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Abstract. The molecular mechanism of oral submucous 
fibrosis (OSF) is yet to be fully elucidated. The identification 
of reliable signature genes to screen patients with a high risk 
of OSF and to provide oral cancer surveillance is therefore 
required. The present study produced a filtering criterion 
based on network characteristics and principal component 
analysis, and identified the genes that were involved in OSF 
prognosis. Two gene expression datasets were analyzed using 
meta‑analysis, the results of which revealed 1,176 biologically 
significant genes. A co‑expression network was subsequently 
constructed and weighted gene modules were detected. The 
pathway and functional enrichment analyses of the present 
study allowed for the identification of modules 1 and 2, and 
their respective genes, SPARC (osteonectin), cwcv and kazal 
like domain proteoglycan 1 (SPOCK1) and kruppel like 
factor 6 (KLF6), which were involved in the occurrence of 
OSF. The results revealed that both genes had a prominent role 
in epithelial to mesenchymal transition during OSF progres-
sion. The genes identified in the present study require further 
exploration and validation within clinical settings to determine 
their roles in OSF.

Introduction

Oral submucous fibrosis (OSF) is a subtle chronic disease 
involving the oral cavity and sometimes the pharynx. It 
predominantly arises in India and South East Asia exhibiting 
an incremental prevalence over the past four decades from 
0.03 to 6.42% (1). It has the potential to transform into head 

and neck squamous cell carcinoma (HNSCC) with a rate of 
2‑8% (2). Thus, early diagnosis of this potentially malignant 
disorder would be very effective for prognosis as well as treat-
ment. The pathophysiological consequences of the disease 
begin with a juxta‑epithelial inflammatory response leading to 
the formation of vesicles and fibro‑elastically altered lamina 
propria, and finally resulting in epithelial atrophy causing oral 
mucosa stiffness, trismus and eating inability. This is evident 
from the juxta‑epithelial inflammatory reaction followed by 
immediate fibrotic contraction (3). The emerging stiffness in 
oral mucosa and other deep tissues gradually confines mouth 
opening and tongue protrusion, causing eating, swallowing 
and speaking predicaments. However, epithelial atrophy is a 
more pronounced feature of the leading stage of the disease. 
Molecular pathogenesis of OSF include epithelial‑mesenchymal 
transition (EMT), extracellular matrix (ECM) remodeling and 
fibroblast changes, escalated expression of growth factors 
and inflammatory cytokines (3). Areca nut alkaloid arecoline 
is defined as the causative factor of OSF (4). Traditionally, 
OSF medications included therapies that are empirical and 
symptomatic in nature. Mostly, combined drug treatment is 
performed but based on the clinical staging, physical therapy 
and/or surgery may be added to drug therapy (5). 

