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Abstract

Pesticide resistance is normally associated with genetic changes, resulting in varied

responses to insecticides between different populations. There is little evidence of resis-

tance to plant allelochemicals; it is likely that their efficacy varies between genetically

diverse populations, which may lead to the development of resistance in the future. This

study evaluated the response of Anopheles gambiae (larvae and adults) from spatially dif-

ferent populations to acetone extracts of two botanicals, Piper guineense and Eugenia aro-

matica. Mosquito samples from 10 locations within Akure metropolis in Southwest Nigeria

were tested for variation in susceptibility to the toxic effect of botanical extracts. The spatial

distribution of the tolerance magnitude (T.M.) of the mosquito populations to the botanicals

was also mapped. The populations of An. gambiae manifested significant differences in

their level of tolerance to the botanicals. The centre of the metropolis was the hot spot of tol-

erance to the botanicals. There was a significant positive correlation between the adulticidal

activities of both botanicals and initial knockdown. Hence, knockdown by these botanicals

could be a predictor of their subsequent mortality. In revealing variation in response to

botanical pesticides, our work has demonstrated that any future use of botanicals as alterna-

tive environmentally friendly vector control chemicals needs to be closely monitored to

ensure that resistance does not develop.

Introduction

Anopheles mosquitoes are medically important because they are vectors of human diseases

such as malaria, filariasis and arboviruses [1–2]. Due to a dearth of effective vaccines and

drugs to control these diseases, attention has shifted towards the control of the mosquito dis-

ease vector [3], with a reliance on the use of synthetic insecticides [4]. However, concerns such
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as environmental toxicity, mammalian toxicity, effect on non-target species and insecticide

resistance have long been associated with the use of synthetic insecticides [5–6].

An increase in the development of insecticide resistance in mosquitoes is of significant

concern in all vector control programmes [7–10]. As alternatives, phytochemicals obtained

from plants with proven insecticidal efficacy have been tested against mosquito vectors such

as Anopheles gambiae [11–12]. Among the arrays of plant materials that have been reported

to be effective in controlling this vector are extracts from the seeds of Piper guineense (Piper-

aceae) [12] and flower buds of clove Eugenia aromatica (Myrtaceae) [13]. Piper guineense is a

West African spice plant, commonly called black pepper or Ashanti pepper that contains a

cocktail of chemicals, including alkaloids and piperidene [14]. Piper guineense contains natu-

rally-occurring piperine-type alkaloids [15] that have insecticidal properties against Aedes
aegypti, Culex quinquefasciatus and An. gambiae [16–18]. Ethanolic extracts of P. guineense
have also been used for mosquito control [13]. The active ingredient in clove is eugenol, a

phenylpropene, which is known to exhibit biocidal properties toward Sitophilus zeamais
[19], Dinoderus bifloveatus [20] and Ixodes ricinus [21]. In addition, the ethanolic extracts of

E. aromatica can kill mosquito larvae within 24 h [22]. This suggests that applications of

clove extracts could work rapidly during outbreaks and epidemics where immediate action is

required.

Botanical pesticides have long been touted as attractive alternatives to synthetic chemical

pesticides for mosquito control [23–25]. The possible reason for this is the development of

resistance to virtually all classes of insecticides used for mosquito control [26–27]. However, it

should not be assumed that naturally derived pesticides are less susceptible to resistance since

they may well have similar modes of action. Thus far, history has shown that the overzealous

use of synthetic pesticides has resulted in numerous problems that were unforeseen at the time

of their introduction. Hence, tolerance surveys are useful to better understand insecticide tol-

erance patterns, explain control failures, and have a scientific basis for selection, rotation, and

discontinuation of particular insecticides [28].

If we understand how the environment plays a role in the response of Anopheles mosquitoes

to botanicals, we may be able to predict their tolerance to botanicals, and by extension, assist

in the sustainable control of the vector. An alternative to synthetic insecticides is urgently

required as current control of Anopheles mosquitoes in Southwest Nigeria using pyrethroid

insecticides is being threatened by developing resistance [29–30]. Substantial evidence points

to pyrethroid resistance [31–32] resulting from target-site mutations [33–34] and enhanced

insecticide detoxification [35–36] with environmental factors influencing the mosquito

responses to pyrethroids [33–38]. This study investigated the tolerance of An. gambiae within

Akure metropolis in Southwest Nigeria to P. guineense and E. aromatica with a view to reveal-

ing probable locational differences and the likely hot spots of potential failure (if any) of botan-

ical insecticide efficacy within the metropolis.

