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Simple Summary: Fluoropyrimidines represent the backbone of many combination chemotherapy
regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms
of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors
(HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine
metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies,
highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance
the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately
improving the overall survival of cancer patients.

Abstract: Although fluoropyrimidines were introduced as anticancer agents over 60 years ago,
they are still the backbone of many combination chemotherapy regimens for the treatment of solid
cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be
affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required
to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of
epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications
play an important role in directing the transcriptional machinery and therefore represent interesting
druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can
increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes
or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and
fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these
observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro
and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed
that most of them were designed without a mechanistic approach and, importantly, without careful
patient selection.

Keywords: HDAC inhibitors; fluoropyrimidines; drug resistance

1. Introduction

Cancer chemotherapy is one of the most established and effective treatments for almost
all types of cancer. However, this approach does not discriminate between rapidly dividing
nonmalignant cells and cancer cells, leading to nontumor-associated effects that produce
elevated toxicity. In addition, during cancer progression, tumors become highly heteroge-
neous and create a mixed population of cells characterized by different molecular features
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and diverse responsivity to therapy. This heterogeneity is the key factor responsible for the
development of resistant tumor phenotypes, which are promoted by the selective pressure
of chemotherapy administration that limits the effectiveness and safety of treatment. A
deeper understanding of these complex phenomena is essential to design novel therapeutic
approaches that address the challenge of chemotherapy resistance [1]

Fluoropyrimidines, such as 5-fluorouracil (5-FU) and the prodrug capecitabine, are
the backbone of many combination chemotherapy regimens for the treatment of solid
cancers, including gastrointestinal, breast, pancreas and head and neck cancers. Despite
their clinical benefits, fluoropyrimidines are associated with both toxicity and mechanisms
of resistance that could affect therapeutic efficacy. Indeed, current treatment strategies are
ineffective in many patients; thus, novel therapeutic approaches are required to potentiate
the efficacy of fluoropyrimidines and overcome mechanisms of resistance [2].

Epigenetic characteristics allow individual cell/tissue types to maintain their unique
identity and to differentially express genes suitable for their biological function. DNA
methylation and covalent histone modifications are the two major hallmarks of epigenetic
regulation and alteration in the epigenetic networks of cancers [3]. The epigenetic elements
involved in different modification patterns can be divided into three roles: “writers,”
“erasers” and “readers”. The “writers” (DNA methyltransferases, histone acetyl transferase
and histone methyltransferases) and “erasers” (DNA-demethylating enzymes, histone
deacetylases, and histone-demethylating enzymes) refer to enzymes that transfer/remove
chemical groups to/from DNA or histones, respectively. Importantly, all three families
of epigenetic proteins (readers, writers, and erasers) involved in histone modifications
play an important role in directing the transcriptional machinery and represent interesting
druggable targets. Histone modifications have been investigated in many disease areas,
including solid tumors, hematological malignancies, and even many inflammatory diseases
(such as viral infection, diabetes and inflammatory lung diseases). In the past two decades,
the acetylation of histone molecules has attracted increasing attention; these molecules
are involved in the complex regulation of genome properties, including transcription and
DNA repair [4,5].

In this review, we will discuss how epigenetic approaches, and histone deacetylase
inhibitors (HDACis), can play a role in priming activity and overcoming resistance to
fluoropyrimidine-based therapy.

2. HDAC Inhibitors

Histone acetylation is tightly controlled by a balance between the opposing activities
of histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs modify
core histone tails by post-translational acetylation of the amino-terminal ε-group of lysines
on H3 and H4 histone tails, thereby creating an appropriate ‘histone code’ for chromatin
modification and enhancing the DNA accessibility of transcription factors. HDACs act
as gene-silencing mediators and repress the transcription process by deacetylating the
same lysine residues. Importantly, both HDACs and HATs are expressed not only in the
nucleus but also in the cytoplasm, thereby regulating the acetylation of different nonhistone
proteins [6]. Disruptions to the balance between HAT and HDAC activity can result in the
aberrant expression of genes that ultimately leads to the instability of chromatic structures
and epigenetic diseases, including solid tumors and hematological malignancies [3,7].

Deacetylases can be divided into two families based on the presence or absence of
a conserved deacetylase domain and their dependence on specific cofactors: the zinc-
dependent histone deacetylase (HDAC) family and the sirtuins protein family. To date,
11 mammalian zinc-dependent amidohydrolase HDACs have been reported, which are
subdivided into class I (HDAC1, 2, 3, and 8), class II (HDAC4, 5, 6, 7, 9, and 10), and class
IV (HDAC11). According to the composition of their domains, the class II enzymes are
further divided into two subclasses, IIa and IIb. The class III deacetylases or sirtuins are
a distinct group of enzymes that require nicotinamide adenine dinucleotide (NAD) as a
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cofactor for their catalytic function and will not be further discussed in the present review
article [8] (Figure 1).
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Figure 1. Classification of HDAC, their cellular localization and their inhibitors (HDACis). According
to their structure and function, HDAC proteins are grouped into four classes. Class III deacetylases,
sirtuins proteins, are not depicted here.

Although identification of the substrate specificity and the biological function of
individual HDACs still requires more comprehensive investigation, it is well known that
HDACs play crucial roles in cancer progression, apoptosis, cell cycle control, angiogenesis,
and cell invasion [3] (Figure 2), providing a rationale for targeting HDACs in cancer
therapy via HDAC inhibitors (HDACis). Furthermore, cancer cells are more sensitive to
HDACi-induced apoptosis than normal cells [9], supporting the therapeutic potential of
HDACis [3].

HDACis can be divided into four groups according to their chemical structure:
aliphatic fatty acids, hydroximic acids, benzamides, and cyclic peptides. Moreover, based
on their specificity, HDACis can be divided into three additional groups: (1) nonselective or
pan-HDACis, such as vorinostat, belinostat, and panobinostat; (2) selective HDACis, such
as class I HDACis (romidepsin and entinostat) and HDAC6 inhibitor (ricolinostat) [10];
and (3) multipharmacological HDACis, which target both an HDAC and another target,
such as CUDC-101 (a multiple HDAC/EGFR/HER2 inhibitor [11]) and CUDC-907 (a dual
HDAC/PI3K inhibitor [12]) (Figure 1).

Currently, numerous HDACis are in clinical development as anticancer drugs, and
three of them (vorinostat, romidepsin and belinostat) have been approved for the treat-
ment of cutaneous T-cell lymphoma by the US FDA; panobinostat has been approved in
combination therapy to treat recurrent multiple myeloma [13–17].
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Figure 2. Mechanisms of the anticancer effects of HDAC inhibitors. HDAC inhibitors induced a
pleiotropic effect on cancer cells, including modulation of survival pathways, angiogenesis, immune
response, stemness, noncoding RNA, autophagy, DNA repair, DNA replication, apoptosis, cell cycle
arrest, and oxidative stress.

Although the clinical efficacy of HDACis in monotherapy for solid tumors is limited,
HDACis acting as sensitizers and modulators of the entire gene pattern could act syn-
ergistically with many treatments, including standard chemotherapy, targeted therapy,
DNA repair pathway drugs, radiotherapy, and immune-based therapies, priming their
activity or overcoming the resistance often associated with antitumor approaches [5,18].
Consequently, a variety of combinatorial therapeutic strategies have attracted increasing
attention towards the possibility of translating preclinical data into clinical studies [8]. An
important aspect to consider in the design of combinational preclinical and clinical studies
is deep knowledge of the molecular targets as well as the mechanism of action of the drugs,
which can be used to define the optimal dosage and schedule of administration with the
aim of maximizing efficacy and preventing toxicity [18].

Our group has intensely researched HDACis, publishing studies on the mechanism
underlying the synergistic effect of HDACis and chemotherapeutics [19–22] or anti-EGFR
agents [23–26], as well as immunotherapy [27], and launching ongoing clinical trials with
such combinatory approaches [28,29].

3. Fluoropyrimidines

The antimetabolite 5-fluorouracil (5-FU) was introduced as an anticancer agent over
60 years ago and still composes the backbone of treatment for different types of cancers,
along with other fluoropyrimidines, such as the oral prodrug capecitabine.