Several attempts have been made to unravel the molecular 
mechanisms behind the disease. But, to uncover the complete 
mechanism, a greater understanding of differential gene 
expression between normal and diseased tissues is required. 
Khan et al reported the role of two biomarkers, BMP7, 
and TGF‑β in the pathogenesis of OSF along with their 
validation (6). Yang et al (7), found upregulation of type I 
plasminogen activator inhibitor in OSF specimens which they 
validated by RT‑PCR and western blot validation. Moreover, 
gene expression profiling experiments are restricted by 
individual analysis approaches using a small number of samples 
and hence are not very reliable (8). Hence, meta‑analysis may 
be the ultimate solution to all these problems. It is a robust 
analytical and statistical tool that improvises the statistical 
significance of result by merging the results of several studies 
across the same platform. Meta‑analysis of OSF datasets 
covers limitations of individual expression profiling since 
its statistical power detects consistent changes across the 
multiple datasets. Another, the collection of genes working 
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in a coordinated fashion are responsible for the progression 
of any disorder rather than a single gene. Identification of the 
highly co‑expressed genes and elucidation of their biological 
significance is the most alluring topic in the field of network 
biology. Network biology is an area where we represent any 
complex system in terms of graph (network). The network 
consists of nodes and edges (the connection between nodes). In 
this case, the nodes are the genes and their connection depend 
on the correlation between them. Nowadays, several attempts 
have been made to elucidate the biological problem using this 
concept of network theory. For example, the Gene Co‑expression 
Networks (GCN) assist to identify dense communities or 
functional gene modules (9). The modules and their key genes 
may be involved in vital pathways and thereby act as a suitable 
biomarker for early diagnosis (10). Mahapatra et al (11), 
adopted a dense sub graph‑based methodology to find the 
putative genes from microarray data. Their proposed setup 
discovers highly co‑expressed gene modules and further 
amalgamates it with protein‑protein interaction (PPI) to find 
strongly connected modules. Lin et al (12), also identified FN1 
and CCNA2 as important genes via network‑based module 
analysis in oral squamous cell carcinoma (OSCC) from 
microarray datasets. Shah and Braun (13), introduced a tool 
named as GeneSurrounder that discovers genes by combining 
gene expression data and pathway network information. 
Although Pant et al (14), reported role of important genes 
in the manifestation of OSF by treating the hGF cells with 
areca nut (5H), TGF‑β (T), and areca nut with TGF‑β (5H+T) 
followed by pathway analysis and qPCR respectively. Our 
study emphasized on screening of unique signature genes 
associated with OSF progression via rigorous statistical 
analysis and network‑based module approach followed by 
functional enrichment analysis. In this study, we assumed that 
the pathogenesis of OSF is occurred by the perturbation of 
intercellular and intracellular connections of molecules. Overall 
the molecular mechanism is very complex in nature. To solve 
this problem, we adopted the well‑established network‑based 
approach in the field of biological science, weighted gene 
co‑expression network analysis (WGCNA) to identify groups 
of highly co‑expressed (modules) genes associated to OSF. 
The differentially expressed genes (DEGs) were obtained 
from the meta‑analysis of gene expression data. A total of 
4 significant modules were discovered which was followed 
by the pathway and functional enrichment analysis for each 
module. The first module was enriched in immune response 
and Phagosome pathway (hsa04145), while the second module 
was enriched in muscle structural development and muscle 
contraction (R‑SHA‑397014) pathway. These results showed 
high relevancy with the progression events of OSF. 

Further, we analyzed that the highly co‑expressed module 
leads to the identification of a potential biomarker for OSF 
that will help to understand the mechanism of OSF. This 
analysis comprised intersection from four gene subsets 
namely Set‑A, B, C and D of each module. Set‑A was based on 
the PPI centrality measures of corresponding module genes. 
Set‑B was based on significantly enriched Gene Ontology 
(GO) terms, Set‑C was based on highly correlated eigengene 
(biologically significant gene within the module) and Set‑D 
was based on highly significant functional enrichment of 
whole DEGs. There were 47 unique signature genes filtered 

from all four modules using this newly developed filtering 
criterion.

Finally, we suggested that KLF6 and SPOCK1 were found 
to be associated with significantly enriched GO terms and 
pathways such as immune response and muscle contraction, 
making them the most promising signature genes. Belonging 
to the largest two modules, both the genes had a considerably 
high combined effect size (ES) score and helped to drive EMT: 
A major event activated during OSF progression. Moreover, 
no clinical data was available for the patients' samples related 
to the role of SPOCK1 and KLF6 in OSF on GEO. Thereby, 
no further expression analysis was possible with patients' 
samples. Although several research articles have carried out 
survival analysis for different biomarkers in other diseases, but 
no literature is available on such kind of analysis for OSF. 

Materials and methods

Extraction of eligible OSF gene expression datasets. The gene 
expression data of OSF was retrieved from Gene Expression 
Omnibus (GEO) (15), an open genomic repository of National 
Center for Biotechnology Information (NCBI). The suitable 
keywords and their mixtures were used as follows: ‘Oral 
submucous fibrosis microarray’ for searching OSF datasets in 
GEO. 

Inclusion criteria. Gene expression datasets related to OSF and 
normal tissue samples were taken for the study. The expression 
datasets obtained from standard microarray platforms were 
used for the study (16).

Exclusion criteria. Datasets with cell line study and without 
the inclusion of normal samples were excluded.

