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Tics are a common feature of early-onset neurodevelopmental disorders, characterized by involuntary and repetitive movements or
sounds. Despite affecting up to 2% of children and having a genetic contribution, the underlying causes remain poorly understood.
In this study, we leverage dense phenotype information to identify features (i.e., symptoms and comorbid diagnoses) of tic
disorders within the context of a clinical biobank. Using de-identified electronic health records (EHRs), we identified individuals with
tic disorder diagnosis codes. We performed a phenome-wide association study (PheWAS) to identify the EHR features enriched in
tic cases versus controls (n = 1406 and 7030; respectively) and found highly comorbid neuropsychiatric phenotypes, including:
obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorder, and anxiety (p < 7.396 x 10™°).
These features (among others) were then used to generate a phenotype risk score (PheRS) for tic disorder, which was applied across
an independent set of 90,051 individuals. A gold standard set of tic disorder cases identified by an EHR algorithm and confirmed by
clinician chart review was then used to validate the tic disorder PheRS; the tic disorder PheRS was significantly higher among
clinician-validated tic cases versus non-cases (p =4.787 x 10~ '>'; B = 1.68; SE = 0.06). Our findings provide support for the use of
large-scale medical databases to better understand phenotypically complex and underdiagnosed conditions, such as tic disorders.

Translational Psychiatry (2024)14:311; https://doi.org/10.1038/541398-024-03011-w

INTRODUCTION
Tic disorders (TD) are the most common movement disorder in
children and are characterized by sudden and recurrent move-
ments and/or vocalizations [1-4]. While many tic symptoms
resolve within a year, persistent TD can cause disruptions to daily
life and may have long-term effects on an individual’s social,
physical, and mental health [5-7]. TD is highly comorbid with
several other psychiatric and neurodevelopmental conditions,
including obsessive-compulsive disorder (OCD), attention-deficit/
hyperactivity disorder (ADHD), and autism spectrum disorder
(ASD), among others [8-17]. One study found that 86% of
individuals diagnosed with the most common tic disorder,
Tourette syndrome, are diagnosed with at least one additional
psychiatric disorder during their lifetime, and up to 58% of
Tourette syndrome patients are diagnosed with two or more
additional psychiatric disorders during their lifetime [13]. This
phenotypic heterogeneity complicates the diagnosis and treat-
ment of patients with Tourette syndrome and other TDs.

Tic disorders are both phenotypically and genetically complex.
Heritability measurements for Tourette syndrome range from 0.58
to 0.77 and suggest a strong underlying genetic component;

however, identifying the genetic signatures of TD has been
difficult [18-20]. Familial and patient studies have identified
candidate genes, none of which have been confirmed in
independent investigations [21-29]. Genome-wide association
studies of TD and Tourette syndrome demonstrate high poly-
genicity and have identified a few genome-wide significant
signals, including Collagen Type XXVII Alpha 1 chain, COL27A1
and Fms Related Receptor Tyrosine Kinase 3, FLT-3, though neither
locus has been replicated in an independent study to date
[30-32]. This lack of replicable signals is likely due to the polygenic
nature of TD, in addition to the challenge of recruiting large
cohorts of TD patients [33].

Electronic health records (EHRs) are a useful resource for
studying disease outcomes and comorbidities [34]. EHR systems
often date back decades and document a wide range of
phenotype information, including diagnosis and billing codes,
clinician notes, medical histories, lab results, medications, and
procedural codes. Additionally, EHR systems allow for the
investigation of individuals across diverse disease groups without
requiring the resources needed to recruit large cohorts of
individuals for genomic studies. In the case of phenotypically
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Fig. 1 Extraction of tic disorder (TD) cases and controls from
electronic health records (EHR). TD cases were identified by
selecting individuals with 2 instances of the TD inclusion pheno-
types. TD cases were restricted to the non-genotyped population in
the EHR. TD controls were matched to TD cases after filtering out the
genotyped individuals, those that did not belong to the medical
home, and those with at least 1 inclusion or exclusion ICD code for
TD. Medical home individuals are those that have visited a
Vanderbilt clinic at least 5 times over a three-year period. Matching
of cases and controls was performed at a 1:5 ratio, respectively,
based on current age and sex. ICD9/10 billing codes used as
inclusion/exclusion criteria for TD cases and controls are listed in
Supplemental Table 1.

complex conditions such as TD, EHRs can provide dense
phenotype information spanning before and after diagnosis.

The recent use of phenotype risk scores (PheRS) calculated from
medical records has successfully identified patients that exhibit
overlapping features of disease. Similar to genetic risk scores, a
discovery cohort is used to identify the phenotypic features that
characterize a disease or condition in the medical records. These
features are then evaluated within an independent target
population, and each individual is assigned a score based on
the number of features they exhibit. Individuals with a high PheRS
are phenotypically similar to the diagnosed individuals of the
discovery dataset, whereas individuals with a low PheRS share
little or no “phenome” (i.e., set of all phenotypes expressed) with
diagnosed individuals. The PheRS method was initially developed
to identify patients with features of Mendelian diseases within the
medical record database but has recently been applied to
common neuropsychiatric conditions, including major depressive
disorder, generalized anxiety disorder, and posttraumatic stress
disorder [35-38]. This method condenses the medical phenome
into a single quantitative score, which can then be used for
downstream analyses, making this tool useful for the evaluation of
phenotypically complex conditions. Additionally, because this
method relies solely on the collection of diagnosis codes within
the medical record, it is a powerful tool for indexing liability for TD,
given that tics are a common comorbidity but may not be
explicitly coded or charted in a medical record. Similar EHR-based
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machine-learning methods have been successful in the identifica-
tion of patients with underdiagnosed phenotypes, such as
developmental stuttering [39].