Two competing routes are responsible for 5-FU metabolism: the anabolic route, which
transforms 5-FU into active metabolites, and the catabolic route, which inactivates and
excretes 5-FU.

The mechanism of 5-FU cytotoxicity has been ascribed to the misincorporation of
fluoronucleotides into the RNA and DNA of its active metabolites, 5-fluorouridine triphos-
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phate (5FUTP) and 5-fluorodeoxyuridine triphosphate (5FdUTP), and to the inhibition of
thymidylate synthase (TS) by 5-fluorodeoxyuridine monophosphate (5FdUMP), leading
to the disruption of the intracellular deoxynucleotide pools required for DNA replication
(Figure 3).

Cancers 2022, 14, x FOR PEER REVIEW  5  of  28 
 

 

agents [23–26], as well as immunotherapy [27], and launching ongoing clinical trials with 

such combinatory approaches [28,29]. 

3. Fluoropyrimidines 

The antimetabolite 5‐fluorouracil (5‐FU) was introduced as an anticancer agent over 

60 years ago and still composes the backbone of treatment for different types of cancers, 

along with other fluoropyrimidines, such as the oral prodrug capecitabine. 

Two  competing  routes  are  responsible  for  5‐FU metabolism:  the  anabolic  route, 

which transforms 5‐FU into active metabolites, and the catabolic route, which inactivates 

and excretes 5‐FU. 

The mechanism of 5‐FU cytotoxicity has been ascribed  to  the misincorporation of 

fluoronucleotides  into  the  RNA  and  DNA  of  its  active  metabolites,  5‐fluorouridine 

triphosphate  (5FUTP)  and  5‐fluorodeoxyuridine  triphosphate  (5FdUTP),  and  to  the 

inhibition  of  thymidylate  synthase  (TS)  by  5‐fluorodeoxyuridine  monophosphate 

(5FdUMP), leading to the disruption of the intracellular deoxynucleotide pools required 

for DNA replication (Figure 3). 

 

Figure 3. Schematic representation of fluoropyrimidine metabolism. 

Capecitabine  is  the  oral  prodrug  that  is  converted  into  5‐FU.  Three  intracellular 

metabolites are responsible for the antineoplastic effect of these drugs. In brief, FUTP is 

incorporated  into RNA and  interferes with normal RNA processing and  function also 

contributing to toxicity. FdUTP is incorporated into DNA, leading to DNA damage and 

cell  death.  FdUMP  inhibits  thymidylate  synthase,  the  enzyme  that  catalyzes  the 

transformation  of  deoxyuridine  monophosphate  (dUMP)  to  deoxythymidine 

monophosphate  (dTMP).  Inhibition  of  thymidylate  synthase  by  FdUMP  leads  to 

accumulation  of deoxyuridine  triphosphate  (dUTP)  and depletion  of deoxythymidine 

triphosphate (dTTP). This imbalance has deleterious consequences for DNA synthesis and 

repair, leading to cell death. 

TS plays a key  role  in DNA  synthesis,  catalyzing  the  conversion of deoxyuridine 

monophosphate (dUMP) into thymidylate (dTMP), with the methyl donor 5,10‐methylene 

tetrahydrofolate  (CH2THF),  representing  the  sole  intracellular  source  of  dTMP.  The 

inhibition  of dTMP  synthesis  by  5FdUMP  is due  to  the  formation  of  a  stable  ternary 

complex between TS, CH2THF, and dUMP, which prevents the transfer of a methyl group 

to carbon 5 of dUMP to form dTMP [30]. 

Figure 3. Schematic representation of fluoropyrimidine metabolism.

Capecitabine is the oral prodrug that is converted into 5-FU. Three intracellular
metabolites are responsible for the antineoplastic effect of these drugs. In brief, FUTP
is incorporated into RNA and interferes with normal RNA processing and function also
contributing to toxicity. FdUTP is incorporated into DNA, leading to DNA damage and
cell death. FdUMP inhibits thymidylate synthase, the enzyme that catalyzes the trans-
formation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate
(dTMP). Inhibition of thymidylate synthase by FdUMP leads to accumulation of deoxyuri-
dine triphosphate (dUTP) and depletion of deoxythymidine triphosphate (dTTP). This
imbalance has deleterious consequences for DNA synthesis and repair, leading to cell death.

TS plays a key role in DNA synthesis, catalyzing the conversion of deoxyuridine
monophosphate (dUMP) into thymidylate (dTMP), with the methyl donor 5,10-methylene
tetrahydrofolate (CH2THF), representing the sole intracellular source of dTMP. The inhi-
bition of dTMP synthesis by 5FdUMP is due to the formation of a stable ternary complex
between TS, CH2THF, and dUMP, which prevents the transfer of a methyl group to carbon
5 of dUMP to form dTMP [30].

This inhibition of dTMP synthesis results in the subsequent depletion of deoxythymi-
dine triphosphate (dTTP) and an imbalance in the other deoxynucleotides (dATP, dGTP
and dCTP), which affects DNA synthesis and repair and causes lethal DNA damage. More-
over, TS inhibition results in the accumulation of dUMP, leading to increased levels of
deoxyuridine triphosphate (dUTP).

Furthermore, 5-FU can also be incorporated into DNA through conversion into
5-fluoro-2-deoxyuridine (FdUR) by thymidine phosphorylase (TP) and then into fluo-
rodeoxyuridine monophosphate (FdUMP) by thymidine kinase (TK). Through specific
enzymatic reactions, FdUMP is converted into FdUTP, which can be misincorporated into
DNA in a similar manner to dUTP [2,30]. Moreover, 5-FU can also be converted into the ac-
tive metabolite fluorouridine triphosphate (FUTP), which can be integrated into RNA [2,30]
(Figure 3).

More than 80% of administered 5-FU is degraded by dihydropyrimidine dehydro-
genase (DPD) in the liver, where this enzyme is abundantly expressed [30,31]. DPD, the
rate-limiting enzyme of catabolism, reduces 5-FU to 5,6-dihydro-5-fluorouracil (DHFU),



Cancers 2022, 14, 695 6 of 27

and it is subsequently excreted via the kidneys [30]. Interestingly, DPD activity has been
reported to be influenced by genetic variation (interpatient variability) as well as circadian
rhythms (intrapatient variability). Accordingly, 5-FU bioavailability may be influenced
both by DPD expression levels and by the drug administration modality (bolus, infusion or
oral prodrug). When 5-FU is administered by infusion, nearly 20% of the dose is directly
excreted in the urine [2].

To reduce 5-FU toxicity, extend its duration of action, and increase its tumor selectivity,
molecules that act as prodrugs of 5-FU were developed. Due to their ease of administration,
tegafur and capecitabine are the main prodrugs administered in daily clinical practice. Both
drugs are administered orally and are designed to be absorbed through the gastrointestinal
mucosa and subsequently enzymatically converted into 5-FU in the liver or within the
tumor itself. Tegafur is metabolized by cytochrome P450, mainly in the liver, and converted
into 5-FU, but it is simultaneously catabolized and degraded by DPD. Indeed, to improve
the therapeutic index of tegafur, other molecules were designed to block DPD-mediated
degradation. First, tegafur-uracil, which comprises tegafur and uracil in molar propor-
tions of 1:4, was designed so that uracil could compete with 5-FU for DPD activity after
incorporation into RNA and thus potentiates the effect of tegafur. The second, S-1, was
developed to enhance the effect of tegafur-uracil and reduce side effects and consists of
tegafur, gimeracil, and oteracil in a molar ratio of 1:0.4:1. Gimeracil inhibits the DPD
enzyme more potently (200-fold) than uracil, while oteracil enhances the antitumor effect
and reduces gastrointestinal toxicity through its inhibition of 5-FU phosphorylation and its
distribution at high concentrations in the gastrointestinal tract [2,32].

Capecitabine is the other prodrug of 5-FU largely used in clinical practice and was
developed as a 5′-DFUR prodrug, to prevent the metabolic transformation of 5′-DFUR
by TP. Indeed, capecitabine is converted into 5-FU through a series of sequential steps.
It is first absorbed through the gastrointestinal wall in an intact form and, subsequently,
is converted to 5′-DFUR by carboxylesterase (CE) and cytidine deaminase (CDA) in the
liver. 5′-DFUR is then transformed to 5-FU by TP and/or UP. TP is the key enzyme that
converts prodrugs in active 5-FU; thus, its expression may be correlated with the efficacy of
5-FU-based chemotherapy [2,32] (Figure 3).