Datasets (Series matrix files) with accession numbers 
GSE20170 and GSE64216 were retrieved based on platforms 
GPL6480 Agilent and GPL10558 Illumina, respectively. The 
dataset with GSE64216 had 8 samples (2 normal and 6 OSF 
cases) and GSE20170 had 10 OSF tissues against 8 pooled 
normal tissues.

Individual study analysis. HGNC (HUGO Gene Nomenclature 
Committee) gene symbol(s) (17) were allotted to each probe 
in the series matrix expression file based on the respective 
platform type. This was performed using several key tools 
and databases such as Synergizer (18), gprofiler (19), GEO2R, 
AbIDconvert (20), bioDBnet:db2db (21), DAVID (22), 
omniBiomarker (23), NCBI Entrez Browser (24) and Ensembl 
92 Genome Browser (25). Duplicates for a given gene symbol 
were removed by averaging the expression values from various 
probes corresponding to the same gene (16). Computation of 
P‑values in Illumina dataset was done utilizing the two‑sample 
t‑test function mattest (MATLAB R2018a) between normal 
and OSF expression level for each gene. For Agilent dataset, 
one‑sample t‑test function ttest (MATLAB R2018a) was used 
for P‑value computation across all the samples because this 
dataset had pooled expression levels of OSF vs. normal tissues 
respectively.

Meta‑analysis of OSF datasets. Common genes between 
both datasets were found with intersect function (MATLAB 
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R2018a) followed by the combined P‑value computation based 
on Fisher's χ2‑based method (26). Expression data corre-
sponding to common genes was used for computing z‑score, 
z‑difference, z‑ratio, combined ES score and fold change (FC). 
To screen significant genes, a two‑step screening process was 
used. In step‑I, a gene is differentially expressed if FC >1.5 
and P‑value <0.05 (27). In step‑II, z‑ratio of ±1.96 is regarded 
as a significant threshold to screen final DEGs as they are in 
the non‑rejection region at significance level α=0.05 (28). For 
filtering upregulated and downregulated genes from DEGs, 
z‑score >0.5 and FDR <0.05 and z‑score <‑0.5 and FDR <0.05 
was used as the preferred threshold, respectively (29).

Weighted gene co‑expression network construction and 
module detection. Correlation among expression level of genes 
along with all the diseased sample tissues was used to know 
their functionality. The network construction is conceptually 
straight forward and thus it is easy to know the nodes and their 
connections. In our case, nodes of the network are genes and 
two nodes are connected to each other if they are co‑expressed 
across all the tissue samples. Based on the correlation coef-
ficient or other hard threshold values, it is difficult to infer 
whether two genes are correlated or not. Hence, to accomplish 
this, there has to be a soft threshold value driving the absolute 
value of the correlation coefficient and following the network 
scale‑free property (30). In this context, WGCNA developed 
by Steve Horvath is of relevance. This is a complete package 
suite in R being utilized for constructing a weighted network 
and discovering modules of highly correlated genes (31). 
Designing a weighted co‑expression gene network depends 
strongly on the value of the soft threshold power, β to which 
co‑expression similarity is raised to compute adjacency. 
Function pickSoftThreshold (R 3.5.0) assists in selecting 
a proper β value. For choosing the best value of β, R2 is the 
criterion to affirm the fitness of co‑expression network with 
scale‑free property (generally, R2>0.80). We considered the 
best value of β when the relation between R2 and β reached at 
saturation (32). To minimize the impact of noise and errors, 
we transform the adjacency into topological overlap Matrix 
(TOM). Computation of the corresponding dissimilarity is 
performed utilizing hierarchical clustering, thereby producing 
dendrogram of genes. Identification of individual branches 
(cutting the branches off the dendrogram) is the main ideology 
behind module identification. dynamicTreeCut (R 3.5.0) 
function distinguishes modules with very similar expression 
profiles and as their genes are co‑expressed, it is reasonable to 
merge such modules. TOM plot enables to visualize a weighted 
gene network where every row and column correspond to a 
single gene representing adjacencies.