In this study we leverage de-identified medical records for 3.6
million individuals from the Vanderbilt EHR system to identify the
phenotypic correlates of TD. Using diagnosis billing codes, we
identified 1,406 individuals with TD diagnoses and 7,030 age and
sex-matched controls. A phenome-wide association study identi-
fied 69 phenotypes that were significantly associated with TD
diagnosis, including several psychiatric and neurological pheno-
types. Using the results of the PheWAS, we generated a PheRS and
deployed it within an independent cohort of 90,051 individuals,
including 266 individuals with clinician-validated TD diagnoses.
We found that the TD PheRS was significantly higher for clinically
validated tic patients versus non-diagnosed individuals. This
proof-of-concept study: (1) supports the utility of medical records
for evaluating the longitudinal effects of phenotypically complex
diseases such as TD and (2) provides a framework for using the
PheRS as a tool for phenome-wide investigations, improving
sample sizes for downstream genetic analyses.

RESULTS

PheWAS identified the complex clinical phenome of TD
patients

To uncover the phenotypic correlates of TD within a database of
de-identified EHR, we performed a PheWAS of TD diagnosis
presence/absence (Fig. 1, Supplemental Table 1). As expected for
an early-onset disorder with a male-bias, our EHR-derived TD cases
(and matched controls) were relatively young (average age 24.22/
24.25 years old, average median age of medical record 15.40/13.95
years old, and average age at first ICD code 11.39/9.02 years old in
cases/controls) and predominantly male (72.48%/72.59% male in
cases/controls). Consistent with the demographic characteristics
of the EHR at Vanderbilt, TD cases and controls were significantly
skewed for individuals with EHR-reported race and ethnicity as
white and non-Hispanic (77.67%/75.02% white in cases/controls
and 84.57%/89.20% non-Hispanic in cases/controls) (Table 1).
PheWAS analyses stratified by EHR-reported race were difficult to
interpret because of the small sample sizes among the non-white
populations (Supplemental Table 2), so we performed our
PheWAS across all patients and used the EHR-reported race and
ethnicity variables as covariates in the PheWAS model. We
identified 69 phenotypes significantly associated with TD case
status after Bonferroni-correction (p<7.396x107>; Fig. 2 and
Supplemental Table 2). These phenotypes represent clinical
diagnoses, which have been previously mapped from ICD9/10
billing codes extracted from the EHR [40]. Included among the top
associations were tic disorders and tics of organic origin, both of
which were significantly associated with the TD case label
(p=418%x10"%; B=994;, SE=058 and p=140x10*
B=6.92; SE=0.51, respectively).

Psychiatric and neurological conditions were highly comorbid
in TD patients

As expected, in addition to tic-specific phenotypes, the top signals
from the TD PheWAS included known comorbidities, such as:
anxiety disorders (p=1.12x10"""% B=2.38; SE=0.09) [13],
attention-deficit/hyperactivity ~ disorder ~ (p=1.84x10"""%
B=3.43; SE=0.13) [12], autism (p=1.17x10"°% B=3.57; SE=
0.17)) [15], developmental delays and disorders (p =3.99 x 1075
B =2.98; SE = 0.16), conduct disorders (p =2.57 x 10’2 B = 3.41;
SE=0.19) [8], mood disorders (p=2.57x10"%; B=1.83; SE=
0.10), obsessive-compulsive disorders (p = 1.86 x 1072 ; § = 4.29;
SE =0.28) [16], depression (p=9.46 x 10~*% B=1.73; SE=0.13)
[41], migraine (p=2.70x10"3; B=173; SE=0.14) [42], and
sleep disorders (p = 1.19 x 10>"; B = 1.39; SE = 0.12) [43, 44]. The
most  significantly associated phenotype was pediatric
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Table 1. Demographics for Tic Disorder PheWAS. Tic Disorder (TD) case-control demographics.