4. Mechanisms of Resistance to Fluoropyrimidines

Fluoropyrimidine resistance is principally controlled by the three major enzymes
involved in 5-FU metabolism and described above (TS, TP and DPD); however, other mech-
anisms not directly related to the metabolism of fluoropyrimidines have been identified,
such as cancer stemness, angiogenesis and DNA repair [33]. The critical role of TS expres-
sion in primary 5-FU resistance was established long ago, even before the oncogene-like
activity of TS was reported in 2004 [34]. Indeed, it is currently widely accepted that elevated
TS expression in cancer is the major molecular mechanism of 5-FU resistance. Several clini-
cal trials and meta-analyses have demonstrated that, independent of cancer type, patients
with low TS expression in tumor tissue have longer overall survival and higher sensitivity
to 5-FU-based chemotherapy than those with higher TS expression levels [35–39].

TS protein expression is regulated in a complex way at both the transcriptional and
translational levels [40]. Several polymorphisms have been reported in the TS gene (TYMS)
promoter, which interfere with the regulation of TYMS expression and thus affect 5-FU
sensitivity [41–44]. Conversely, it has been reported that the increased expression of TS may
be the consequence of the overexpression of the transcription factor E2F1 [45]. In support
of this theory, Kasahara M et al. reported that TS expression correlated closely with tran-
scription factor E2F1 expression in 23 colon cancer patient samples [46]. Interestingly, heat
shock protein 90 (HSP90), a chaperone protein that regulates the stability and trafficking
of several client proteins involved in cell proliferation by regulating E2F levels and gene
transcription [47], is implicated in the transcriptional overexpression of TYMS. Moreover,
the activation of the HSP90–Src signaling pathway was identified as a novel mechanism
for acquired resistance to 5-FU in CRC cell lines [48]. Furthermore, the downregulation of
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TS expression upon HSP90 inhibition sensitized colorectal cancer cell lines to the effect of
5-FU-based chemotherapy [49].

TS protein expression is also regulated by a negative-feedback mechanism in which
TS binds its own mRNA, thus inhibiting TS protein translation [30,50,51]. This negative-
feedback mechanism can be inhibited by the exposure of cancer cells to 5-FU or other TS
inhibitors, and results in the consequent increase in TS expression [50,51]. Interestingly,
the TS protein, acting as an RNA binding protein, also decreases the expression of genes
involved in the regulation of proliferative and survival pathways, such as c-myc and p53.
Conversely, TS transcription appears to be inhibited by p53, but this relationship may be
altered by other mutations affecting p53 [41,52,53].

miR-203 and miR-330 that target TYMS have been reported to reduce its protein
level, enhancing the antitumor activity of 5-FU. [54,55]. Similarly, Li et al. identified the
prognostic value of miR-218 in CRC patients, reporting that high miR-218 expression
promoted apoptosis and sensitized CRC cells to 5-FU treatments by suppressing TS and
BIRC5 expression [56].

Another miRNA, miR-375-3p, which targets the oncogenic transcription factors YAP1
and SP1, suppressed tumorigenesis and partially reversed chemoresistance in colorectal
cancers [57]. More recently, it has been shown that miR-375-3p, by targeting TS in human
CRC cell lines and tissues, enhanced chemosensitivity to 5-FU, inducing apoptosis and cell
cycle arrest and inhibiting cell growth, migration, and invasion in vitro [58].

The role of thymidine phosphorylase (TP) in the clinical response to fluoropyrimidine-
based chemotherapy is complex. Indeed, as described previously, TP is the enzyme re-
sponsible for the conversion of the prodrug capecitabine (5′DFUR) into 5-FU. Moreover,
TP is also the critical enzyme for converting 5-FU into the metabolites responsible for TS
inhibition. Notably, TP has strong sequence homology with proangiogenic platelet-derived
endothelial cell growth factor (PD-ECGF), thus contributing to angiogenesis, tumor pro-
gression and metastasis in cancer cells [31]. These observations underline the dual and
controversial role of TP in cancer development and treatment [59].

Thus, if patients affected by different solid tumors, including pancreatic, colon, gastric
and renal cancer tumors, show high TP expression, they have poorer prognoses than those
with low TP expression [60–63]; patients with high levels of intratumoral TP expression
are ideal candidates for capecitabine-based chemotherapy [64]. Regardless, higher levels
of TP in tumor cells compared with normal tissues can explain the correlation with the
efficacy of 5-FU-based chemotherapy in a wide range of solid tumors [65]. Interestingly,
Meropol et al. showed that TP expression, measured by IHC, was associated with improved
response rates, time to progression and overall survival in metastatic colorectal cancer
patients treated first-line with capecitabine plus irinotecan [66]. However, in colorectal
cancers, in which fluoropyrimidine-based regimens compose the backbone of treatment, a
definitive conclusion between the levels of TP and survival has not been drawn [67–70].

To date, the mechanisms that regulate TP expression have not been completely de-
fined. The promoter region of the TP gene (TYMP) is characterized by high G-C content
and seven binding sites for the transcription factor SP1. The activation of SP1 by differ-
ent factors, including inflammatory cytokines and tumor necrosis factor α (TNFα), plays
an important role in TP regulation. Chemotherapy agents such as docetaxel, paclitaxel,
cyclophosphamide, oxaliplatin and radiotherapy can increase TP levels through this mech-
anism, thus providing the rationale for combining antitumor therapeutic approaches with
fluoropyrimidines [71,72].

As described previously, DPD, which is widely expressed in various cancers, including
colorectal [73], gastric [74], lung [75], and oral [76] tumors, as well as in healthy tissues,
such as in liver and peripheral blood mononuclear cells (PBMCs) [77], plays a crucial role
in 5-FU sensitivity, as it is the main enzyme responsible for 5-FU catabolism (converting
approximately 85% of administered 5-FU). The levels of DPD have been associated with
lower response (high levels) or severe and life-threatening toxicity (low levels) to 5-FU [77].
Thus, DPYD gene regulation is important in the determination of enzyme activity, as it
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plays a crucial role in the clinical management of 5-FU [77]. The two transcription factors
SP1 and SP3 play an important role in the transcriptional regulation of the DPYD gene. SP1
is a strong activator of constitutive expression of DPYD; SP3 is a weak activator but, when
working together with SP1, acts as a negative regulator of the DPYD gene. Tumors with
a high proliferation rate have less phosphorylation/activity of SP1, thus reducing DPYD
gene expression [77].

Notably, the methylation of CpG sites in the DPYD promoter region is associated
with downregulation of DPD activity [78], and these CpG island contain SP1 protein
binding sites [79].

Zhang and colleagues showed that combining the demethylating agent AzaC and the
HDACi trichostatin A increased DPYD expression [80], suggesting that histone deacety-
lation might have a role in silencing the DPYD gene when DNA methylation levels
are low [81].

The expression and activity of DPD can also be affected by some polymorphisms.
More than 13 sequence variants result in the dysfunction of DPD protein associated with
DPD deficiency and an increase in 5-FU toxicity. The DPYD*2A variant results in a complete
loss of DPD function and plays a major role in fluoropyrimidine-related adverse events.
Approximately 2% of Caucasians of European descent possess this allele mutation; luckily,
most patients are heterozygous and can be treated with reduced 5-FU dosing. However,
although very rare (~1:1000), a complete deficiency of DPD expression can be lethal in
homozygous patients treated with fluoropyrimidine chemotherapy [82]. On 30 April 2020,
the European Society for Medical Oncology (ESMO) issued guidelines that recommended
genetic testing of DPYD before starting treatment, an approach not yet followed by oncology
societies in the United States [83].

DPD expression may also be regulated at the post-transcriptional level [84,85]. Pre-
clinical data reported for a colorectal cancer cell line (SW480) demonstrated that miR-494,
by interacting with the 3′UTR of the DPYD gene, negatively regulated endogenous DPYD
expression [86]. Similarly, Offer et al. demonstrated that DPYD is a direct downstream
target of miR-27a and miR-27b and that the overexpression of these two miRNAs may
induce repression of DPD and increase sensitivity to 5-FU [87].

