a scatter-plot of the two-dimensional projection

of the 7500 conformations in ensembles A–C. In this plot, each

conformation is represented as a single point, and these have been

arranged by the SPE algorithm so that structurally similar

conformations are located close to each other. As intuitively

expected, the conformations in the more ‘narrow’ A-ensemble are

located in a small region of the two-dimensional representation of

the conformational space. In contrast the broader B- and C-

ensembles are spread over larger area of conformational space. It is

clear that the SPE algorithm can separate the A, B and C ensembles

very efficiently using only the pairwise RMSDs as input. The

‘concentric’ nature of the distributions of conformations is evidence

of the fact that the mean structures of the three ensembles are very

similar. It is, however, clear that ensembles B and C do in fact not

contain conformations that are close to this mean. This is a result of

the high dimensional nature of conformational space, which means

that the phase space associated with the centre is much smaller than

in the outer regions, which therefore contain most of the

conformations.

The reduction of the dimensionality of the data makes it feasible

to estimate the probability density of each conformational

ensemble. Instead of being distributions over the full n-dimensional

conformation space, they will be distributions over the generalized

coordinates in the d-dimensional subspace. As we do not want to

restrict ourselves to particular distributions of conformations we

use non-parametric density estimation to quantify the similarities

between the ensembles [20]. In particular, we use kernel density

estimation (KDE) [36,38] to obtain density estimates from the d-

dimensional samples. In Fig. 3C we show the density estimates

obtained for ensembles A–C from the two dimensional projections

in Fig. 3B. As also observed in the scatter-plot, the density

estimates show that the A-ensemble corresponds to a very sharply

peaked probability distribution in line with the stronger harmonic

restraints applied during the MD simulation. From the estimated

densities we then calculate the Jensen-Shannon divergences

between the ensembles. The plot in Fig. 3D shows DJS, averaged

over 5 independent SPE projections, for the comparisons between

the A, B and C ensembles as a function of the dimensionality of the

projection. As is evident from both the scatter plot and the density

estimates there is very little overlap between the three densities,

and DJS is therefore close to its maximal value. However, the

calculations show that ensembles A and B are more similar than

the other two pairs of ensembles, and that ensemble C is more

similar to B than to A. This is the same ordering of the three

ensembles as found in the clustering analysis, although the actual

values of DJS differ in the two calculations.

Ensemble averaging in structure determination
After validating the methods using the ensembles described

above, we then applied the ensemble similarity calculations to an

important problem in structural biology. We wanted to examine to

what extent it is possible to recover the correct distribution of
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conformations based only on a set of experimental data, and

whether different structure determination approaches differ in

their ability to recover the distributions. In particular, we revisit

the problem of whether ensemble (multi-conformer) refinement

using only NOE distance restraints can be used to recover the

conformational distribution of a protein [18]. Again we used the

GB1 domain as a test case, and performed a 59 ns reference MD

simulation to generate a synthetic pseudo-experimental NOE

dataset. The resulting distances were used as restraints in the

structure determination of GB1, and the goal is then to examine

which of the determined ensembles is most similar to the reference

ensemble.

Most standard NOE-based structure determination protocols

apply the available distance restraints on to a single conformation.

That is, an optimization algorithm (typically simulated annealing)

is used to find individual conformations that satisfy as many of the

restraints as possible. Through multiple rounds of simulated

annealing one then obtains an ensemble of conformations. It is

important to note that in this approach it is attempted that all

conformations should individually satisfy the restraints. However,

these conformations may still differ because of the stochastic

nature of the optimization algorithm and because the distance

restraints typically do not uniquely identify a single conformation

[4,9,68].

It is clear, however, that in reality — as well as with the

synthetic data generated here — the distance restraints reflect a

distribution of conformations, and that no single conformation

needs to agree fully with the restraints. In order to reflect this

ensemble view of the experimental data, it is possible to use the

data in so-called ensemble refinement protocols [2,3,17]. In these

simulations, the experimental restraints are applied to multiple

copies, or replicas, of the protein at any given time and the

optimization protocol then aims to find ensembles that satisfy the

restraints when the distances are back-calculated as an average

over the ensemble. In general, if Nrep molecules are simulated in

parallel none of the individual conformations need to satisfy the

restraints individually as long as the Nrep molecules do so as an

ensemble.