Cases
N 1406
Sex (%omale) 72.48

EHR-reported ethnicity

(%Hispanic, %Non-Hispanic, %Unknown)
EHR-reported race®

(%A, %B, %D, %I, %N, %0, %P, %U, %W)

2.63, 84.57, 12.80

1.3, 6.8, 0.28,

0.5, 0.07, 0, 13.58,

77.67
Current age (mean+SD) 24.22 +14.03
Median age of record (mean+SD) 15.40 +13.30
Age at first ICD code (mean+SD) 11.39 + 13.20
Age at last ICD code (mean-+SD) 18.12 4+ 13.47
Visits (mean+SD) 29.20 + 53.92
Medical record length (mean+SD) 6.74+5.70

ICD code density (mean+SD)
Mean codes per visit (mean+SD)
Median codes per visit (mean+SD)

83.21 +202.04

2.76 +1.63
228 +1.54

Controls p value

7030 =

72.59 0.93

7.14, 89.20, 3.66 2.2e-16°
0.14 1.96, 17.4, 0.27, 2.2e-16°

0.17, 0.92, 0.03,

0, 4.35, 75.02

24.25 + 14.01 0.95

13.95 + 14.20 2.38e-4°

9.02 + 13.60 1.18e-09°

18.06 + 13.89 0.87

25.18 +37.83 7.86e-3°

9.04 +4.43 3.94e-44°

65.64 + 130.0 0.002°

239+ 1.13 1.50e-15P

1.87 + 0.98 1.59e-20P

Tic Disorder (TD) case-control demographics. TD cases (n = 1406) were identified using billing codes within the electronic health records. Tic disorder controls
(n = 7030) were matched to cases based on current age and sex. Independent-samples t-test or x> analyses were performed on all measures to determine if
there was a statistically significant difference between cases and controls.
?EHR-reported race abbreviations: (A): Asian, (B): Black, (D): Declined, (1): Alaskan/Indian, (N): Other Race, (O): Not listed, (P): Pacific Island, (U): Unknown, (W):

White.
PDenotes statistically significant p-value.

neuropsychiatric disorders (p <5x 10 %% B=4.80; SE, 0.11), a
phecode label that encompasses multiple disorders of impaired
communication and socialization skills, including autistic disor-
ders, Asperger’'s syndrome, Rett’s disorder, and childhood disin-
tegrative disorder. In the EHR, the phecodes for attention-deficit/
hyperactivity disorder (313.1), tic disorders (313.2), and ASD (313.3)
are also subcategories within the pediatric neuropsychiatric
disorders phenotype (313), which explains our finding that
83.36% of the EHR-defined TD cases also had a diagnosis for
pediatric neuropsychiatric disorders (Supplemental Table 3).

The TD case label was enriched for several other neuropsychia-
tric phenotypes, such as bipolar disorder (p=5.11x10"";
B =2.57; SE=0.19), suicidal ideation (p=1.38x10"%%; B =2.02;
SE=0.19), schizophrenia and other psychotic disorders
(p=116x10"2% B=261; SE=0.25), transient alteration of
awareness (p=6.33x10"2% B=216; SE=0.24), adjustment
reaction (p=1.52x10"""; B=1.46; SE=0.17), personality dis-
orders (p=1.89x 10~ '3%; B = 2.90; SE = 0.39), posttraumatic stress
disorder (p =6.93 x 108, 8 = 1.32; SE = 0.24), and eating disorder
(p=237x10"> B=159; SE=0.38) (Supplemental Table 3).
Among EHR-derived TD cases, 85.6% had at least one additional
neuropsychiatric disorder diagnosis, and 51.9% had two or more
additional neuropsychiatric diagnoses, compared to 21.2% and
16.8%, respectively, within controls. These differences are
statistically significant (p <1 x 10~* Fisher's Exact Test) and are
comparable to previous findings of psychiatric comorbidities
within individuals with TD [13]. The proportion of control
individuals with at least one neuropsychiatric diagnosis was
higher than expected (7%), likely because of ascertainment bias of
young individuals within the EHR, which tends to be enriched for
neurodevelopmental phenotypes. Nevertheless, we found that
47% of the TD cases received an ICD code for psychiatric disorders
or neurological conditions at their first medical center visit,
compared to 7% of the controls (Supplemental Table 4). Because
our EHR database contains longitudinal phenotype information,
we examined whether tic diagnoses were more commonly made
prior to or after other psychiatric diagnoses. Greater than 64% of
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the TD cases were diagnosed with a tic disorder before receiving
any additional neuropsychiatric diagnoses (Supplemental Table 5).
These findings are consistent with the early onset nature of tic
disorders and may provide clinicians with critical information
regarding the comorbidities that TD patients are at greatest risk of
developing later in life.

The neurological phenotypes enriched in TD cases (extrapyr-
amidal  disease and abnormal movement disorders
(p=111%x10""%, B=5.10; SE=0.21), abnormal movement
(p=458x10"%% B=200; SE=0.12), and torsion dystonia
(p =6.82 x 10% B = 3.43; SE = 0.38)) may represent comorbidity,
misdiagnoses, or the evolution of diagnoses during a diagnostic
odyssey. Abnormal movements can also occur in tandem with TD,
as a secondary response to TD medication, or independently of TD
[45]. To further investigate this, we performed a sensitivity
analysis, conditioning the TD PheWAS on the presence or absence
of commonly prescribed medications for tics. Associations
between hyperkinetic movement disorders and tic disorder
diagnosis status remained after correcting for medications,
suggesting that these movement phenotype associations were
not solely side effects of TD medication usage (Supplemental
Table 6) [46, 47]. We found that within TD cases, 54% of
individuals with a hyperkinetic movement diagnosis received a tic
disorder diagnosis first, while the remaining 46% received a
movement diagnosis first; however, it is difficult to disentangle
these findings, which cannot rule out multiple possibilities for the
co-occurring codes, including clinical misdiagnoses (Supplemental
Table 7) [45].