Recently, it was demonstrated that DNA damage responses, particularly the base
excision repair (BER) and mismatch repair (MMR) pathways, are relevant for the response
and outcome of 5-FU-treated patients [88]. It is well known that the DNA MMR system,
composed of MLH1, MSH2, MSH3, MSH6 and PMS2 proteins, is responsible for maintain-
ing genomic stability and DNA repair [89], and genetic or epigenetic events can result in
nonfunctional proteins (deficient MMR, dMMR) causing a microsatellite instability (MSI)
phenotype in several tumor types [90]. In CRC patients, MSI determination has emerged
as a valuable tool to predetermine patients’ eventual responses to adjuvant 5-FU and cat-
egorize patients into prognostic subgroups [91]. Currently, dMMR CRC tumors are well
known to have better clinical outcomes than proficient MMR (pMMR) tumors [33], partially
due to a high mutational burden accompanied by abundant mutation-derived neoantigens
that attract tumor infiltrating lymphocytes (TILs) in dMMR tumors [92].

The enzymes required for BER in the basic reaction step include uracil-DNA-glycosy-
lases (UNGs), which catalyze the excision of uracil nucleobases from DNA due to misincor-
poration or spontaneous cytosine deamination [93]. Five human UNG isoforms have been
identified; of these, UNG2 is the main enzyme and the quantitatively dominant form in
proliferating cells. Interestingly, when UNG2 removes uracil, it causes other mutations in
the immunoglobulin loci, responsible for somatic hypermutation (SHM), which increases
immunoglobulin diversity. Moreover, UNG2 is also involved in the innate immune re-
sponse against retroviral infections [94]. As UNG2 removes uracil from DNA, it can also
remove 5-FU, thus mediating the 5-FU sensitivity of tumor cells. Indeed, UNG2 depletion
leads to DNA fragmentation and the accumulation of uracil and/or 5-FU at replication
forks, enhancing the cytotoxicity of 5-FU [95,96].



Cancers 2022, 14, 695 9 of 27

Additional mechanisms of fluoropyrimidine resistance in cancer cells include several
molecular and cellular processes, such as the cell cycle, apoptosis, autophagy, oxidative
stress, drug efflux pumps, and cancer stem cell (CSC) or epithelial-to-mesenchymal transi-
tion (EMT) pathways [97].

For example, the inhibition of the p38 MAPK signaling pathway in 5-FU-resistant
cells mediates an autophagic response associated with the inhibition of p53-dependent
apoptosis [98]. Interestingly, 5-FU-resistant cells are characterized by an increased ability
to form spheres and colonies, migrate, and invade, typical features of cancer stem cells
(CSCs), confirmed by the upregulation of stem cell markers, including NOTCH1, CD44,
ALDHA1, Oct4, SOX2, and Nanog [99]. 5-FU resistance in CSCs is due to the acquisition
of a quiescent state, a metabolic switch, aberrant activation of different growth signaling
pathways and resistance to DNA damage [33,100–102].

Furthermore, it is well known that CSCs are able to develop cellular adaptive responses
to reactive oxygen species (ROS) induced by anticancer agents, including 5-FU. 5-FU has
been reported to induce the activation and nuclear translocation of Nrf2, resulting in the
upregulation of antioxidant enzymes and in 5-FU resistance [97].

In addition, Touil and colleagues reported that in quiescent CRC CSCs, the c-Yes/YAP
axis represents another mechanism of 5-FU resistance. The YES1 gene, whose chromosomal
location is close to the TYMS gene is amplified in 5-FU-resistant CSCs, and, after 5-FU-based
neoadjuvant chemotherapy, the transcript levels of both YES and YAP are higher in liver
metastases of patients with CRC and positively correlate with CRC relapse and reduced
patient survival [101].

EMT contributes to the emergence of CSCs, causing an increase in both metastasis and
drug resistance. Indeed, resistance to 5-FU in CRC cells is associated with the repression
of GDF15, a member of the TGFβ/bone morphogenetic protein superfamily involved in
the regulation of EMT [103]. Romano et al. showed that 5-FU treatment of CRC models
upregulated the TGF-β pathway through the activation of SMAD3 and the transcription
of specific genes, such as ACVRL1, FN1 and TGFB1, and that drug sensitivity can be
restored by specific inhibition of TGF-β signaling [104]. Similarly, the suppression of the
well-known oncogene TWIST1 (which is induced by TGF-β treatment) sensitizes CRC
cell lines to 5-FU-induced apoptosis [105]. However, the role of TGF-β signaling in 5-FU
resistance is controversial since TGF-β signaling-deficient mice were recently found to have
a specific gut microbiome signature associated with 5-FU resistance [106].

Overexpression of the ATP-binding cassette (ABC) transporter on the membrane
of cancer cells is a broad mechanism of cancer cells’ resistance to anticancer drugs as it
mediates ATP-dependent transport and efflux of anticancer agents out of cells [107,108].

Although fluoropyrimidines are not substrates of ABC transporters, Xie and colleagues
reported that 5-FU treatment induces upregulation of the transcription factor FOXM1,
which in turn upregulates the transporter MRP7/ABCC10, and that the inhibition of
FOXM1 and/or ABCC10 was able to reverse 5-FU resistance [109].

p53 plays an important role in anticancer drug sensitivity, and the gain of func-
tion conferred by certain p53 mutants has been linked to fluoropyrimidine chemoresis-
tance [110,111]. Moreover, several clinical studies have found that fluoropyrimidine ther-
apy has poor efficacy in tumors expressing p53 mutants [112,113] and better efficacy in
wild-type (wt) p53 tumors [20,114].

The p53 tumor suppressor protein is known to be involved in multiple central cellular
processes, and it has been described as a mechanism of fluoropyrimidine resistance as
it modulates the expression or activity of many molecules involved in these processes.
Mechanistically, p53 is crucial in mediating the cellular response to DNA damage [115–117]
and in transactivation/repression of several genes involved in the cell cycle and apopto-
sis [118–120]. TS was shown to bind p53 mRNA, which indicates a regulatory connection
between these two proteins [121]. wt-p53 is more efficient in the inhibition of TYMS pro-
moter activity than mutant p53-transfected cells, but no specific sequence in the TYMS pro-
moter region could be assigned to this inhibition [121]. A specific interaction between p53
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and TS is supported by the observation that in patients with wt-p53, a significantly lower
amount of TS mRNA was detected compared to patients with mutated p53 [121]. Moreover,
a strong link between TS, p53 activity and UNG2 levels was recently demonstrated [122].
Additionally, it is well known that p53 regulates DNA excision repair pathways, including
BER [123–126]. After the removal of the uracil mediated by UNG2, p53 interacts with the
endonuclease AP and stimulates its activity. Then, the damaged nucleotide is replaced
by repair polymerases, and the remaining nick is sealed by DNA ligases. Interestingly,
Yan et al. demonstrated that UNG depletion resensitizes p53-mutant and p53-deficient
cancer cells to 5-FU, suggesting that in these cells, UNG is an attractive therapeutic target to
enhance the response to TS inhibitors but not in wt-p53 cells, where the apoptosis pathway
induced by 5-FU is independent of UNG status [114].

Notably, it was reported that TP expression is also significantly higher in colorectal
carcinomas expressing p53 (mutated p53); although other factors, such as cytokines and
growth factors, regulate TP, the role of p53 cannot be excluded [127].

Finally, p53 plays an important role in controlling pyrimidine catabolism by repressing
the expression of DPD. Indeed, the loss of functional p53 signaling, a typical late-stage event
in colorectal cancer, was accompanied by a higher expression of DPYD in advanced-stage
colorectal tumor patients, which predicts poor disease-free survival [128].

In summary, the mechanisms described above explain why the overall response rate of
advanced colorectal cancer to 5-FU alone is still only 10–15%. Combining 5-FU with other
antitumor drugs has merely improved the response rates to 40–50% [129]. Thus, based on
the biological mechanisms by which tumors acquire resistance to fluoropyrimidines, new
therapeutic combination strategies are urgently needed to overcome drug resistance.