Materials and methods

Study area

Akure (Fig 1) is the capital city of Ondo State in the South-Western region of Nigeria which is

located at latitude 7.2571˚ N and longitude 5.2058˚ E of the equator, and situated at a mean

elevation of 353 metres above sea level [39]. The climatic condition of Akure is influenced

mainly by the rain-bearing southwest monsoon winds from the ocean and the dry northwest

winds from the Sahara Desert. High temperatures and high humidity also characterize the cli-

mate [39].

Mosquito susceptibility to botanicals varies across metropolis
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Botanicals

The seeds of P. guineense (Fig 2A) and dried flower buds of E. aromatica (Fig 2B) were pur-

chased from local herb sellers at Owena market (7.1965684N 5.0186405E) in Osun State, Nige-

ria. The plant materials were pulverized using a Marlex grinder (Model Excella 2431a, Marlex

PVT LTD Mumbai, India). Their powders were sieved through a mesh size of 1mm2 and

stored separately in tight lid containers at 28 ± 3˚C and 75 ± 5% RH (relative humidity). Ace-

tone extract of the botanicals was obtained separately using a cold extraction method [40].

This was done by soaking 300g of the powder in an extraction bottle containing 900ml of ace-

tone for 72 hours. Filtration was then carried out using a double layer of Whatman No. 1 filter

paper. The extraction solvent was evaporated using a rotary evaporator set at 35˚C to 43˚C

with a rotary speed of 138 to 148 rpm for 3–4 hours. The resulting extracts were kept in bottles

with tight lids and preserved in the refrigerator.

Collection and rearing of mosquitoes

Anopheles gambiae larvae were collected from 10 locations across Akure metropolis (Fig 3).

The containers bearing mosquito larvae were transferred to the Entomology Laboratory of the

Biology Department, Federal University of Technology, Akure, Nigeria. Larval identification

was carried out under Olympus dissecting microscope (X20) using morphological keys [41,

42]. Once the larvae had pupated, they were transferred to a screened cage with dimension 20

Fig 1. Map of (A) Nigeria showing Ondo State. (B) Ondo State showing Akure. The study area maps (Nigeria, Ondo State

and Akure metropolis) were created by the authors using ArcGIS software (version 10.3). The shape files were obtained from

the public online archive of maplibrary.org.

https://doi.org/10.1371/journal.pone.0210440.g001
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Fig 2. Seeds of Piper guineense (A) and dried flower buds of Eugenia aromatica (B).

https://doi.org/10.1371/journal.pone.0210440.g002
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x 20 x 20cm for adult emergence. The larvae were fed with yeast and reared at 28 ± 3˚C and

75 ± 5% RH. The adult insects were used immediately after emergence.

Ethics statement. No specific permission was required for the collection activities. This is

because the larvae collected, in each location, did not involve endangered or protected species.

Also, mosquito larvae were collected from water bodies found within peri-domestic human

surroundings and not from protected areas or private lands.

Bioassay

Effect of plant extract on mosquito larvae. Larvicidal activities of the plant extracts were

carried out according to a modified WHO standard procedure [43]. Fourth instar larvae of

An. gambiae were used for this assay. After preliminary bioassays, 0.5ml of each concentration

of P. guineense extract in acetone (0.1%, 0.3%, 0.4%, 0.5% and 0.7% delivering 0.0025μl/ml,

0.0075μl/ml, 0.0100μl/ml, 0.0125μl/ml and 0.0175μl/ml, respectively) was added to 200ml

water in 250ml glass beaker. Also, 0.5ml of each concentration of E. aromatica extract in the

solvent (2%, 3%, 4%, 5% and 6% delivering 0.050μl/ml, 0.075μl/ml, 0.100μl/ml, 0.125μl/ml and

0.150μl/ml, respectively) was used for the bioassay. Twenty mosquito larvae were used for each

assay and four replicates were set up for each concentration and the control (0%). The control

beaker contained only 0.5ml of acetone in water. Larval mortality was observed after 24 hours

Fig 3. Sketch of Akure metropolis showing sample collection points of Anopheles gambiae.

https://doi.org/10.1371/journal.pone.0210440.g003
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[44]. Larvae that failed to respond to prodding or make it to the surface for respiration were

judged to be dead. The assay described above was performed separately using extracts from

both botanicals on all the sampled populations.