The 676 phenotypes assessed in our TD PheWAS were binned
across 17 distinct phenotype groups, such as psychiatric disorders,
neurological phenotypes, neoplasms, etc. To determine whether a
specific phenotype group was over-represented among the
69 significant results, we used a hypergeometric test. Over 80%
of the phenotypes enriched in TD cases mapped to psychiatric
and neurological disorders (7.19-fold enrichment,
p=9318%x103° and 4.66-fold enrichment, p=8745x10""",
respectively) (Fig. 3A, B). The remaining significantly enriched
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Fig. 2 Tic disorder diagnosis PheWAS identifies phenotypic effects across the medical phenome. 676 phenotypes within the electronic
health records were tested for enrichment in individuals with ICD9/10 diagnosis codes for TD (n = 1406) compared to age and sex-matched
controls (n =7030). Phenotypes were defined as phecodes mapped from ICD9/10 billing codes. Logistic regressions were performed for each
phenotype, individuals were required to have 2 instances of a phenotype to be considered a case and at least 20 cases were required for

testing each phenotype. 69 phenotypes were signiﬁcantly enriched in the TD cases after Bonferroni-correction (p = 7.396 x 10>, 0.05/676

number of tests). Phenotypes with p <5.0 x 1072

are annotated on the Manhattan plot. Covariates included: current age, sex, EHR-reported

race, EHR-reported ethnicity, median age of medical record, and number of visits to medical center.

phenotype groups included respiratory (4.4%), endocrine/meta-
bolic (4.4%), injuries and poisonings (4.4%), symptoms (2.9%),
dermatologic (1.5%), and musculoskeletal (1.5%). These groupings
included significant associations with diagnoses such as delayed
milestones (p =1.63 x 1070 B=1.22; SE=0.19), lack of normal
physiological development (p=6.52x10"7; f=0.59; SE=0.12),
and disturbance of skin sensation (p=x139x10"% B=144;
SE=0.25) in TD cases. Controls were significantly enriched for
common childhood ailments, including acute upper respiratory
infections of multiple or unspecified sites (p=4.91x10"%
B=—057; SE=0.10), fever of unknown origin (p=4.22x10"5;
B=—0.72; SE=0.13), fracture in upper limb (p=9.36x10"5;
B = —0.68; SE=0.15), fracture in hand or wrist (p =2.15x10">;
B=—-1.47; SE=035), and cough (p=321x10"> B=-059;
SE =0.14) (Supplemental Table 2), consistent with the fact that
our control population was age-matched to TD cases and
consisted of predominantly young individuals attending the
health center for common childhood ailments (average age =
24.25 years, Table 1). The age at first ICD code spans prepubertal
and peripubertal ages (9-11.5 years of age) for both the TD cases
and controls (Table 1). Despite this range, we did not see
significant between-group differences for phenotypes relating to
menstruation, hormone regulation, or sexual development (Sup-
plemental Table 2). There was a significant depletion of digestive
and sense organ phenotypes in our TD group (p = 1.8x 10> and
p=20x10"7, respectively). Overall, our TD diagnosis PheWAS
findings are congruent with established clinical features of TD and

SPRINGER NATURE

reveal the complex phenotypic architecture within individuals
diagnosed with TD.

TD PheRS identified individuals with shared phenotypic
features of TD patients

To consolidate the complex medical phenome of TD into a single,
quantitative measure, we constructed a phenotype risk score
(PheRS) using the 69 phenotypic features identified by the TD
PheWAS (Supplemental Table 2 and Fig. 4A). We identified the
PheRS features in the non-genotyped population of the Vanderbilt
SD (discovery sample) by performing the PheWAS described above.
The significantly associated phenotypes were then used to calculate
the PheRS in the genotyped BioVU population (target sample)
(Supplemental Tables 8 and 9). As expected, most patients in our
target population (59.83%) had a very low TD PheRS because they
did not exhibit any phenotypic features of TD (Fig. 4B).

Across the target population, we found that individuals of
European ancestry (EA) had a significantly higher mean TD PheRS
compared to individuals of African ancestry (AA); however, the EA
sample size was much larger which may contribute to this finding
(p<2x107'% B=0.1; SE=8.75x 1073, nga/an = 70,439/15,174). This
finding may also reflect a difference in healthcare utilization between
individuals of European and African ancestry, as we found that
although these populations had similar medical record lengths,
individuals of African ancestry had significantly fewer medical center
visits compared to individuals of European ancestry (p =4.72 x 10~%;
B=538x10"% SE=9.17x10"°). We further found that the TD

Translational Psychiatry (2024)14:311
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Fig. 3 Tic disorder PheWAS is enriched for psychiatric disorders
and neurological phenotypes. A 69 phenotypes were significantly
enriched or depleted within the tic disorder cases versus controls.
The bar graph and pie chart show the proportions of these 69
phenotypes across 17 phenotype groups. Over 80% of the
phenotypes enriched in the tic disorder individuals belong to the
psychiatric disorders or neurological phenotype groups. B The
phenotype groups for psychiatric disorders and neurological
phenotypes are significantly enriched in the tic disorder individuals
(7.19- and 4.66-fold enrichment, respectively, p < 0.00294 calculated
by the hypergeometric test). Digestive disorders and phenotypes
within the sense organs were significantly depleted within the TD
cases compared to controls (p <0.00294 calculated by the hyper-
geometric test). Descriptions of the phecode/ICD codes that map to
each category have been previously described and can be found
here (https://phewascatalog.org/).