5. The Role of HDACis in Combination with Fluoropyrimidine-Based Therapy

The TYMS gene has been demonstrated to be one of the most prominent gene down-
regulated by HDACi treatment, suggesting the association of this class of drugs with
fluoropyrimidines. Lee et al. reported that the HDACi trichostatin A can reverse 5-FU
resistance in human cancer cells, including those of colon cancer, by downregulating TS.
Trichostatin A and cycloheximide cotreatment restored TS mRNA expression, suggesting
that this mechanism is regulated by an unknown transcriptional repressor [130]. Moreover,
it was found that the TS protein interacted with the heat shock protein (Hsp) complex
and that trichostatin A treatment induced chaperonic Hsp90 acetylation and subsequently
enhanced Hsp70 binding to TS, leading to proteasomal degradation of the TS protein [131].

We and others have previously demonstrated the synergistic antitumor effects of
different HDACis in combination with fluoropyrimidines in different tumors, such as breast,
colorectal [19–21,132,133] and head and neck squamous cell carcinomas (HNSCCs) [134].
The synergistic antitumor effect of vorinostat with 5-FU was also observed in CRC cells
selected for resistance to 5-FU (HT29FU cells) and in cells carrying amplification of the
TS gene (H630-R10 cells), suggesting a potential mechanism by which vorinostat may
overcome resistance to 5-FU as well as to another TS inhibitor, raltitrexed (RTX). In CRC
cells, the antitumor activity of vorinostat is paralleled by a downregulation of TS protein
expression, independent of p53 status [20].

Recently, the role of UNG2 and TS in the synergistic action of HDACis combined with
pemetrexed and RTX in cells lacking p53 activity was demonstrated. Different HDACis,
such as vorinostat (SAHA), entinostat (MS275), valproic acid (VPA), and sodium butyrate,
induce hyperacetylation of UNG2, facilitating its interaction with a ubiquitin ligase, which
thereby results in the degradation of UNG2 by the proteasome and the promotion of
apoptosis [114,135,136].

Furthermore, HDACis decreased mutant p53 while stabilizing wt-p53 protein expres-
sion, a critical mechanism given that p53 status plays a critical role in anticancer drug
responses, including responses to fluoropyrimidines, and patient prognosis. Alzoubi et al.
investigated the role of HDAC2 in drug resistance and its impact on CRC cell lines with var-
ied p53 mutation states (wt, null or mutated), demonstrating that increased expression of
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HDAC2 correlated with drug resistance, and depletion by shRNA or inhibition by HDACi
sensitized the multidrug resistance of the p53 mutated HT-29 cell line to chemotherapeutic
drugs such as 5-FU and oxaliplatin [137].

Interestingly, we have recently demonstrated that the synergistic interaction between
HDACis and 5-FU was dependent on both the downregulation of TS and on the upregu-
lation of TP, both induced by HDACis [19,134]. We showed that simultaneous exposure
to equitoxic doses of the HDACi vorinostat plus 5-FU/CDDP produced strong synergis-
tic antiproliferative and proapoptotic effects related to cell cycle perturbation and DNA
damage induction in squamous cancer cell models. Mechanistically, vorinostat reverted
5-FU/CDDP-induced EGFR phosphorylation and nuclear translocation, leading to the
impairment of nuclear EGFR noncanonical induction of genes such as TS and cyclin D1 as
well as to the induction of TP [134]. We also showed that HDAC3 appears to be the HDAC
isoform principally involved in TP upregulation [19]. These observations could be clinically
relevant since HDAC3 has recently emerged as a critical anticancer target [138–140], and
more selective HDAC3 inhibitors may have more favorable side-effect profiles than class-I
or nonselective HDACis. In line with these observations, we recently showed that the
combination of the HDACi VPA plus capecitabine synergizes with radiotherapy (RT) in
CRC models, also confirming the modulation of both TS and TP protein levels by VPA even
in the presence of RT [19,141] (Figure 4).
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connects the mechanisms by which cancer cells acquire resistance to fluoropyrimidines, whereas
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resistance and sensitizing cancer cells to chemotherapy treatment.

TP expression can also be regulated by other epigenetic drugs, probably due to the
cross-talk between different epigenetic regulatory mechanisms. Guarcello et al. showed that
the methylation of the CpG sites on the TYMP promoter region mediated the suppression
of TP expression [142]. Conversely, HDACis, including tricostatin A, suberoylanilide
hydroxamic acid and VPA, increased TP at both the mRNA and protein levels [132,143]. The
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mechanism through which HDACis mediate TP induction is not well defined. Puppin et al.
showed that it does not occur through the known inducer cytokine TNFα [143]. In addition,
Terranova-Barberio et al. demonstrated that specific inhibition of HDAC3 upregulated TP
expression at both the transcriptional and protein levels in breast cancer cells but not in a
nontumorigenic breast cell line [132].

6. DNA Methylation and Histone Deacetylation

DNMT inhibitors and HDAC inhibitors synergistically affect chromatin states and
lead to a more pronounced re-expression of epigenetically silenced tumor suppressor
genes and cell cycle regulators [81]. For instance, inactivation of TP was associated with
hypermethylation of CpG dinucleotides located in the SP1-binding sites on the TP promoter.
Nishizawa Y et al. demonstrated that a 5-aza-2-deoxycytidine (5-aza-CdR) demethylase
inhibitor potentiated the anticancer activity of 5-FU by inducing TP expression in lung
cancer cells, human epidermoid carcinoma cells, human breast ductal carcinoma cells,
and human uterine cervical carcinoma cells [144]. Moreover, overexpression of molecular
lysine-specific histone demethylase 1 (LSD1), a histone-modifying enzyme responsible for
demethylating histone H3 lysine 4 (H3K4) and histone H3 lysine 9 (H3K9), correlated with
5-FU resistance in human CRC specimens, and the small molecule LSD1 inhibitor ZY0511
combined with 5-FU synergistically suppressed CRC tumor proliferation and metastasis,
both in vitro and in vivo, by targeting Wnt/β-catenin signaling and pyrimidine metabolic
pathways [145].

There is no evidence from the literature of the direct impact of HDACis on DPD
expression; however, we can hypothesize that HDAC inhibitors acting on p53 can indi-
rectly regulate DPD. It has also been reported that DPD expression can be suppressed by
H3K27 trimethylation (H3K27me3) at the DPD promoter, leading to increased resistance to
5-FU [146].

Bromodomain and extraterminal motif (BET) proteins, which accumulate on transcrip-
tionally active regulatory elements and read the state of acetylated chromatin, are important
for the promotion of gene transcription, including that of many well-known oncogenes.
Indeed, BET inhibitors and HDACis share many targets affecting similar cellular processes,
which suggests that the inhibition of both of these classes of proteins could be an interesting
strategy for improving the effectiveness of standard cancer therapy [147].

A recent study demonstrated that the combination of 5-FU with bromosporine, a novel
BET inhibitor, induced cell cycle arrest and apoptosis in CRC cells and mouse models
and that inhibition by bromosporine or knockdown of the BET protein BRD4, which is
upregulated in HCT116 5-FU-resistant cells, might overcome 5-FU resistance [148]. In
addition, Tan et al. demonstrated that a BET inhibitor markedly improved the therapeutic
efficacy of anticancer agents, including 5-FU or oxaliplatin, in CRC cells by inducing death
receptor 5 (DR5). This mechanism likely involves both p53-dependent and p53-independent
mechanisms, leading to stronger apoptotic signaling via both the intrinsic and extrinsic
apoptotic pathways [149].

Recent data have shown that BET and HDAC inhibitors exert a synergistic effect on
cellular processes in cancer cells; thus, dual BET/HDAC inhibitors have been designed, and
preclinical studies are ongoing [150,151]. Unfortunately, the association of BET/HDAC in-
hibitors or dual inhibitors with fluoropyrimidines has not been tested in clinical studies. No
ongoing clinical trials are testing the combination of BET inhibitors plus fluoropyrimidines,
although this combination might produce interesting results.