Fumigant effect of plant extracts on adult mosquito. The fumigant effect of the plant

extracts against adult mosquitoes was assessed by using a modified WHO protocol [45] impreg-

nated filter paper technique [46]. The base of a 250ml plastic container (diameter—50mm

(upper) and 35mm (lower); height—90mm) was cut open and clogged with cotton wool. The

top of the container was covered with muslin cloth fastened with a rubber band. Strips of What-

man’s No.1 filter papers (3cm x 3cm) were doused with 0.3 ml of varying concentrations of the

plant extracts in acetone (P. guineense [0.7%, 0.9%, 1.2%, 1.4% or 1.6% delivering 0.0084μl/cm3,

0.0108μl/cm3, 0.0144μl/cm3, 0.0168μl/cm3 or 0.0192μl/cm3, respectively] and E. aromatica [6%,

7%, 8%, 9% or 11% delivering 0.072μl/cm3, 0.084μl/cm3, 0.096μl/cm3, 0.108μl/cm3 or 0.132μl/

cm3, respectively]. The solvent was allowed to evaporate from the strip before it was placed

below the cotton wool in cut part of the container to avoid contact with the mosquitoes. Ten

adult An. gambiae were introduced into each plastic container using a pooter. Each treatment

and the control (filter paper treated with 0.3 ml of acetone only) were replicated three times.

The assays for the two botanicals were done separately to avoid synergistic effects. Adults were

exposed to treatments for 60 minutes before the removal of the treated filter paper and assess-

ment of knockdown. A mosquito was considered knocked down if it lay on its side on the floor

of the container and was unable to fly. Mortality was recorded 24 hours post exposure period.

Data analysis

The data were arcsine transformed and subjected to probit analysis [47] to determine the

median lethal dose (LD50) and the median knockdown dose (KD50) of both botanical insecti-

cides for each mosquito population. General Linear Modelling (GLM) was used to examine

global differences among mosquito populations and treatment means at P< 0.05. Where sig-

nificant differences occurred, the means were separated using Tukey’s post-hoc test. The main

effects of location (L) and concentration (C) and their interaction (LxC) on the tolerance of

An. gambiae to both mortality and knockdown effect of the botanicals were analyzed.

The relationship between knockdown (KD50) and mortality (LD50), for each population

and botanical was investigated using Pearson correlation matrix. Given that different chemical

compounds are present in the botanicals, correlation of An. gambiae tolerance between the

botanicals for each population was also investigated. All analyses were carried out using Statis-

tical Package for Social Sciences (SPSS) version 20. The tolerance magnitude (T.M.) of the

mosquito populations (from each location for each plant extract) was calculated using the fol-

lowing expression:

T:M: ¼
LD50 of each location

Highest LD50

�
360

1

[48]

The spatial distribution of T.M. of the mosquito populations was mapped and plotted using

ArcMap10.3 software.

Results

Larval LD50

Irrespective of the plant extract used, generally Alagbaka mosquito populations were the most

susceptible, with the lowest LD50. The Oke-Aro larvae population had the highest LD50 when
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exposed to the P. guineense extract (0.56%) while the Oja-Oba population had the highest LD50

when exposed to E. aromatica extract (6.09%) (Table 1). For the homogeneity of response

(slope of the log-dose probit relationship), the Oba-Adesida population had the steepest slope

for P. guineense (4.12) and E. aromatica (4.27). Shagari population had the shallowest slope for

P. guineense (1.50) and FUTA had the shallowest slope for E. aromatica (1.93). For other popu-

lations, the slope values ranged from 2.39 to 3.06 for P. guineense and 2.47 to 3.59 for E.

aromatica.

Adult KD50 and LD50

For the adult knockdown assay, Oja-Oba population had the highest KD50 when exposed to P.

guineense extract (1.93%) (Table 2) and E. aromatica extract (KD50 = 8.40%) (Table 3). How-

ever, Aule population had the steepest slope (5.60) (Table 2) for P. guineense, indicating high

homogeneity of the population while Oda population had the shallowest slope (2.03). For E.

aromatica, FUTA had the steepest slope (19.77) and Shagari had the lowest slope (5.86).