Pathway and functional enrichment analysis. To gain insights 
into the biological role of module genes, GO term enrich-
ment and pathway analysis was done. Functional enrichment 
provides a common descriptive framework, functional annota-
tion, and classification to analyze the gene datasets (33). The 
GO term enrichment analysis was performed using DAVID 
6.8 (Database for Annotation, Visualization, and Integrated 
Discovery) web‑based annotation tool (34,35) and ToppFun 
web‑based application (36). We classified the module genes 
into different functional categories of biological process (BP) 

and molecular function (MF) with a significance threshold of 
P‑value <0.05 based on the Bonferroni correction method. Top 
20% of enriched GO terms (BP and MF) were filtered to select 
significantly enriched GO terms. The pathway enrichment 
analysis for each module was performed using WebGestalt 
2017 (WEB‑based Gene Set Analysis Toolkit) web tool (37) 
and ToppFun. Both of them integrated information from 
different sources like PANTHER 11 (Protein ANalysis 
THrough Evolutionary Relationships) (38), KEGG (Kyoto 
Encyclopedia of Genes and Genomes) (39), BioCarta (40) 
and Reactome (41), respectively. Top 20% of enriched path-
ways were filtered to select significantly enriched pathways 
at a significance threshold of P‑value <0.01 based on the 
Bonferroni correction method.

Signature gene identification. For the identification of 
signature genes, three gene sub‑sets (pre‑filtering sets) from 
each module, namely Set‑A, Set‑B, Set‑C and a post‑filtering 
set (Set‑D) were defined as follows. Then, we filtered only 
the genes which were common across all the four sets. This 
was performed by Venny 2.1.0 (http://bioinfogp.cnb.csic.
es/tools/venny/index.html).

Engineering of pre‑filtering SET‑A (based on centrality 
measures). PPI network for genes of the corresponding module 
was constructed from the STRING v10.5 database (42). The 
distribution of these genes was checked in the top 15% ranked 
genes by each centrality measure (Degree, Stress, Eccentricity, 
Radiality, Closeness and Betweenness). These centrality rank-
ings were computed using software Cytoscape 3.6.1 (43). 
Unique pooled genes consist of unique genes from all the 
listed centralities combined at 15% cutoff and were conserved 
for Set‑A.

Engineering of pre‑filtering SET‑B (based on significant GO 
enrichment analysis). There are many GO terms with false 
positives and thus a criterion is required to lessen the entire 
quantity of GO terms to increment prediction efficiency. 
The significantly enriched GO terms were attained with 
P‑value <0.001 from DAVID (level 5) database. Out of these, 
the terms that were associated with fewer than 3 and greater 
than 50 genes (3 < = G< = 50, G = quantity of genes) were 
removed to eliminate non‑specific ones (44). Genes associated 
with the remaining significant GO terms were conserved for 
Set‑B.

Engineering of pre‑filtering SET‑C (based on eigengene 
correlation). Singular value decomposition (SVD) assists in 
factorization of a matrix and let the vertices to be symbolized as 
vectors. It induces linear transformation of expression data from 
genes x arrays space into compact ‘eigengenes’ x ‘eigenarrays’ 
space (45). Here, the data are diagonalized, such that every 
eigengene is expressed solely in the corresponding eigenarray, 
with relative ‘eigenexpression’ values describing their 
comparative significance. Using SVD function (MATLAB), 
the module expression data is decomposed into three resultant 
matrices namely U, D and V. The first column of V is known 
as the module eigengene or first principal component (46) 
and is regarded as the most representative or influenced gene 
of the whole module. Positive correlation of this vector with 
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the expression values across module genes was carried out. 
Highly correlated genes (correlation coefficient >=0.95) were 
conserved for Set‑C.

Engineering of SET‑D (post‑filtering set). The present study 
can be divided into two parts, where we studied the up and 
downregulated genes in the first part (methodology described 
in section ‘Materials and methods’) and in the second part, 
we studied module identification of the DEGs. Set‑D was 
constructed from first part of the study by applying Set‑B 
criterion on it, whereas, Set‑A, B, C have been constructed 
from second part of the study.