Regardless, it is clear that the pathways regulating fluoropyrimidine metabolism
and efficacy are subject to epigenetic modifications that can influence the efficacy of the
treatment, suggesting that epigenetic modifiers are attractive cancer therapeutic targets to
be exploited in combination therapy. According to the recent preclinical literature discussed
above, of all epigenetic drugs, HDACis seem to be the most efficacious in combination with
fluoropyrimidines, and indeed, several clinical studies have explored the potential of this
therapeutic strategy.
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7. Clinical Trials

A large number of clinical trials have been conducted or are ongoing with HDACis
in cancer treatment. Approximately 300 studies have been completed, and 70 are still re-
cruiting patients, many of whom have hematological malignancies. Interestingly, although
some trials have suggested that HDACis are potentially promising anticancer agents, only
6 ongoing clinical trials are in phase III, indicating that HDACis require further research
in both preclinical and clinical studies before their use is established in clinical practice.
In this section, we discuss published and ongoing studies that tested the association of
HDACis and fluoropyrimidine-based regimens in solid tumors, where fluoropyrimidines
are still the backbone of treatment despite the introduction of new anticancer treatments,
such as targeted therapy and immunotherapy (Table 1).

Both 5-FU and capecitabine are currently approved in the USA and in Europe for the
treatment of colorectal, esophageal, gastric and breast cancer and have been shown to be
active, both alone and in combination with other chemotherapeutic agents, in a variety of
other tumors, including head and neck and pancreatic cancers.

Despite many preclinical studies demonstrating the potentially synergistic antitumor
effects of HDACis and fluoropyrimidines, few clinical studies have been performed, and
the data reported did not show any evidence of clinical benefits from this association.
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Table 1. Overview of clinical trials evaluating the combination of HDAC inhibitors with fluoropyrimidines in solid tumors.

Trial Phase Setting Regimen Status Ref

M
ul

ti
or

ga
n Vorinostat and Capecitabine in Treating Patients

With Metastatic or Unresectable Solid Tumors Phase I Unresectable or metastatic solid
tumors Vorinostat + capecitabine ClinicalTrials.gov:

NCT00121277

Study of PXD101 Alone and in Combination
With 5-Fluorouracil (5-FU) in Patients With

Advanced Solid Tumors
Phase I Belinostat (PXD101) +

5-fluorouracil
ClinicalTrials.gov:

NCT00413322

C
ol

or
ec

ta
lc

an
ce

r

A Phase I, Pharmacokinetic, and
Pharmacodynamic Study of Vorinostat in

Combination with 5-Fluorouracil, Leucovorin,
and Oxaliplatin in Patients with

Refractory Colorectal

Phase I Refractory colorectal
Vorinostat and

5-fluorouracil + leucovorin
+ oxaliplatin

Published [152]

A phase I/II trial of vorinostat in combination
with 5-fluorouracil in patients with metastatic

colorectal cancer who previously failed
5-FU-based chemotherapy

Phase I/II Metastatic colorectal who had failed
all standard therapeutic options Vorinostat + 5-FU/LV Published [153]

Vorinostat, Fluorouracil, and Leucovorin
Calcium in Treating Patients With Metastatic

Colorectal Cancer That Has Not Responded to
Previous Treatment

Phase II

Adenocarcinoma of the colon and
rectum Recurrent colon cancer and

rectal cancer Stage IV colon and
rectal cancer

Vorinostat + 5-FU/LV Published ClinicalTrials.gov:
NCT00942266. [154]

Preoperative Valproic Acid and Radiation
Therapy for Rectal Cancer Phase I/II Rectal cancer

Preoperative radiation
therapy + valproic acid +

capecitabine
Recruiting ClinicalTrials.gov:

NCT01898104 [28]

Valproic Acid in Combination With
Bevacizumab and Oxaliplatin/Fluoropyrimidine

Regimens in Patients With Ras-mutated
Metastatic Colorectal Cancer

Phase II Ras-mutated metastatic colorectal
cancer

Bevacizumab + mFOLFOX6
or mOXXEL regimen +

valproic acid
Recruiting ClinicalTrials.gov:

NCT04310176 [155]

B
re

as
t

LBH589 in Combination With Capecitabine
Plus/Minus (±) Lapatinib in Breast

Cancer Patients
Phase I Refractory and advanced breast

cancer sensitive to 5-fluorouracil
Panobinostat + capecitabine

+ lapatinib Completed ClinicalTrials.gov:
NCT00632489 [156]

HDAC Inhibitor Vorinostat (SAHA) With
Capecitabine (Xeloda) Using a New Weekly Dose

Regimen for Advanced Breast Cancer
Phase I Advanced breast cancer Vorinostat + capecitabine Completed ClinicalTrials.gov:

NCT00719875

A Pilot Study of the Combination of Entinostat
With Capecitabine in High Risk Breast Cancer

After Neo-adjuvant Therapy
Phase I Metastatic breast cancer Entinostat + capecitabine Recruiting ClinicalTrials.gov:

NCT03473639

Phase I Trial of Valproic Acid and Epirubicin in
Solid Tumor Malignancies Phase I/II Neoplasms, advanced (breast)

Valproic acid + FEC
(epirubicin, 5-fluorouracil;

cyclophosphamide)
Completed ClinicalTrials.gov:

NCT00246103 [157]
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Table 1. Cont.

Trial Phase Setting Regimen Status Ref

Valproic Acid in Combination With FEC100 for
Primary Therapy in Patients With Breast Cancer Phase II Breast cancer VPA + FEC100 Terminated ClinicalTrials.gov:

NCT01010854

G
as

tr
ic

Vorinostat, Irinotecan, Fluorouracil, and
Leucovorin in Treating Patients With Advanced

Upper Gastrointestinal Cancer
Phase I Esophageal; gastric; liver cancer

Vorinostat + 5-fluorouracil +
irinotecan hydrochloride +

leucovorin calcium
Completed ClinicalTrials.gov:

NCT00537121

Study of Vorinostat Plus Capecitabine (X) and
Cisplatin (P) for 1st Line Treatment of Metastatic

or Recurrent Gastric Cancer: Zolinza+XP
Phase I/II Gastric cancer Vorinostat + capecitabine +

cisplatin Completed ClinicalTrials.gov:
NCT01045538 [158,159]

Pa
nc

re
as

Effects of Valproic Acid in Combination with S-1
on Advanced

Pancreatobiliary Tract Cancers: Clinical Study
Phases I/II

Phase I/II Advanced pancreatobiliary tract
cancers VPA + tegafur Published [160]

Capecitabine, Vorinostat, and Radiation Therapy
in Treating Patients With Nonmetastatic

Pancreatic Cancer
Phase I Nonmetastatic pancreatic cancers Vorinostat + capecitabine +

radiotherapy + surgery Completed ClinicalTrials.gov:
NCT00983268 [161]

Vorinostat With XRT and 5-FU for Locally
Advanced Adenocarcinoma of the Pancreas Phase I/II Pancreas adenocarcinoma Vorinostat + radiation

therapy + 5-FU Terminated ClinicalTrials.gov:
NCT00948688

A Study of Entinostat and FOLFOX in Subjects
With Pancreatic Adenocarcinoma Phase I Pancreas cancer Entinostat + FOLFOX

regimen Not yet recruiting ClinicalTrials.gov:
NCT03760614

H
ea

d
an

d
ne

ck

Capecitabine and Vorinostat in Treating Patients
With Recurrent and/or Metastatic Head and

Neck Cancer
Phase II HNSCC Vorinostat + capecitabine Terminated ClinicalTrials.gov:

NCT01267240
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Two early phase I clinical studies testing HDACis in combination with fluoropyrim-
idines in solid tumors have been completed. The first phase I trial studied the feasibility
and the maximum tolerated dose (MTD) of vorinostat (VOR), once or twice daily, and
capecitabine, twice daily on days 1–14. This combination was administered every 21 days
for at least 6 cycles, in the absence of disease progression or unacceptable toxicity, to treat
patients with unresectable or metastatic solid tumors. Three dose levels were evaluated
(VOR (mg/day)/CAP (mg/bid)): 300/750, 300/1000 and 400/1000. Although 3 DLTs
occurred (1 at dose level 1 and two at dose level 3), the recommended doses were de-
termined to be VOR 300 mg/day and CAP 1000 mg/bid (ClinicalTrials.gov Identifier:
NCT00121277) [162].