As observed with the KD50, Oja-Oba population had the highest LD50 values for both

botanicals, 2.41% and 11.50% for P. guineense and E. aromatica, respectively (Tables 3 and 4).

For P. guineense, Akure High population had the steepest slope (6.71) and FUTA population

recorded the shallowest slope (2.23). For E. aromatica, FUTA had the steepest slope (16.75)

while the Oba-Adesida population had the shallowest slope (2.82).

Effect of location and concentration on susceptibility

Larvae. GLM revealed a highly significant effect of location (L) on the susceptibility of An.

gambiae larvae to P. guineense (F9, 177 = 2441.18 p< 0.0001) and E. aromatica (F9, 177 = 614.88,

p< 0.0001). It also revealed a highly significant effect of concentration (C) on the susceptibility

of An. gambiae larvae to P. guineense (F5, 177 = 182.85, p< 0.0001) and E. aromatica (F5, 177 =

96.94, p<0.0001). There were significant interactions between location and concentration on

the susceptibility of the larvae to P. guineense (F45, 177 = 187.68 p< 0.0001) and E. aromatica
(F45, 177 = 93.89, p< 0.0001).

Adults. In contrast to the larval results, GLM revealed no significant effect of location (L)

on the susceptibility of An. gambiae adults to knockdown and mortality effects of the botani-

cals. It however showed a significant effect of concentration (C) of the botanicals on the vec-

tors susceptibility to both knockdown (P. guineense: F5, 118 = 3.19, p = 0.01; E. aromatica: F5,

118 = 2.39, p = 0.04) and mortality (P. guineense: F5, 118 = 2.80, p = 0.02; E. aromatica: F5, 118 =

2.88, p = 0.02). There was no significant interaction between location and concentration on

the susceptibility of An. gambiae adults to knockdown and mortality to either botanical.

Relationship between the activities of P. guineense and E. aromatica
The relationships between the activities of the tested botanicals on An. gambiae are shown in

Table 4. There were positive correlations between the larvicidal and adulticidal activities of P.

guineense (r = 0.14; p = 0.06) and E. aromatica (r = 0.61; p = 0.30) on An. gambiae. However,

the correlations were not significant. There were significant positive correlations between

adult knockdown and mortality effected by both botanicals (P. guineense: r = 0.81, p = 0.01; E.

aromatica: r = 0.82, p = 0.01) (Table 4).

There was a positive but non-significant correlation between the larvicidal activities of the

two botanicals (Table 4). The adult knock-down activities of the botanicals was also positive

but not significant. However, there was a significant positive correlation (r = 0.75; p = 0.01)

between the adulticidal activities of the botanicals.

Mosquito susceptibility to botanicals varies across metropolis
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Spatial variation in tolerance magnitude (T.M.)

The spatial distribution of T.M. of An. gambiae larval populations in Akure metropolis to

botanical insecticides is shown in Fig 4. In relation to Oke-Aro (the location with the highest

T.M.) in the south west of the region, generally low larval susceptibility to P. guineense was

observed across the metropolis (Fig 4A). The only exception was seen in the centre of the

metropolis where the Oja-Oba population had a T.M. about three quarters that of Oke-Aro

(Fig 4A). Similarly, for E. aromatica, a low tolerance magnitude was seen across the metropo-

lis. Mosquito larvae from the centre of the town (Oja-Oba) exhibited the highest tolerance in

comparison to the other populations (Fig 4B). The Oja-Oba An. gambiae adult population had

the highest level of tolerance to both the knockdown and mortality effect of the botanicals.

This identified Oja-Oba as the tolerance hotspot region (Figs 5 and 6). The FUTA population

in the Northwestern part of the metropolis had a KD50 only one quarter that of the highest

KD50 (Oja-Oba) (Fig 5A) while the Alagbaka and Oda populations in the East and South East,

respectively, had KD50 values only one third that of the Oja-Oba population. Moderate levels

of more than half of Oja-Oba tolerance were observed across the metropolis.

Table 1. Lethal dose (%) of botanical insecticides required for the mortality of Anopheles gambiae larvae in Akure metropolis.