A practical problem with ensemble simulations is that as Nrep is

increased, the number of degrees of freedom in the system also

increases because one now attempts to determine Nrep conforma-

tions simultaneously. As the total number of distance restraints

remains constant, this means that ensemble simulations are more

likely to be underdetermined and hence prone to overfitting

[7,17]. It has been suggested that Nrep&2 provides an optimal

compromise between over- and under-restraining [17]. These

conclusions were mainly based on cross-validation as an indirect

method for examining whether two ensembles are similar or not,

although local similarity scores have also been considered [7]. As

Nrep~1 remains the standard method used in protein structure

determination we decided to explore this issue further.

We used the global ensemble similarity scores described above

to quantify whether the ensembles obtained from ensemble

simulations (Nrep between 2 and 16) are more similar to the ‘true’

reference than those obtained from standard ‘single-conformer

refinement’ (Nrep~1). We carried out multiple simulated anneal-

ing cycles in simulations with Nrep~1, 2, 4, 8 and 16 molecules

and thereby obtained five different ensembles of GB1. Ten

Figure 3. Comparison of the three test ensembles using a method which involves dimensionality reduction and kernel density
estimation. A: Average residual stress according to Eq. 8 over 5 independent SPE projections of the three test ensembles. The standard deviation is
smaller than the symbols shown. B: Example of a two-dimensional projection of the three ensembles. Each point represents an individual
conformation, and the distance between each point is locally approximately the same as the RMSD between those two conformations. The two axes
represent the two dimensions in the subspace of the SPE projection. C: Contour plots of the two-dimensional kernel estimates of the densities
corresponding to the points in panel B. The grey bars next to the plots indicate the scale of the probability densities. D: Average and standard
deviation of the Jensen-Shannon divergence between the three ensembles calculated using the kernel density estimates. The results are shown for
different values of the dimensionality of the projections.
doi:10.1371/journal.pone.0004203.g003
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conformations from each ensemble are shown in Fig. 4. All

ensembles are in agreement with the ‘experimental’ NOE

restraints as a whole, but only in the Nrep~1 ensemble are all

the individual conformations in good agreement with the NOEs. It

is noteworthy that the ensembles are visually very similar, and it is

not easy to judge which of the five ‘NOE-derived’ ensembles is

most similar to the reference MD ensemble.

We first calculated the harmonic ensemble similarity between

the reference ensemble and the ensembles determined using Nrep

between 1 and 16. Because of the relatively small ensemble sizes

we used only the positions of the Ca atoms in these calculations.

Averaging over 25 randomly selected samples of 64 conformations

from each of the NOE-derived ensembles we find that

DHES~260+20, 15763, 17565, 212613 and 233615 between

the MD-reference ensemble and the ensembles determined using

Nrep~1, 2, 4, 8 and 16, respectively. These calculations suggest

that the ensemble determined using Nrep~2 is most similar to the

reference ensembles, at least when examining the fluctuations of

the Ca atoms.

To obtain a more detailed view that includes both atoms in the

polypeptide backbone chain and in the side chains we proceeded

to calculated the pairwise all-atom (excluding hydrogens) RMSD

between all 2307 conformations (reference ensemble and five

ensembles determined using NOE restraints). These distances

were then used as input to the calculations of ensemble similarities

using both the clustering and the projection approach.

We first applied the clustering method to the six ensembles.

Figure 5A shows the results of AP clustering at a relatively low

value of cluster preferences. In this case the 2307 structures were

divided in to eight clusters, and the plot clearly shows that the six

ensembles populate the clusters to very different extents. For

example, the Nrep~1 ensemble has all of its structures in cluster 1.

In contrast only 2.4% of the reference conformations are found in

this cluster.

We repeated the calculations using a range of preference values

and calculated DJS between the reference MD ensemble and each

of the five ensembles determined using Nrep between 1 and 16. In

Fig. 5B we show DJS as a function of Nrep at preference values

giving rise to between 5 and 149 clusters. While the numerical

values are different at the different levels of resolution, the general

trends are very clear. In particular, the ensemble determined using

Nrep~2 is more similar to the reference ensemble than any of the

other ensembles.

To analyse further the distributions of conformations in the six

ensembles we used SPE to project the 2307 conformations in to

low dimensional subspaces. In these calculations we defined

neighbouring structures as those that had an all-atom (excluding

hydrogens) RMSD less than 1.75 Å, but validated that the

conclusions below are the same using other definitions of

neighbours (not shown). In Fig. 6A we show the remaining stress,

averaged over 10 runs, as a function of the dimension of the

projection. As with the harmonic ensembles above, the confor-

mations can be well represented in a low dimensional projection.

This is noteworthy because we here use the RMSD between all

436 non-hydrogen atoms corresponding to a much higher

dimension of the conformation space. As an example of the

distributions we show in Fig. 6B the kernel estimates of the six

densities in two dimensions. The first of the plots show the density

of the reference ensemble, and its bimodal character is evident.