The second trial studied the feasibility and MTD of the combination of belinostat
(PXD101) and 5-fluorouracil in patients with advanced solid tumors. Patients received
dose escalation of both belinostat (300, 600, or 1000 mg/m2 IV for 5 days every 21 days)
and 5-fluorouracil (250, 500, 750, or 1000 mg/m2/day) administered as a continuous 96 h
infusion, with belinostat starting on day 2 of cycle 2 onward. Five doses of PXD101/5-FU
(mg/m2/day) were evaluated: 300/250, 600/250, 1000/250, 1000/500, and 1000/1000, and
the combination of PXD101/5-FU was well tolerated up to a dose of 1000/500 mg/m2/day
(ClinicalTrials.gov Identifier: NCT00413322) [163].

In colon cancer, combinations of fluoropyrimidines, either 5-FU or capecitabine, in
association with oxaliplatin or irinotecan constitute the basis for the treatment of patients
with metastatic disease.

A phase I study evaluated vorinostat administered for 7 consecutive days every
14 days in combination with a standard modified FOLFOX6 regimen administered at a
fixed dose on days 4 and 5 of vorinostat administration [152]. Twenty-one patients were
enrolled, and MTD was established at 300 mg PO BID vorinostat in combination with
a standard dose of FOLFOX, resulting in fatigue and dose-limiting toxicity. This study
also included a pharmacokinetic evaluation of vorinostat, 5-FU, and oxaliplatin. The
schedule of vorinostat administration used in this trial resulted in inadequate modulation
of thymidylate synthase (TS) expression, which the authors suggested probably explained
the lack of significant clinical activity of the combination and speculated that a shorter
intermittent dosing may allow for a higher dose administration/day and a suitable blood
concentration of vorinostat.

A phase I/II study published by Wilson et al. in 2010 failed to establish the MTD
of vorinostat, administered at a dose of 400 mg daily for 14 or 7 days every 2 weeks, in
association with 5-FU/LV. Most likely, the fact that all 10 patients enrolled were heavily
pretreated contributed to the overall toxicity in the study [153]. Consistent with the study
of Fakih et al. [152], in this study, the treatment was unable to produce consistent decreases
in intratumoral TS expression, despite the biological activity of vorinostat, which was
confirmed by the evaluation of histone acetylation on PBMCs, again pointing to the need
for an alternate vorinostat dose schedule [153].

Indeed, the overall toxicity observed in the previous studies was not observed in a
randomized phase I/II study evaluating an intermittent dose vorinostat, at two different
high dosages (43 patients were treated with 800 mg/day and 15 patients were treated with
1400 mg/day once a day for three days, every 2 weeks), in combination with 5-FU/LV
(ClinicalTrials.gov Identifier: NCT00942266) in chemorefractory metastatic colorectal cancer
patients [154]. Overall, these results suggested that continuous dosing of vorinostat was
crucial to its toxic effects. Regardless, in both arms of the last phase II study, the authors did
not see significant signs of activity of the combination. In particular, the group treated with
1400 mg/day vorinostat closed after the first stage due to lack of activity. Nevertheless,
only 1 partial response was observed among of the 58 patients enrolled, and the authors
reported an interesting median OS of 6.5 months. The potential explanations for the
negative outcomes of these studies vary. First, the selection of patients and the choice
of treatments should be considered. In both phase II studies, the patients enrolled were
refractory to 5-FU, and in the study published by Wilson et al., all patients were eligible
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even if they had a high level of intratumoral TS expression, which has been described as a
clear mechanism of resistance to 5-FU. Although preclinical data reported that the HDACi
vorinostat was able to overcome 5-FU resistance in a TS overexpression cell line as well as
in a subline selected for adaptation to 5-FU [20], it is well known that preclinical data do
not always translate into clinical results since the response of patients to drug treatments
depends on many more variables compared to in vitro cell lines. A more appropriate clinical
investigation would have focused on non5-FU-resistant colorectal cancer patients and used
different HDACis to reduce toxicity. Based on these ideas, two clinical trials are ongoing
at our Institute evaluating the association of HDACi VPA and fluoropyrimidine-based
regimens in locally advanced rectal cancer (LARC) and in first-line treatment of metastatic
colorectal cancers [28,155]. A phase I/II clinical trial was designed to demonstrate the
feasibility and activity of VPA (administration based on a titration strategy described
below; up to 500 mg three times a day) in association with preoperative treatment with
short course radiotherapy (SCRT), a very convenient modality of RT, in combination with
capecitabine in LARC patients with a low–moderate risk of relapse (ClinicalTrials.gov
Identifier: NCT01898104). Preliminary results from phase I demonstrated that the addition
of capecitabine to preoperative SCRT +/− VPA was feasible, and 825 mg/m2/bid was
the recommended dose that will be used in an ongoing phase-2 trial [164]. Interestingly,
VPA treatment did not have a predefined dose, but a titration strategy was applied in each
patient to achieve a serum concentration between 50 and 100µg/mL. This target serum
level was the recommended value for the treatment of epilepsy. Specifically, VPA was
administered orally starting at day −14, with 500 mg slow releasing tablets provided in
the evening. Thereafter, the dose was also increased using 300 mg tablets until it reached
1500 mg on day −1; thus, VPA was administered orally on days −14 to 21, in association
with SCRT or capecitabine, and was well tolerated.

Interestingly, the second clinical trial ongoing at our Institute (a randomized, open-
label, two-arm, phase II study) explores the addition of VPA administered with the same
scheme as the previous study to first-line bevacizumab/oxaliplatin/fluoropyrimidine
regimens (mFOLFOX-6/mOXXEL) in RAS-mutated metastatic colorectal cancer patients
(Clinical trial information: NCT04310176) [155]. The large number of correlative studies
planned in both clinical trials may provide new insight into the mechanism of interaction
between HDACis, and VPA in particular, and fluoropyrimidines.

In breast cancer patients, four different HDAC inhibitors have been tested in associa-
tion with capecitabine to identify the MTD and/or DLT. Peacock N et al. presented a Phase
I study of panobinostat (LBH589) with capecitabine and with or without lapatinib adminis-
tered to breast cancer patients with pretreated advanced tumors for which capecitabine
was clinically appropriate at the ASCO annual meeting in 2010 [156].

The study was designed with three objectives: to establish the MTD and DLTs of
panobinostat in combination with capecitabine (Part 1); to assess the safety and tolerability
of panobinostat in combination with lapatinib (Part 2); and to evaluate the tolerability
and effectiveness of the triple combination of panobinostat, capecitabine, and lapatinib in
women with metastatic breast cancer (Part 3). The administration of 30 mg oral panobinostat
twice weekly was feasible and safe in association with two different dosages of capecitabine
[825 (4 patients) and 1000 (11 patients) mg/m2] BID for 14 out of 21 days. The study
completed Part 1 with 15 patients and reported that the combination of panobinostat and
capecitabine was well tolerated at the recommended doses of 30 mg twice weekly and
1000 mg/m2 BID for 14 days every 21 days, respectively. However, the dosing schedule for
panobinostat was changed to 20 mg three times weekly for Parts 2 and 3 of the study. Five
patients have been enrolled in Part 2, which evaluates the association of panobinostat and
lapatinib. Only one patient with metastatic breast cancer has had an objective response and
27% had stable disease.

Poor (moderate) activity was also reported for the combination of vorinostat and
capecitabine, which were tested in a phase I study in 23 advanced breast cancer pa-
tients [165]. Only 14 patients were evaluable for clinical response, but no objective re-
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sponses were seen; 3 patients had stable disease lasting more than 6 months (Clinical trial
information: NCT00719875).

The third phase I study of the HDAC inhibitor entinostat in association with capecitabine
started recently and is ongoing (ClinicalTrials.gov Identifier: NCT03473639). The purpose
of the study is to evaluate the safety and feasibility of the combination of entinostat and
capecitabine in patients with metastatic breast cancer or high-risk breast cancer after
neoadjuvant therapy.