PheRS was significantly higher in females compared to males across
the BioVU population (p =6.02x107'% B=—0.05; SE=6.6x 10>,
Nemale/mate = 51,183/38,865). Although there is a well-documented
male bias among TD, there is literature to suggest that the male bias
within TD attenuates with age and that females with TD have more
severe and persistent symptoms, consistent with our findings
[48-52]. It is also possible that this difference reflects a bias in
healthcare utilization, as female patients in BioVU had significantly
more clinic visits (p:0.002,5,8: —2.18, SE=0.69) and significantly
longer records (p<2x107'%; B=—1.17, SE=0.05) compared to
male BioVU patients. The TD PheRS was also inversely associated
with current age (p<2x107'% B=—391x 10> SE=145x 1077
and median age of medical record (p <2x 107 '%; f=—346x10"3;
SE = 1.46 x 10~ %), suggesting that younger individuals are more likely
to receive codes that contribute to the TD PheRS. Despite being
younger, we found that individuals with a higher TD PheRS also had
a greater number of visits to the medical center (p<2x 106

Translational Psychiatry (2024)14:311
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B=538x10"3 SE=398x10"") (Supplemental Table 10). This
finding was expected, as the TD PheRS increases with accumulation
of relevant phecodes during visits to the medical center.

TD PheRS was significantly higher in clinically validated

tic cases

We previously generated and deployed an algorithm to detect TD
cases using information from patient medical records. Cases were
identified by the presence of a TD ICD9/10 diagnosis code or a
mention of specific tic keywords in their medical records
(Supplemental Fig. 1). This approach identified 485 algorithm-
defined TD cases, 316 of these were in the target sample. After a
clinician chart review of these 316 charts, 266 were confirmed as
true TD cases (84.2%).

This subset of clinically validated TD cases in BioVU served as a
positive control for the TD PheRS (Supplemental Tables
11 and 12). We found that 75.6% (201/266) of the TD clinician-
defined cases had PheRS scores within the tenth decile of the TD
PheRS, and 91.4% (243/266) of the cases had PheRS scores falling
in the seventh PheRS decile or higher (Fig. 4B). Additionally, we
found that clinically validated cases had a significantly higher TD
PheRS compared to non-cases according to the Wilcoxon rank-
sum test (p < 2.2 x 107 '%) and logistic regression analysis account-
ing for covariates (p =4.787 x 10~ '*'; B = 1.68; SE = 0.06; Fig. 4C).

A small proportion of the clinically validated TD cases (23/266,
8.6%) had a very low TD PheRS, falling in the first three deciles (Fig.
4B). These individuals had no ICD9/10 codes in common with TD
patients but had mentions of Tourette’s, tics, chronic motor tic
disorder, vocal and motor tics, or head tics in their medical records,
indicating that these individuals likely visited the medical center for
care independent of their tics but included a TD diagnosis within
their medical histories. Because the TD PheRS relies solely on the
presence or absence of ICD9/10 billing codes and not keywords in
the EHR, these individuals had a much lower PheRS despite having
a TD diagnosis. Conversely, there were multiple BioVU patients with
a high TD PheRS that were not identified by the TD algorithm and
clinician validation (825 individuals within the top percentile, Fig.
4B). These individuals share substantial overlapping phenome with
TD patients, despite few of them having a TD phecode (15.3%, 126/
825). Lastly, within the top percentile of the TD PheRS, over 50% of
patients had a broad range of diagnoses including malaise and
fatigue, abdominal pain, anxiety disorder, convulsions, nausea and
vomiting, depression, major depressive disorder, mood disorders,
gastroesophageal reflux disease (GERD), and cough (Supplemental
Table 13).

Because several neurodevelopmental disorders are highly
comorbid with TD (i.e, ASD, ADHD, and OCD), we tested whether
the TD PheRS was able to differentiate between the TD and ASD
populations. We used a previously curated set of 444 ASD patients
within BioVU. These individuals were identified by ICD9/10 codes
and keywords within their charts and were verified by clinician
chart review [53]. As expected, we found that the average TD
PheRS was highest in the patients with both a TD and ASD
diagnosis (mean +SD =2.57 £0.76) when compared to indivi-
duals with only a TD diagnosis (mean +SD =2.17 +0.72) or only
an ASD diagnosis (mean + SD = 1.85 + 0.67, Supplemental Fig. 2).
We also found that the TD PheRS was significantly higher within
the TD patients compared to the ASD patients (p=2.25x10"5;
B =0.32; SE=0.07), suggesting that while there was substantial
overlap, the TD PheRS was most sensitive to the clinically
validated TD individuals (Supplemental Table 10).