This is caused by a small and localized conformational

readjustment for residues 10, 11, 40 and 41 that occurs after

36 ns of the reference simulation. The densities obtained from the

conformations determined from the NOE restraints clearly show

that the ensembles broaden out as Nrep is increased. In particular

the ensemble determined using the standard Nrep~1 approach is

significantly more narrow than the other ensembles. Visual

inspection of these densities again suggest that Nrep~2 provides

an optimal compromise between over- and under-restraining, and

is able to recover the bi-modal nature of the conformational

ensemble. To quantify these observations, we show in Fig. 6C the

Jensen-Shannon divergence between the reference ensemble and

the five ensembles for projections in dimensions 1–5. This plot

clearly shows that at all dimensions the ensemble determined using

Nrep~2 is more similar to the reference ensemble than any of the

other four ensembles. Thus, all three ensemble similarity methods

show that the ensemble determined using Nrep~2 provides the

optimal compromise between over- and under-restraining. In

contrast, the similarities calculated using the eRMSD method are

Figure 4. Six ensembles of the GB1 domain of protein G. The reference ensemble was obtained using molecular dynamics simulations, and
was used to generate a set of synthetic pseudo-experimental distance restraints. These restraints were subsequently used in either single-conformer
refinement (Nrep~1) or ensemble refinement using ensemble sizes Nrep~2, 4, 8 and 16. All non-hydrogen atoms are shown in ten structures from
each ensemble.
doi:10.1371/journal.pone.0004203.g004
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inconclusive. We find that there is a steady increase in the eRMSD

as Nrep increases, with the similarity between the reference and the

ensembles determined using Nrep~1,2,4,8,16 being 1.28, 1.36,

1.42, 1.51, and 1.53, respectively. However, as the eRMSD

between the reference ensemble and itself is 1.37 it is not clear to

us how these numbers should be interpreted.

Discussion

We have presented three different algorithms to compare two or

more ensembles of protein conformations. We first tested the

methods using three ensembles, A–C, obtained by MD simulations

with additional harmonic restraints. We then proceeded to use the

methods to examine how well an ensemble refinement method is

able to recover an ensemble of conformations using (synthetic)

experimental data.

The first measure we present is the harmonic ensemble

similarity. It is based on the assumption of a multivariate normal

distribution whose mean and covariance are estimated from the

ensembles at hand. Two ensembles are then compared using an

analytical expression of the Kullback-Leibler divergence between

two normal distributions. The approach is therefore related in

spirit to the allosteric potential recently introduced [69], in which

the fluctuations are estimated using normal mode analysis. Using

this method to compare the three test ensembles we find that both

ensembles A and C are significantly more similar to ensemble B

than to each other, in full agreement with the way the ensembles

were generated. An important advantage of the harmonic

ensemble similarity is that it is easy and fast to calculate and has

a well defined meaning. Also, because of its analytical nature it is

easy to understand the contributions from differences in the mean

structure and from changes in fluctuations.

The harmonic ensemble similarity method is based on the

assumption of a normally distributed ensemble, and it may not

always be clear how to interpret DHES when this assumption is not

fulfilled. We note here that the harmonic assumption also forms

the basis of methods such as the normal model analysis [55] which

is known to describe reasonably well both the amplitude and

directionality of native state fluctuations [70]. Also, if only the

mean and covariances are known, the multivariate normal

distribution is the least biased choice of a density function. Finally,

in both of the cases studied here (harmonic ensembles and

ensemble refinement), the results obtained using DHES were in full

agreement with those obtained using the two other methods

described.

A potential limitation in the calculation of DHES is the

uncertainties associated with estimating covariances from sparse

data. The shrinkage approach provides a systematic method for

estimating the covariance matrix and hence is useful in the

common situation when the number of structures is of comparable

magnitude to the number of degrees of freedom. In addition, the

approach has the added advantage that it produces a regularized

and positive definite estimate. Nevertheless, the shrinkage

approach can not fully remove the uncertainties associated with

estimating covariance matrices from sparse data. Finally we note

that the shrinkage method may also be used in others areas of

structural biology where estimation of covariance matrices are

important. For example, it may be used in the estimation of

conformational entropies [55,71,72].

In an attempt to evaluate some of the potential practical

problems with the harmonic ensemble similarity we devised and

tested a similarity score based on clustering the conformations in

the ensembles. In particular we used the co-occurrence in

conformational clustering as an of estimate for the similarity of

two ensembles. In the original implementation of this idea the

differences in cluster populations were used as a measure of the

similarity of two ensembles [19], but this value may be difficult to

interpret [73]. We here substitute this measure by the Jensen-

Shannon divergence as a direct measure of the similarity of the

two distributions. Also, we use the AP algorithm as a very efficient

and fast method for clustering the conformations.