VPA has also been tested in a phase I/II study in combination with FEC100 (epirubicin
100 mg/m2 with 5-fluorouracil 500 mg/m2 and cyclophosphamide 500 mg/m2) in 44 solid
cancer patients (41 evaluable for response) with a disease-specific cohort expansion of 15 pa-
tients (14 evaluable for response) pretreated locally advanced or metastatic breast cancer
patients receiving 120 mg/kg/day valproic acid followed by FEC100. The administration of
VPA was a loading dose (15, 30, 45, 60, 75 90, 100, 120, 140, and 160 mg/kg/day) followed
by 5 oral doses in 2 divided doses (7.5, 15, 22.5, 30, 37.5, 45, 50, 60, 70, and 80 mg/kg) given
every 12 h starting 4 h after the loading dose. Interestingly, partial responses were seen in 9
of 41 patients (22%). In the expansion cohort, objective responses were seen in 9 of 14 evalu-
able patients (64%) at dose expansion with a median number of 6 administered cycles.
Somnolence was the predominant toxicity associated with VPA [157] (ClinicalTrials.gov
Identifier: NCT00246103).

Finally, in phase II of the study, VPA (60 mg/kg BID) was tested in combination with
FEC100 in patients with locally advanced or primary metastatic breast cancer. The study
was closed prematurely due to a lack of efficacy, enrolling only 6 of the 55 estimated patients
(ClinicalTrials.gov Identifier: NCT01010854).

Only a few studies have been conducted to evaluate the association of HDACis
and fluoropyrimidine-based regimens in gastric cancer. In a phase I trial, 23 patients were
enrolled to study the side effects and MDT of vorinostat when administered with irinotecan,
fluorouracil, and leucovorin (FOLFIRI) in patients with advanced upper gastrointestinal
cancers, including esophageal, gastric and liver cancers (NCT00537121). Ten patients were
treated with 3 dose levels of vorinostat (2 at 200 mg, 5 at 300 mg, and 3 at 400 mg). No
DLT was noted at any dose level, and of the 8 patients evaluable for response, 2 patients
experienced a partial response, and 5 patients had stable disease [166]. The study, conducted
by Roswell Park Cancer Institute, was completed and closed in 2013, but unfortunately, the
data were not published.

In a Korean phase I/II study in advanced gastric cancer, vorinostat was associated
with the standard combination of capecitabine and cisplatin. The dose escalation of each
drug was tested starting from vorinostat 300 mg/day, cisplatin 60 mg/m2, and capecitabine
1600 mg/m2/day up to vorinostat 400 mg/day, cisplatin 80 mg/m2, and capecitabine
2000 mg/m2/day with a standard 3 + 3 method.

In phase I, a total of 30 patients with unresectable or metastatic gastric adenocarci-
noma were enrolled, and the recommended doses for further development were vorino-
stat 400 mg/day, cisplatin 60 mg/m2, and capecitabine 2000 mg/m2/day every three
weeks (ClinicalTrials.gov Identifier: NCT01045538). Histone H3 acetylation in PBMCs
was monitored to identify a possible biomarker that could predict efficacy and toxicity
in patients treated with vorinostat. Interestingly, a significant correlation between the
levels of H3 acetylation and the dose of vorinostat was observed, and a greater increase
in H3 acetylation after vorinostat administration was associated with lower baseline H3
acetylation levels [158].

In phase II of the study, 45 patients with HER2-negative unresectable or metastatic
gastric cancer were enrolled. The results showed that vorinostat was ineffective in enhanc-
ing the efficacy of the capecitabine and cisplatin combination in these patients and that
the addition of vorinostat induced more adverse events in comparison with the previous
history of fluoropyrimidine–platinum doublet regimens. Biomarker analysis revealed
that high plasma acetyl-H3 and p21 levels were significantly associated with poor OS,
suggesting their possible role as predictive markers of efficacy [159].
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Slightly more encouraging data were observed in pancreatic cancer patients, one of
the deadliest cancers in which a more effective therapeutic approach is needed.

Iwahashi S et al. conducted a phase I/II clinical trial to examine the safety and efficacy
of a VPA and tegafur combination in twelve patients with advanced pancreatobiliary
tract cancers in whom curative surgery was not feasible [160]. Patients received a daily
dose of 80 mg/m2 oral tegafur for 28 days, followed by a 14 days recovery period when
they received VPA orally twice daily at a total dose of 15 mg/kg/day. Although grade
3/4 adverse events, including anemia and platelet depletion, were observed, the results
were somewhat intriguing. Anemia and platelet depletion are two toxicities commonly
observed when treated with tegafur alone. Although in this trial the partial response rate
was lower than that reported for monotherapy with tegafur, the disease control rate (PR and
SD) of the tegafur and VPA combination compared favorably with the disease control rate
reported for tegafur alone (91.7% vs. 63.3%) [167]. Moreover, significant increases in blood
concentrations of VPA were confirmed 2 and 4 weeks after VPA administration. In a phase
I study, twenty-one patients with nonmetastatic pancreatic cancers received escalating
doses of vorinostat (100–400 mg daily) in association with capecitabine and radiotherapy.
Vorinostat was administered at every assigned daily dose level (100, 200, 300, or 400 mg)
during radiotherapy (30 Gy in 10 fractions) and for the following two weeks after radiation
was completed, while 1000 mg q12 capecitabine was administered on the days of radiation.
The MTD of vorinostat was 400 mg, and although DLT occurred in one patient at each
dose level, the combination of vorinostat with capecitabine and RT was feasible and well
tolerated. Interestingly, 11 out 12 borderline resectable patients underwent exploratory
surgery, and there were four R0 resections (microscopic margins negative for tumor) and
one R1 resection (microscopic margins positive for tumor). Finally, an encouraging median
OS of 1.1 years was reported (ClinicalTrials.gov Identifier: NCT00983268) [161]. A phase
I/II study of longer duration, which started in 2009 and closed in 2017, tested vorinostat in
association with 5-FU and radiotherapy in patients with locally advanced pancreatic cancer
(ClinicalTrials.gov Identifier: NCT00948688) with the aim of finding the MDT of vorinostat
in this combination. This trial enrolled only 10 of the 50 planned patients, and phase II of
the study was not performed. Two different doses of vorinostat (200 mg or 100 mg orally,
days 1–7, weeks 1–6) were combined with 5-FU (225 mg/m2/day IV; days 1–5, weeks 1–6
until completion of radiation therapy) and radiotherapy (180 cGy daily Monday–Friday;
28 days of treatment), but the MTD was not determined due to premature closure of the
study. Finally, a recently started phase Ib study aims to determine the recommended dose of
entinostat in combination with the standard FOLFOX chemotherapy regimen in metastatic
pancreatic cancer patients, which will be evaluated in a subsequent phase II study. The
secondary objectives are to assess the safety, tolerability and efficacy of the combination.
The study is a modified 3 + 3 dose-escalation design. All patients will receive the same
dose of FOLFOX once every 2 weeks and various doses of entinostat (2, 3, 4 or 5 mg) on
days 1, 8, 15, and 22 of the 28 day cycles (ClinicalTrials.gov Identifier: NCT03760614).

The combination of vorinostat plus capecitabine was also assessed in a nonrandomized
two-stage open-label study of patients with recurrent and/or metastatic squamous cell
carcinoma of the head and neck (HNSCC) and recurrent and/or metastatic nasopharyngeal
carcinoma (NPC) (Stage I), followed by a randomized study of patients with NPC (Stage II)
(ClinicalTrials.gov Identifier: NCT01267240). Twenty-five patients were enrolled to receive
capecitabine BID and vorinostat daily on days 1–14. Every 21 days, the treatment was
repeated in the absence of disease progression or unacceptable toxicity. The response was
assessed in 16 of the 25 enrolled patients, but clinical activity was inconsistent.

8. Conclusions

At present, the identification of drugs that can overcome fluoropyrimidine resistance
remains a clinical priority. In this manuscript, we reviewed multiple varying mechanisms
responsible for resistance to fluoropyrimidines, highlighting many novel potential ther-
apeutic targets. Moreover, we demonstrated that epigenetic agents such as HDACis can
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reverse fluoropyrimidine resistance by targeting specific genes or proteins. Although
preclinical evidence showed a strong synergistic interaction between HDACis and fluo-
ropyrimidines in different cancer models, the data from clinical studies did not support
the preclinical observations. It is well known that, despite the introduction of increasingly
complex in vitro and in vivo preclinical models, these models cannot recapitulate human
complexity. Moreover, the analysis of the clinical studies revealed that the majority of these
studies lacked a clear and mechanistic approach.
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