LOCATION P.guineense LD50 (95% FL) E. aromatica LD50 (95% FL)

Slope (±S.E) Intercept (±S.E) Slope (±S.E) Intercept (±S.E)

Oba-Adesida 4.12 (±1.57) 5.63 (±1.56) 0.04 (0.03–0.06) 4.27 (±0.21) 1.56 (±0.11) 2.32 (1.79–2.70)

Akure High 2.39 (±0.74) -0.42 (±0.79) 0.04 (0.01–0.04) 3.08 (±0.23) 1.39 (±0.12) 2.83 (2.31–3.27)

Alagbaka �� �� �� 3.59 (±0.48) 0.16 (±0.20) 1.11 (0.12–1.61)

Oke-Aro 2.56 (±0.18) -1.92 (±0.23) 0.56 (0.21–0.86) 3.11 (±0.19) 1.11 (±0.11) 2.27 (1.94–2.54)

Aule �� �� �� 2.47 (±0.33) 0.35 (±0.15) 1.38 (0.34–1.89)

Oja-Oba 2.98 (±0.16) 4.97 (±0.25) 0.47 (0.42–0.53) 2.62 (±0.18) 0.91 (±0.10) 6.09(5.37–7.41)

Oda 2.49 (±0.14) -2.53 (±0.19) 0.10 (0.06–0.14) 2.84 (±0.20) 0.77 (±0.11) 2.20 (1.77–2.53)

Oke-Ijebu 3.37 (±0.92) -1.85 (±0.94) 0.05 (0.01–0.05) 3.36 (±0.20) 1.15 (±0.11) 2.40 (2.09–2.65)

Shagari 1.50 (±0.24) -0.10 (±0.30) 0.01 (0.01–0.03) 3.07 (±0.19) 1.17 (±0.11) 1.87 (1.93–2.47)

FUTA 3.06 (±1.90) 5.24 (±1.88) 0.02 (0.02–0.03) 1.93 (±0.33) 0.52 (±0.16) 0.54 (0.01–1.26)

S.E: Standard error; FL: Fiducial limits; LD: Lethal dose;

�� = Figures could not be computed due to total larvae mortality caused by some of the experimental concentrations.

https://doi.org/10.1371/journal.pone.0210440.t001

Table 2. KD50 (%) and LD50 (%) of Piper guineense required for Anopheles gambiae adult populations in Akure metropolis.

LOCATION Slope (±S.E) Intercept (±S.E) KD50 (95% FL) Slope (±S.E) Intercept (±S.E) LD50 (95% FL)

Oba-Adesida 5.28 (±0.29) -0.30 (±0.04) 1.14 (1.07–1.22) 3.84 (±0.34) -1.15 (±0.05) 1.99 (1.69–2.78)

Akure High 5.51 (±0.29) -0.42 (0.04) 1.19 (1.11–1.28) 6.71 (±0.55) -1.19 (±0.08) 1.51 (1.39–1.74)

Alagbaka 4.04 (0.37) 0.72 (±0.04) 0.66 (0.42–0.79) 2.83 (±0.26) 0.20 (±0.04) 0.85 (0.63–0.99)

Oke-Aro 4.02 (0.27) 0.09 (0.04) 0.95 (0.85–1.04) 3.21 (0.28) -0.54 (±0.04) 1.47 (1.33–1.74)

Aule 5.60 (±0.29) -0.06 (±0.04) 1.02 (0.89–1.15) 4.68 (±0.33) -0.96 (±0.05) 1.60 (1.40–2.11)

Oja-Oba 4.01 (±0.41) -1.15 (0.06) 1.93 (1.65–2.81) 3.07 (±0.48) -1.17 (±0.07) 2.41 (2.06–3.20)

Oda 2.03 (±0.26) 0.33 (±0.04) 0.69 (0.53–0.79) 2.86 (±0.28) -0.75 (±0.04) 1.83 (1.52–2.88)

Oke-Ijebu 5.01 (±0.28) -0.15 (±0.04) 1.07 (0.92–1.23) 4.89 (±0.31) -0.83 (±0.04) 1.47 (1.29–1.91)

Shagari 3.88 (±0.27) -0.08 (±0.04) 1.05 (0.96–1.13) 4.49 (±0.32) -0.95 (±0.05) 1.63 (1.44–2.07)

FUTA 2.43 (±0.29) 0.71 (±0.04) 0.51 (0.16–0.65) 2.23 (±0.26) 0.12 (±0.04) 0.89 (0.40–1.11)

S.E: Standard error; FL: Fiducial limits; KD: Knockdown dose; LD: Lethal dose

https://doi.org/10.1371/journal.pone.0210440.t002
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Discussion