The reason for formulation of Set D can be elaborated in 
the following manner: suppose M and N are two sets of genes 
where M is a subset of N. Another assumption is that J and K 
set of genes were screened after applying criterion of Set‑B 
on M and N respectively. Then, J may not necessarily be the 
subset of K. Hence, Set‑D was important for finding the func-
tionally significant genes in the set of up and downregulated 
DEGs which were identified in first part of the study.

Results

Individual analysis. In the present study, we gathered a total 
of two gene expression datasets in accordance with the exclu-
sion and inclusion criteria specified. Then, we performed 
mapping of probe IDs to HGNC gene symbol(s) for both 
datasets followed by removal of duplicate gene symbols. 
From this, we got a total of 27800 and 30864 HGNC gene 
symbols in Illumina and Agilent expression datasets respec-
tively. Computation of P‑values from expression values of both 
datasets was performed using the appropriate statistical t‑test. 
These P‑values were used for further DEGs screening.

Meta‑analysis of OSF datasets. A total of 17,792 common 
genes across both the datasets were derived and combined 
P‑value of these genes was computed using fisher's χ2‑based 
method. Finally, 1,176 DEGs were screened after applying 
the two‑step screening process. In step‑I, 1,219 genes were 
obtained out of which 43 genes were removed based on step‑II 
screening threshold to yield the final DEGs. Filtering of 
238 upregulated and 902 downregulated genes using appro-
priate z‑score threshold was performed.

Co‑expression network construction and module detec‑
tion. After using WGCNA as specified in the materials and 
methods section for calculating the soft threshold (β), we 
found an interesting scenario as shown in Fig. 1. We can see 
in the left and right panel of the Fig. 1 that the curve trades 
off at β=155 with R2=0. 85300, hence we utilized the power 
(s,β=155) to construct adjacency matrix of the weighted 
network. Then we computed TOM which is a biologically 
meaningful measure of node similarity, and the genes were 
clustered hierarchically utilizing 1‑TOM as the distance 
measure. The modules were identified by picking a height 
cut‑off of 0.90 (as guided by the TOM plot) for the resulting 
dendrogram (Fig. 2A and B). Highly analogous modules were 
characterized by clustering and merging together (Fig. 2C). 
Finally, four significant modules were identified and classified 
according to the specific color‑coding scheme, each of which 

had co‑ordinately expressed genes (Table I). TOM plot of the 
weighted network is shown in Fig. 2D for all 1,176 genes and 
it depicts that modules are highly robust with respect to the 
network construction method utilized. Out of 1,176 genes, 
module‑1 had the highest number of genes, i.e., 478, module‑2 
had almost half of module‑1, similarly, module‑3 and module‑4 
had 160 and 91 genes, respectively (a summary can be seen in 
Table I). Remaining 176 genes were not able to significantly 
correlate with any of these modules. The list of genes with 
belongingness to different modules is shown in Table SI.

Pathway and functional enrichment analysis. Pathway 
and GO term enrichment analysis was performed to 
characterize the module function. The GO term analysis 
(BP & MF) of module‑1 genes can be seen in Fig. 3A, 
which was depicting a large range of biological functions 
and highly enriched terms including Immune Response 
(GO:0006955; adjacent P‑value=3.788E‑10) and MHC class II 
receptor activity (GO:0032395; adjacent P‑value=4.00E‑03). 
The most significantly enriched pathways of module‑1 
were Phagosome (hsa04145) and MHC class II antigen 
presentation (R‑HSA‑2132295; Fig. 4A). Highly significantly 
enriched terms of module‑2 genes were muscle structure 
development (GO:0061061; adjacent P‑value=3.483E‑12) 
and structural constituent of muscle (GO:0008307; adjacent 
P‑value=9.212E‑08), can be seen in Fig. 3B. Highly 
significant enriched pathways of module‑2 genes were muscle 
contraction (R‑HSA‑397014) and neutrophil degranulation 
(R‑HSA‑6798695) with a maximum number of genes being 
involved in the former pathway (Fig. 4B). Module‑3 comprised 
of highly significant terms like defense response (GO:0006952; 
adjacent P‑value=1.248E‑05) and dolecular transducer 
activity (GO:0060089; adjacent P‑value=4.674E‑04). Highly 
significant enriched pathways of module‑3 were ensemble 
of genes encoding ECM and extracellular matrix‑associated 
proteins (M5889) and activation of IRF3/IRF7 mediated by 
TBK1/IKK epsilon (R‑HSA‑936964) (Figs. 3C and 4C). Genes 
of module‑4 were involved in immune response (GO:0006955; 
adjacent P‑value=9.770E‑18) and interleukin‑2 receptor 
activity (GO:0004911; adjacent P‑value=4.300E‑02). Highly 
significant pathways of module‑4 were cytokine signaling in the 
immune system (R‑HSA‑1280215) and interferon‑GAMMA 
signaling (R‑HSA‑877300; Figs. 3D and 4D).