DISCUSSION

The availability of de-identified medical records for research
purposes provides an expedited and relatively low-cost way to
study phenotypically complex disorders over the lifespan in large
patient populations. In this study, we leveraged the large, clinical
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Fig. 4 TD Phenotype Risk Score (PheRS) identifies individuals with shared features of tic disorders. A The TD PheRS was calculated for
90,051 individuals in the Vanderbilt biobank using the 69 phenotypes identified in the TD PheWAS. Each individual is given a 0 or 1 for the
absence or presence of each phenotype and this value is multiplied by the weight of each phenotype (weight = effect estimate from PheWAS
analysis). B The distribution of the TD PheRS across all genotyped individuals with clinician-validated cases highlighted in blue. All individuals
not identified as cases by the TD algorithm and clinician review are gray. Inset shows the percentage of clinician-validated cases within each
TD PheRS decile. C Violin plots with boxplot insets of the TD PheRS in clinician-validated cases and non-cases shows that the TD PheRS in
cases is significantly higher compared to controls (Wilcoxon rank sum test, p < 2.2 x 1075, logistic regression analysis p = 4.787 x 10~'>"). The
TD PheRS was inverse-normal transformed (INT) before plotting. In the logistic regression analysis, which was performed in the individuals of
European ancestry, the covariates included PC1-10, current age, median age of medical record, number of medical center visits, and sex.

biobank and EHR database at Vanderbilt to evaluate the
phenotypic complexity of TD. We identified TD cases using
ICD9/10 diagnosis codes, matched controls, and tested 676
phenotypes within the EHR for enrichment or depletion among
TD cases. Consistent with prior studies, we found complex
overlapping phenome between TD and several neuropsychiatric
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phenotypes, with TD most often being the first psychiatric
diagnosis in TD cases’ medical records (~64%). Additionally,
individuals diagnosed with TD in our sample received an average
of 3.1 additional psychiatric diagnoses. Over half of the TD
patients (51.9%) received at least two additional psychiatric
diagnoses later in life. Comorbid psychiatric disorders often
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negatively impact patients more than the tics themselves.
Psychiatric comorbidities that occurred with increased prevalence
in TD cases included anxiety disorders (29.6%), ADHD (19.1%),
mood disorders (16.9%), depression (10.7%), ASD (9.4%), and OCD
(8.7%) (Supplemental Table 3, Supplemental Table 5). These
associations remained significant after conditioning on medica-
tion status (Supplemental Table 6). We also found that the
associations of TD with lesser-known comorbidities, such as
schizophrenia, personality disorders, and transient alteration of
awareness, remained after adjusting for medication effects, a
finding that warrants future study [54-57]. These findings
emphasize the complex phenotypic trajectories for tic patients
and support the need for thorough observation and follow-up by
clinicians and caregivers even if tic symptoms subside.

Phenotype risk scores can be used in research to quantify the
phenomic patterns of comorbidity that characterize TD. This single
quantitative score can then be used to investigate broader
phenotypic, and even genetic, liability to TD. Indeed, when
phenotype prevalence is low, most people with high polygenic
risk (i.e., a large number of alleles that are associated with tics) still
will not have a TD. However, high genetic liability to TD also
increases the odds of related diagnoses (ADHD, OCD, etc.). Thus, a
score which quantifies the TD-phenome may provide a path
forward to increasing sample sizes for genome-wide association
studies of TD liabilities.

In this proof of principle study, we demonstrated that the TD
PheRS is significantly higher in confirmed TD cases. Indeed, three
quarters of the clinically validated TD cases had a PheRS in the
highest decile. Of the 23 confirmed TD cases with a PheRS equal
to zero or less, 6 did not meet the medical home criteria despite
having mentions of a TD diagnosis in their medical records,
making these cases difficult to identify without the use of natural
language processing algorithms. For the remaining 17 individuals,
despite frequent visits to the medical center and documentation
of TD in the clinical notes, the TD phenotype was never coded.
Additionally, there were several BioVU individuals in the top
percentile of the TD PheRS lacking any TD phecode within their
medical record (699/825, 84.7%). These may represent TD patients
who are missing a diagnosis code for TD or may represent
individuals with several features of TD, such as the several
neuropsychiatric comorbidities, without the presence of tics.
These findings represent the strength of the PheRS approach at
identifying individuals who would have otherwise been labeled as
controls and may confound a case-control study because they
share many common features with TD patients. The strength of
the PheRS lies in the ability to identify individuals with many
features of a disease but without a formal diagnosis annotated in
the EHR. It is possible that patients with a very high TD PheRS may
reach this threshold with co-occurring diagnoses (i.e., ADHD, ASD,
OCD) without ever experiencing tics; however, the PheRS
approach allows us to identify these patients and review their
medical history to develop a more accurate diagnosis. Additional
research is needed to determine how informative PheRS
phenotypes will be for GWAS of complex phenotypes like TD.