The idea of analysing co-occurrence in clusters was originally

designed to examine the convergence of molecular simulations,

and hence mainly to answer the question of whether two sub-

ensembles are likely to originate from the same distribution

[19,73]. However, our goal is different in that we aim to derive a

score that will quantify the divergence between two ensembles. As

noted [19], the method is well suited to determine that two

ensembles are different, but it is not easy to verify that two

ensembles are similar. The results in Fig. 2B show this observation

very clearly. At low numbers of clusters the algorithm cannot

distinguish ensembles A and B, and hence the distance between

these two ensembles is very low despite the fact that they differ

considerably in their variability. Nevertheless, one can use the

method to quantify the similarity of two ensembles at the chosen

clustering level. The limitations of the clustering method arise

Figure 5. Examination of how well a reference ensemble can be recovered using ensemble simulations. The results shown here were
obtained using the clustering method described in the text. A: Populations of each of the ensembles (MD-reference and ensembles obtained using
NOE restraints) in each of the 8 clusters found using the affinity propagation clustering algorithm with a cluster preference of 220. B: Jensen-
Shannon divergence between the reference ensemble and the ensembles obtained using NOE restraints applied to different ensemble sizes (Nrep).
The results are shown for five representative values of the total number of clusters.
doi:10.1371/journal.pone.0004203.g005
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because of the discrete nature of the clusters over which the

ensembles are compared, so that conformations in the same cluster

are considered equivalent irrespectively of how similar they are.

In order to overcome these potential problems we devised an

approach to estimate the density function over a set of continuous

variables. In this way we hoped to solve the problems associated

with the discreteness of the clusters. Because of the high

dimensionality of conformational space it is very difficult to estimate

the densities directly [59]. As our main goal is not to estimate the

probability densities of the ensembles, but rather to use the density

estimates to compare two ensembles, we therefore turned to a

dimensionality reduction approach in order to find ‘order

parameters’ that would automatically describe the conformations

in a subspace of reduced dimensionality. In particular, it has

previously been found that the effective dimensionality of

conformational space may be significantly smaller than the number

of degrees of freedom [60,61,74], and we therefore expected that we

could capture the conformational distributions well using dimen-

sionality reduction. The results on native state ensembles of the GB1

domain described here show that the ensembles can indeed be well

represented in low dimensional subspaces. As with the clustering

method there is a compromise between having sufficient resolution,

here meaning choosing the dimensionality, and being able to

estimate densities. For the test ensembles A–C we find that the

method can rank the similarities, and that the results are in

accordance with how the ensembles were generated.

Figure 6. Examination of how well a reference ensemble can be recovered using ensemble simulations. The results shown here were
obtained using the projection method described in the text. A: Average residual stress according to Eq. 8 over 10 independent SPE projections of the
six ensembles (MD-reference ensemble and five ensembles obtained from NOE restraints). The standard deviation is smaller than the symbols shown.
B: Example of the two-dimensional kernel estimates of the densities. The grey bars next to the plots indicate the scale of the probability densities. C:
Average and standard deviation of the Jensen-Shannon divergence (DJS) between the reference ensemble and the ensembles obtained using NOE
restraints applied to different ensemble sizes (Nrep). The results are shown for different values of the dimensionality of the projections and are the
averages over 10 independent runs of the SPE algorithm.
doi:10.1371/journal.pone.0004203.g006
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Finally we applied the similarity measures to reexamine the

problem of ensemble averaging in structure determination. This is

an important problem as it is well known that a wrong

interpretation of the dynamical contribution to distance restraints

may cause errors in structure determination [75]. While ensemble

refinement in principle can be used to include dynamical effects,

one limitation is that such calculations are more prone to being

underrestrained than standard single-molecule refinement is.

An important and general method to compare different

structure determination protocols is to generate synthetic data

and use this as input to the different protocols. The idea is then to

compare the ensembles obtained from structure determination

with that used to generate the synthetic data. Until now, such

comparison have mainly been carried using validation with

independently determined data, cross-validation, measures of the

local structural similarity [7,8,17], or using reaction coordinates

chosen by hand [76,77]. However, these approaches are only

indirect methods for quantifying to what extent one can recover

the correct distribution of conformations, and do not take full

advantage of the fact that all structural details of the reference

ensemble are known.