This study found significant differences in the tolerance of larvae and adult An. gambiae to

two botanical preparations with putative insecticidal properties. There are at least two reasons

why the susceptibility of larvae and adults is different. Larvae are filter feeders and therefore

ingesting the compound, whilst in adults the compounds have to penetrate the insect through

the cuticle. Once in the gut the compounds could be actively taken into the body along with

nutrients; the compounds are most likely passing passively through adult cuticle. We have no

idea how or whether the active ingredients are modified or de-activated differentially between

larvae and adults. The second issue is that the compounds are delivered in different ways for

larvae and adults. Again, we do not know whether mode of delivery affects the active com-

pounds in any way.

Alagbaka populations of An. gambiae were the most susceptible whereas the Oja-Oba popu-

lations of An. gambiae adults were the most tolerant to the botanicals. These differences could

be due to local environmental conditions. The abundance of susceptible individuals of An.

gambiae in an area is sometimes due to the availability of unpolluted breeding sites [49]. It is

possible that the presence of susceptible individuals in this area (Alagbaka) is influenced by the

availability of unpolluted ground water pools and environmental conditions that encourage

Table 3. KD50 (%) and LD50 (%) of Eugenia aromatica required for Anopheles gambiae adult populations in Akure metropolis.

LOCATION Slope (±S.E) Intercept (±S.E) KD50 (95% FL) Slope (±S.E) Intercept (±S.E) LD50 (95% FL)

Oba- Adesida 13.01(±0.81) -10.40 (±0.67) 6.30 (5.95–6.56) 2.82 (±0.37) -2.56 (±0.33) 8.26 (7.02–10.12)

Akure High 6.69 (±0.67) -4.95 (±0.57) 5.48 (4.29–6.07) 5.87 (±0.42) -5.00 (±0.37) 7.13 (5.76–8.00)

Alagbaka �� �� �� 9.86 (±0.96) -7.11 (±0.80) 5.26 (3.96–5.82)

Oke-Aro 4.49 (±0.42) -3.35 (±0.37) 5.58 (4.42–6.21) 4.71 (±0.38) -4.60 (±0.36) 9.46 (8.58–11.28)

Aule 5.99 (±0.70) -4.22 (±0.60) 5.07 (0.15–6.12) 3.80 (±0.37) -3.40 (±0.34) 7.85 (6.86–8.86)

Oja-Oba 8.09 (±0.43) -7.48 (±0.40) 8.40 (7.97–8.84) 3.84 (±0.41) -4.07 (±0.37) 11.50 (9.82–19.45)

Oda 12.39(±0.76) -9.99 (±0.64) 6.41 (6.10–6.64) 11.62 (±0.54) -10.25 (±0.48) 7.63 (7.43–7.82)

Oke-Ijebu 8.68 (±0.86) -6.22 (±0.72) 5.21 (4.01–5.78) 10.23 (±0.70) -8.18 (±0.60) 6.31 (5.39–6.79)

Shagari 5.86 (±0.80) -3.82 (±0.68) 4.49 (0.25–5.63) 5.37 (±0.63) -3.96 (±0.54) 5.46 (2.85–6.28)

FUTA 19.77(±2.01) -14.92 (±1.61) 5.67 (5.04–5.96) 16.75 (±1.20) -13.23 (±0.98) 6.16 (5.78–6.42)

S.E: Standard error; FL: Fiducial limits; KD: Knockdown dose; LD: Lethal dose

�� = Figures could not be computed due to total knockdown by some of the experimental concentrations.

https://doi.org/10.1371/journal.pone.0210440.t003

Table 4. Relationship between the activities of Piper guineense and Eugenia aromatica on Anopheles gambiae.

Botanicals Investigated index r� P-value��

P. guineense Larvae mortality vs Adult mortality 0.14 0.06

Adult knockdown vs Adult mortality 0.81 0.01

E. aromatica Larvae mortality vs Adult mortality 0.61 0.30

Adult knockdown vs Adult mortality 0.82 0.01

P. guineense vs E. aromatica P. guineense L.LD vs E. aromatica L.LD 0.57 0.14

P. guineense KD vs E. aromatica KD 0.61 0.08

P. guineense A.LD vs E. aromatica A.LD 0.75 0.01

L.LD = Larvae LD50; KD = Adult KD50; A.LD = Adult LD50

�r = Correlation coefficient;