Signature gene identification and analysis

Table I. Characteristics of identified modules using WGCNA.

 Nodes Color coding
Module no. (Genes) by WGCNA

01 478 GREEN
02 271 BLACK
03 160 BLUE
04 91 GREENYELLOW
05 INSIGNIFICANT GREY

WGCNA, weighted gene co‑expression network analysis.
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Pre‑filtering Set‑A. Significance of a node is governed by 
each centrality in a different manner for the network under 
consideration. In the present study PPI network for genes of 
the corresponding module was constructed from the STRING 
database and top 15% genes were ranked by each centrality. 
Unique pooled genes from all centralities were reserved for 
Set‑A. The top 15% unique genes filtered from module‑1, 
module‑2, module‑3, and module‑4 were 63, 22, 15 and 5, 
respectively.

Pre‑filtering Set‑B. DAVID (level 5) was used for the identifi-
cation of significantly enriched (P‑value <0.001) GO terms for 
each module. If a term is associated with ≤3 and ≥50 genes, 
then it was removed and the genes associated with rest of the 
terms were reserved for Set‑B. Using this criterion, we found 
240, 159, 122, and 64 genes in module‑1, module‑2, module‑3, 
and module‑4, respectively. 

Pre‑filtering Set‑C. SVD also known as principal component 
analysis (PCA) in statistics is a highly robust technique for 
matrix factorization and dimensionality reduction. The matrix 
decomposition using SVD leads to U, D and V matrices and 
the columns of U and V are left and right‑singular vectors, 
respectively. Here, the first column of V is referred to as the 
representative eigengene of the module and its positive correla-
tion with expression values leads to highly correlated genes for 

Set‑C. The number of highly correlated genes were 310, 158, 
91 and 80 in module‑1, module‑2, module‑3, and module‑4, 
respectively. 

Post‑filtering Set‑D. The total number of significant and 
specific GO terms associated genes filtered from up and 
downregulated DEGs were 647.

Intersection of pre‑filtering sets and post‑filtering set. The 
summary of filtered genes from each set and their inter-
section can be seen in Fig. 5A‑D for module‑1, module‑2, 
module‑3, and module‑4, respectively. Genes common 
between the pre‑filtering sets (A, B, C) and post‑filtering 
set (D) were regarded as signature genes. We found a total of 
47 genes where 21, 12, 10 and 4 genes were from module‑1, 
module‑2, module‑3, and module‑4, respectively (Table SII). 
Out of these, we listed the top 10 upregulated and 10 down-
regulated genes each based on the combined ES score 
which can be seen in Table II. As SPOCK1 (upregulated) 
and KLF6 (downregulated) were involved in significantly 
enriched pathways and GO terms, hence they were regarded 
as the most promising signature genes. Also, they belonged 
to the largest two modules (module‑1 and module‑2). The 
box‑and‑whisker plot for comparison of KLF6 and SPOCK1 
gene expressions in OSF and normal cases respectively is 
illustrated in Fig. 6.

Figure 1. Network topology analysis of several soft‑threshold powers in weighted gene co‑expression network analysis, where (A) depicts R2 as a function of 
β and (B) depicts mean connectivity as a function of β.
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Discussion

The present study presents an integrated meta‑analysis of 
OSF gene expression datasets with the objective of finding 

reliable signature genes. We observed a total of 1,176 DEGs 
using meta‑analysis of 2 OSF datasets and by implying a 
specific threshold for filtering. Further, a module‑based 
technique was adopted to delineate the DEGs into modules. 