We here use the ensemble similarity scores as a direct method

for quantifying how well the reference ensemble can be recovered.

The results show clearly that not taking averaging in to account,

i.e. having Nrep~1, gives rise to an ensemble that is more narrow

than the reference ensemble. Increasing values of Nrep gives

broader ensembles, and all three similarity scores show that with

the dataset used here, Nrep~2 provides the optimal compromise

between over- and under-restraining. We emphasize that this

result is not necessarily general and applies only to the dataset for

GB1 that we used. Also, the dataset that we have generated may

be unrealistically large, and different results may therefore be

obtained using fewer NOEs and in the presence of systematic

errors arising for example from wrong assignments. Finally, the

projection of the reference ensemble revealed that the distribution

of conformations is bimodal because of a small structural change

that occurred during the MD simulation. While this change is very

small and localized, it may provide an additional reason for why

Nrep~1 is insufficient to recover the correct distribution. Similarly

large conformational fluctuations are, however, likely to occur in

real proteins and we note that the residues that display slow

motion in our simulation correspond to residues that have been

found experimentally to have long-timescale motion in a related

protein. Other authors [7,17] have also suggested Nrep~2 as being

optimal for NOE data, at least when there is sufficient

experimental data, although larger values may be needed for

other data types [7,78,79]. Further, we stress that the methods we

have presented are completely general and can therefore be used

to examine these questions in more detail.

As standard structure determination protocols correspond to

Nrep~1, most structures in the Protein Data Bank have been

determined in this way. It is therefore of relevance to analyse how

well structures determined in this way represent the underlying

ensemble. In particular it is relevant to analyse how well such

structures represent a ‘typical’ structure from the correct ensemble.

The studies described here have not been aimed at examining this

question, and may be biased by the bi-modal nature of the reference

ensemble used to generate the restraints. However, for this

ensemble two lines of evidence point towards the possibility that

structure determination using Nrep~1 may introduce a bias. First,

examining Fig. 5 it is clear that the first cluster contains all of the

conformations in the ensemble generated using Nrep~1, whereas

this cluster has the lowest population for the reference cluster.

Secondly, the two-dimensional density estimate of the Nrep~1

ensemble in Fig. 6 is sharply peaked in a region where there is very

little density in the reference ensemble. Together, these observations

suggest that, in the case studied here, the Nrep~1 is not only too

‘precise’ (ensemble is too narrow), but may also be somewhat

‘inaccurate’ (centre of distribution does not coincide with that of the

reference ensemble). These issues should be examined in more

detail, but suggest for example that optimizing force fields against

structures from the PDB may introduce biases in the estimated

parameters. A related problem is that highlighted by the projections

in Fig. 3. While the three ensembles here have similar average

structures, only the narrow A-ensemble has structures that are very

similar to the average. Thus, even if the average conformation can

be determined accurately, it may not be sufficiently representative of

the underlying high-dimensional probability distribution to be used

in for example structure based drug-design.

The three ensemble comparison methods that we present each

have different strengths. The harmonic ensemble similarity is simple

to calculate and is based on an analytical relationship (Eq. 7). The

equation clearly highlights the fact that for two ensembles to be

similar both their ‘average’ structure as well as the fluctuations away

from this should be similar. Importantly, the computational

complexity in the calculation of the harmonic ensemble similarity

is only linear in the number of conformations. In contrast, in the

current implementations of the two other similarity scores the

algorithms require all pairwise RMSDs, the calculations of which

may become prohibitively expensive for very large ensembles. For

these reasons we suggest that the harmonic ensemble similarity

should be used as a starting point for comparing protein ensembles.

In cases where significant deviations from the a normal distribution

are expected (or found) we suggest to supplement the calculations of

DHES with the clustering and projection based similarity scores.

These two methods were designed in different ways to deal with the

high-dimensional nature of the data, and hence provide comple-

mentary views of the ensemble similarities.

We hope that the methods we present will be of use in many

areas of structural biology. For example, the idea of using

reference ensembles to validate structure determination protocols

has recently been applied to non-native states of proteins [76,77]

as well as revisiting ensemble refinement against Xray diffraction

data [8]. Also, until now no community wide standards exist for

assessing the convergence of simulations [80]. We suggest that

measures such as those presented here could be used to examine

the convergence of biomolecular simulations in cases where

multiple states may be present. The algorithms can also be used to

compare different simulation protocols [81] or molecular force

fields [14]. Finally, we hope that the ideas presented here will be

used to quantify biologically important changes in conformational

distributions that may occur during for example ligand binding

[82] and enzyme catalysis [83], and that may form the molecular

basis for allosteric effects [84].
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