�� Significance level is at P < 0.05

https://doi.org/10.1371/journal.pone.0210440.t004
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rapid development of the mosquitoes. Alagbaka is a Government Reserved Area (G.R.A) in

the Akure metropolis. It is a residential area that is characterized by a proper drainage system

and waste management. In contrast, Oja-Oba is located centrally in Akure and boasts the big-

gest market in the metropolis. The wastes or by-product of plant materials are washed into the

Fig 4. Map of Akure metropolis showing the spatial variation in tolerance magnitude of Anopheles gambiae larvae to (A) Piper
guineense (B) Eugenia aromatica. �The larger the shaded area on a pie, the greater the tolerance. ��Green circles indicate TM could not

be calculated due to the inability to compute the LD50 value.

https://doi.org/10.1371/journal.pone.0210440.g004
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Fig 5. Map of Akure metropolis showing the spatial variation in tolerance magnitude of adult Anopheles gambiae to (A) knockdown effect and

(B) mortality effect of Piper guineense. �The larger the shaded area on a pie, the greater the tolerance.

https://doi.org/10.1371/journal.pone.0210440.g005
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gutters, some of which are stagnant. Therefore, these water bodies might have been polluted

with defensive chemical compounds from these plant sources, thus enhancing the tolerance of

An. gambiae to the botanicals investigated. Kim and Muturi [50] examined the relationship

between mosquito species reared on leaf litters and induction of cytochrome genes (CYP450).

Fig 6. Map of Akure metropolis showing the spatial variation in tolerance magnitude of adult Anopheles gambiae to (A) knockdown effect and

(B) mortality effect of Eugenia aromatica. �The larger the shaded area on a pie, the greater the tolerance. ��Green circles indicate TM could not be

calculated due to the inability to compute the KD50 value.

https://doi.org/10.1371/journal.pone.0210440.g006
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Their result demonstrated that the genes were induced enhancing the metabolism of toxic

products that the mosquitoes were exposed to. Other studies have also reported the role of nat-

ural xenobiotics in boosting mosquito larvae response to insecticides [51– 52]. Considering

that the mosquito breeding sites in Oja-Oba contain dissolved plant chemicals or plant parti-

cles, the question of the relative impact of these natural xenobiotics on the response of mosqui-

toes is pertinent [50]. Their presence might affect mosquito metabolism, modifying their

tolerance to insecticides. This might increase selection pressure and lead to the development of

biocidal resistance. It is commonly found that resistance occurs through the production of

detoxifying enzymes that degrade insecticides before they are able to exert their effect [27, 53–

55]. This phenomenon has been identified in mosquito populations for all major classes of

insecticides such as organophosphates and pyrethroids [53–55]. Potent botanicals present in an

environment due to indiscriminate discarding (as in Oja-Oba) or use for agricultural, economic

and other associated purposes, could stimulate the development of resistance. Differences

between populations could reflect the local breeding sites, so that mosquitoes that bred in water

into which plant material fell (allowing their chemicals to leach into the water) could be better

adapted to cope with botanicals [56]. In Southwest Nigeria, as elsewhere, vector control pro-

grammes rely exclusively on the application of chemical insecticides, especially pyrethroids,

either through the use of spraying or in insecticide treated nets. The control of agricultural and

urban insect pests in this region also relies heavily on both synthetic pyrethroids and organo-

phosphates. Nkya et al [33] argued that the presence of natural xenobiotics in mosquito breed-

ing sites and pesticide usage in agriculture influences mosquito response to pyrethroids.

GLM revealed a highly significant effect of location on the susceptibility of An. gambiae lar-

vae to the two botanicals used. This is in contrast to the adult stage where GLM revealed no

locational effect on both knockdown and mortality. However, a closer look at the spatial varia-

tion of T.M. shows locational differences in the response of the adults of the various sampled

populations of An. gambiae to the botanicals used. This study revealed that areas with similar

habitat characteristics had similar tolerance level, thus suggesting that environmental factors

might influence the among population tolerance differences noted here. For instance, the

Oba-Adesida and Oja-Oba, areas are characterized by dirtier and more polluted breeding sites.