Despite the many conveniences of exploring phenotype
information within the EHR, there are substantial limitations. The
PheWAS is inherently biased by the number of medical center
visits and number of ICD9/10 billing codes collected during these
visits. High levels of missing data can exist in a patient’s medical
record. A missing diagnosis code does not necessarily reflect the
absence of a phenotype and could instead be the result of a
patient not receiving all of their care at a single hospital system, or
miscoding by the medical center. For these reasons, running case-
control studies based on a single diagnosis code can be skewed
by misclassification of case and control status. In our approach we
have attempted to correct for some of these biases by limiting the
controls of our TD PheWAS to the “medical home” population,
requiring five diagnosis codes on separate days over three
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consecutive years, to enrich for individuals that receive the
majority of their clinical care at Vanderbilt. Relying on 1CD9/10
codes for diagnosis can be risky as institutional and provider
coding biases within the EHR exist, especially among phenotypes
that have been historically stigmatized, including mental health
diagnoses, underscoring the importance of replicating these
results in additional EHR systems and validating these approaches
with clinician review. The PheRS approach can alleviate some of
the EHR coding biases because the score is calculated across
several phenotypes to identify patients that share multiple,
distinct phenotypic features with the designated case population.
Our analyses did not distinguish which Vanderbilt department or
clinic individuals from the discovery or target populations visited,
which could impact the number and types of codes they received
(i.e., specialty neurology clinics versus general healthcare provi-
ders). It is also likely that the individuals diagnosed with TD at
Vanderbilt represent more severely affected cases due to
ascertainment bias of a tertiary care center and this is represented
in the proportion of TD cases that received a psychiatric or
neurological disorder as their first diagnosis within our medical
system (47% of TD cases compared to 7% of controls, Supple-
mental Table 4). This finding underscores the importance of
considering the types of codes being assigned to the case and
control populations, as our control samples are enriched for
childhood ailments (i.e. fractures, fevers, respiratory symptoms),
which thus affects the phenotypes uncovered in the PheWAS
which are used in the downstream PheRS construction. Genera-
tion of multiple PheRS’s across diverse biobanks should be
performed to assess the portability of these methods and examine
the effects of different case and control populations.

Ultimately, we find that leveraging the dense phenotype
information in a large, clinical biobank can replicate the
phenotypic findings of prior studies of TD patients, while adding
longitudinal medical outcomes. In addition to the utility of the
biobank for research purposes, these tools may also benefit
clinicians and TD patients. Our PheWAS reveals multiple comorbid
psychiatric phenotypes with TD, which could help clinicians more
thoroughly evaluate TD patients and provide necessary interven-
tions and treatments in a timelier manner. The PheRS serves as a
quantitative measure encapsulating the broad medical phenome
for a given disease. Because the PheRS is diagnosis agnostic and
can be applied to target populations with any sample size, this
tool could be advantageous for evaluating disease risk based
purely on the presentation of phenotypes and provides a
phenome-wide perspective when evaluating complex disorders.

METHODS

The synthetic derivative is a database of de-identified
electronic health records

The SD currently houses clinical information and documentation for over
3.6 million individuals who receive clinical care at Vanderbilt University
Medical Center (VUMC) dating back to 1994. This information includes
insurance billing codes (International Classification of Diseases, 9 and 10™
editions/ICD-9 and ICD-10 codes, respectively), clinical procedure codes
(Current Procedural Terminology/CPT codes), clinician notes, family
histories, lab values, and prescribed medications [58].

BioVU is a biorepository of genotype data linked to medical
records

The Vanderbilt Institute for Clinical and Translational Research at VUMC
curates BioVU, a clinical biorepository linked to the de-identified EHR
information within the SD [59]. Patients seen at a Vanderbilt clinic are
given the option to participate in the BioVU research program, which
collects the leftover blood samples from routine clinical testing for
genotyping and research. Sample collection for BioVU began in 2007 and is
ongoing at Vanderbilt clinics across middle Tennessee. Currently, the
BioVU biobank houses DNA samples linked to de-identified EHRs for
329,000 individuals.
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Identification of TD cases and controls in the EHR

We identified TD cases and controls within the EHR using the following
criteria. TD cases were required to have at least two separate, temporally
distinct instances of case inclusion TD phenotypes, defined by ICD-9 and
ICD-10 (International Classification of Diseases, Ninth/Tenth Revision)
billing codes (Supplemental Table 1). TD case inclusion codes are: tics
(307.2), tic disorder (F95), tic disorder not otherwise specified (307.20),
other tic disorders (F95.8), tic disorder unspecified (F95.9), transient tic
disorder (307.21/F95.0), tics of organic origin (333.3), other tics of organic
origin (G25.69), Tourette's disorder (307.23/F95.2), and chronic motor or
vocal tic disorder (307.22/F95.1). Individuals were excluded from the
analysis if any instance of TD exclusion codes (such as non-tic movement
disorders) were present in the medical record (Supplemental Table 1). TD
cases were restricted to the non-BioVU population within the synthetic
derivative (SD) (to allow the BioVU sample to serve as the hold-out
validation set), thus yielding 1,406 individuals in the SD who met TD case
criteria. Controls were selected from the medical home population within
the SD, defined as individuals who had visited a Vanderbilt clinic at least
five times within a consecutive three-year period. Controls were restricted
to the non-BioVU population within the SD and were age- and sex-
matched to the TD cases (5 controls were matched to each case using
current age and sex variables) with the Matchlt package in R [60]. Current
age reflects the age of the patients at the time of data extraction for this
study. Controls were excluded if any instances of either the TD inclusion or
exclusion codes were present in the medical record, resulting in 7,030 TD
controls. Independent-sample t-tests were performed to test for significant
differences in demographic values between TD cases and controls. Chi-
squared tests were performed to evaluate differences in proportions of
EHR-reported ethnicity and race between cases and controls (Table 1).