Mosquito populations from these sites exhibited higher levels of tolerance to the botanicals

investigated. In contrast, the Alagbaka and FUTA populations of An. gambiae were collected

from cleaner water and had higher susceptibility levels. Assaying synthetic pyrethroid and

organophosphate on the same An. gambiae populations from the studied areas; it was also

observed that some of the implicated areas showed some tolerance similarities to what was

obtained with botanicals (Gbaye and Oladipupo, pers comm). The differences in the tolerance

magnitude of An. gambiae populations to the botanical insecticides could be linked to the con-

dition of their breeding sites. Brittany et al. [57] reported that the conditions experienced by

the larval population of An. gambiae play a key role in adult susceptibility to insecticides.

According to Aguirre-Obando et al. [58], Aedes aegypti populations sourced from diverse loca-

tions in Brazil showed variations in their level of susceptibility to insecticides used. Similarly,

Polson et al. [59], reported that Cambodian populations of A. aegypti larvae manifested vari-

able differences in their level of susceptibility to a synthetic insecticide depending on whether

or not they had prior exposure to similar chemicals in their environment. Thus, the knowledge

of the effects of environmental conditions on immature mosquito development is important

for the inference of results of laboratory experiments on mosquito tolerance.

A significant positive correlation between the adulticidal activities of P. guineense and E.

aromatica on An. gambiae populations was observed in this study. This implies that an

adult population of An. gambiae susceptible to P. guineense might also be susceptible to E. aro-
matica. The components of these two botanicals are different and there is not a priori reason
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why we would expect the insects to respond to them in exactly the same way. Variation in the

larval breeding site and also in the genetic background of the population could affect the mos-

quitoes’ response. There exists potential variation in the activities of the used botanicals and/or

titres of detoxification enzymes in different mosquito populations which have most likely

evolved to deal with plant chemicals [60]. There is the need to increase the number of botanical

types to ascertain the universality of this observation. There were also positive correlations

between adult knockdown and mortality caused by each botanical. This is in line with the study

of Norris et al [61], they also observed correlation between An. gambiae knockdown and mor-

tality caused by several botanical oils {which also include clove bud}. Same cannot be said for

Aedes aegypti in their study, hence this observation might be species or genus dependent. It

implies that the susceptibility of an An. gambiae population to knockdown by the plant extracts

could be a predictor of the mortality caused by the same extract. This contradicts the findings of

Owusu et al [62] who argued that knockdown by synthetic insecticide is a poor predictor of 24

h mortality. Although our study is on botanicals with a cocktail of (probable) synergistic chemi-

cals, Owusu et al [62] were actually comparing the 24h mortality in WHO assay with knock-

down in the CDC (Center for Disease Control and Prevention) bottle assay. The mix of several

active components in botanicals, such as P. guineense and E. aromatica, might have prevented

the recovery of several of the An. gambiae populations after knockdown in our study. Feng and

Isman [63] argued that a cocktail of active components from the whole of a botanical insecticide

is able to deter resistance development better than a single isolated plant compound.

Larvicidal activity of E. aromatica against An. gambiae was observed to have a significant

positive correlation with its adulticidal activity unlike P. guineense (positive but relationship

not significant). This indicates that any population susceptible to E. aromatica at the larval

stage might also be susceptible at the adult stage. Such a relationship is not found with all syn-

thetic insecticides, for example bendicarb (a carbamate) where a negative relationship between

An. gambiae larval and adult mortality was found [64].

The centre of the metropolis studied seems to be the hotspot of tolerance to the botanicals

investigated. This might be an indicator of probable sites of control failure with any future use

of botanicals. There is a need for further work on populations from these locations with regard

to enzymatic activity to further corroborate the findings in this study. Although a standardized

method of testing botanical efficacy remains to be settled on [65], there is a clear need for

wider research to establish the level of tolerance to known botanicals. Likewise, further investi-

gation on the influence of environmental factors on the response of insects to botanicals is par-

amount to enhance and sustain the development and application of botanical insecticides.

Conclusion

This study revealed that (1) in areas within the metropolis with similar habitat characteristics,

An. gambiae had similar tolerance level to botanicals; (2) the susceptibility of an An. gambiae
adult population to knockdown by a botanical could be a predictor of the mortality caused by

the same plant; (3) a population of An. gambiae susceptible to E. aromatica at the larval stage

might also be susceptible at the adult stage; (4) spatial analysis implicated the centre of the

metropolis studied to be the hotspot of tolerance to the botanicals investigated, hence, an indi-

cator of probable site of control failure with the future use of the botanicals.
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