Phenome-wide association study for TD status

A phenome-wide association study (PheWAS) was performed to identify
the medical phenotypes enriched in TD cases. TD cases (n = 1,406) and
matched controls (n=7,030) were assigned a one or a zero case status
(exposure variable), and logistic regressions were performed across 676
phenotypes using the PheWAS package in R (versions 0.99.5-2 and 3.6.0,
respectively) [61, 62]. The EHR phenotypes (outcome variables), were
defined by phecodes mapped from ICD9/10 billing codes across all
medical diagnoses as previously described [40]. Individuals were required
to have at least two instances of an ICD9/10 code within the medical
record to be considered a case for each outcome variable. A minimum of
20 cases was required to test each outcome. Logistic regression model
covariates included sex, current age, median age within the medical
record, EHR-reported race, EHR-reported ethnicity, and number of visits to
the medical center. Phenotypes with an association p-value below the
Bonferroni-corrected threshold (p = 7.396 x 107>, 0.05/676) were reported
as significant. In a sensitivity analysis, we conditioned the TD PheWAS on
the presence or absence of prescribed medications for tic disorders or
common comorbidities (e.g., ASD or ADHD) from the medical records. The
medications included in this sensitivity analysis were: amphetamine salts,
aripiprazole, atomoxetine, botulinum toxin, bupropion, citalopram, clomi-
pramine, clonidine, clonazepam, desipramine, dexmethylphenidate, dex-
troamphetamine, duloxetine, escitalopram, fluphenazine, fluoxetine,
fluvoxamine, guanfacine, haloperidol, imipramine, lisdexamfetamine,
methylphenidate, nortriptyline, olanzapine, paliperidone, paroxetine,
pimozide, quetiapine, risperidone, sertraline, tetrabenazine, topiramate,
venlafaxine, and ziprasidone [63-65].

PheWAS phenotype group enrichment

The phecodes analyzed in the TD PheWAS were mapped from ICD9/10
billing codes and were grouped into 17 independent phenotype groups
(e.g., psychiatric disorders, neurological conditions, and diseases of the
circulatory system). The hypergeometric test was performed to identify
phenotype groups that were over- or under-represented in the
69 significant PheWAS results. Phenotype groups with a p-value below
the Bonferroni-corrected threshold (p = 0.00294, 0.05/17) were considered
significantly over- or under-represented. The fold enrichment or fold
depletion was reported for each phenotype group in Fig. 3B.

TD phenotype risk score construction

As described above, we performed a PheWAS for TD diagnosis and
identified 69 phenotypes significantly enriched or depleted in the TD
cases. These 69 phenotypes were then used to construct the TD PheRS in

SPRINGER NATURE

the independent, genotyped BioVU population, or target sample. The
following equation was used as previously described:

m
PheRS; = > Wy i
p=1

where x;,, is equal to 1 if individual i has phenotype p or 0 if the phenotype
is not present in the individual's health records and w, refers to the weight
of phenotype p. The weights for each phenotype are equal to the effect
size estimate of each phenotype from the initial PheWAS of the discovery
sample. Therefore, phenotypes with the greatest association to TD status
contribute most to the PheRS, whereas phenotypes with smaller
associations contribute less. Supplemental Table 9 lists the 69 contributing
phenotypes with their respective weights. The PheRS was then calculated
in 90,051 BioVU individuals (Supplemental Table 8).

Algorithm and clinician validation of TD cases in BioVU

A combination of TD diagnosis codes and keywords were used to define a
TD algorithm that was applied to the BioVU sample. Inclusion criteria
required at least two instances of TD ICD-9 billing codes within the EHR
(Supplemental Fig. 1) or the single presence of the keywords motor tic,
vocal tic, Tourette, or tic disorder in the clinical notes. Exclusion criteria
included ICD-9 billing codes for muscular diseases (Supplemental Fig. 1).
The TD algorithm identified 485 cases, 316 of which subsequently
underwent clinician chart review because they overlapped with the target
BioVU sample. Of the 316 algorithm cases, 266 were clinically validated as
true TD cases (84.2%). The patients identified by the TD algorithm that was
not confirmed by clinician chart review were excluded as a tic disorder
case based on multiple criteria (e.g., having a broad mention of tics in the
medical history without additional information, tics that appeared
following medication use, and mentions of tic misdiagnosis after
appearance of abnormal movements or seizures). Of the 266 clinically
validated TD individuals, 95 met the ICD9/10 code criteria for TD case
definition, 40 met the keyword criteria, while 131 met both.

DATA AVAILABILITY

Synthetic derivative (de-identified electronic health records) and BioVU data are
available from Vanderbilt University Medical Center with institutional restrictions that
govern the acquisition, use, and dissemination of data. Individuals interested in using
this data in a non-profit, academic setting can contact the Vanderbilt Institute for
Clinical and Translational Research (research.support.services@vumc.org) and request
an application to the Integrated Data Access and Services Core.
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