Figure 2. WGCNA co‑expression network and module detection analysis. (A) represents clustering dendrogram of genes with dissimilarity based on topological 
overlap. A total of 16 distinct modules are presented with different assigned colors in the horizontal bar below the dendrogram, with grey representing unassigned 
genes in any module. (B) Hierarchical clustering of 16 module eigengenes. The distance (1‑TOM) is denoted by the y‑axis and different MEs are denoted by the 
x‑axis (labled as color with ME prefixed in each color module). The horizontal red line (1‑TOM=0.10) depicts the benchmark for defining meta‑modules. The 
green, blue, black and green‑yellow modules illustrate meta‑modules, while grey colored eigengenes were not assigned to any meta‑module. (C) Original and 
merged co‑expression modules with assigned original module colors and merged module colors. Genes were clustered based on a dissimilarity measure (1‑TOM). 
The branches correspond to modules of highly correlated or interconnected groups of genes. Colors in the horizontal bar depict the modules before and after 
merging. Cluster dendrograms of genes with dissimilarity based on topological overlap is presented above the modules. A total of 16 original modules were 
merged to obtain 4 highly significant meta‑modules denoted by the colors green, black, blue and green‑yellow. Grey colored modules represent unassigned genes. 
(D) Heatmap plot of the weighted gene co‑expression network. The plot indicates the TOM among all genes analyzed. Genes in columns and their corresponding 
rows are hierarchically clustered by cluster dendrograms, which are presented along the top and left side of the plot. Color‑coded module membership is presented 
with colored bars (green, black, blue, green‑yellow and grey) below and to the right of dendrograms. Green, black, blue and green‑yellow colors signify the 4 
significant meta‑modules and grey represents the insignificant module. Progressively light and darker red colors in the matrix signify lower and higher overlap 
among genes. High co‑expression interconnectedness are indicated by progressively more saturated yellow to red colors. TOM, topological overlap matrix; ME, 
module eigengene.
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The gene expression analysis can be done better with the aid of 
co‑expression networks as it lets for analysis of expression data 
from a system's perspective (47). Weighted gene co‑expression 
network expresses the relation amongst modules as it 
preserves the nature of co‑expression information. Module 

detection techniques are a boon in the analysis of massive 
gene expression studies. With the advent of non‑overlapping 
clustering approach, now there is an ease of rapidly presenting 
a global portrait of the dataset, exposing the main expression 
and functional relevance amongst the various samples 

Figure 4. Representation of the top 20% significantly enriched pathways. Top 20% significantly enriched pathways obtained using WebGestalt and ToppFun 
platforms, presented as clustered bar charts for (A) Module‑1, (B) Module‑2, (C) Module‑3 and (D) Module‑4.

Figure 3. Representation of the top 20% significantly enriched GO terms. Top 20% of significantly enriched gene ontology terms (molecular function and 
biological process) using DAVID and ToppFun software, presented as pie‑charts for (A) Module‑1, (B) Module‑2, (C) Module‑3 and (D) Module‑4.
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Figure 5. Venn plots for Set‑A, B, C and D. (A) Identification of signature genes using top ranked unique genes (Centrality set), significant GO terms (GO 
Terms set), eigengene based on principal component analysis correlation (Eigengene set) and Post‑filtering set. The genes shared by all four sets revealed 
potent signature genes from (A) Module‑1 (21), (B) Module‑2 (12), (C) Module‑3 (10) and (D) Module‑4 (4). Blue represents centrality Set‑A, green represents 
significant GO term Set‑B, yellow represents eigengene Set‑C and red represents post‑filtering Set‑D. GO, gene ontology.

Table II. Top 10 upregulated and downregulated signature genes.

Upregulated Combined Chromosome Downregulated Combined Chromosome
genes ES score (Band) genes ES score (Band)

CD14 1.9460 5 (5q31.3) KLF6 ‑0.7532 10 (10p15.2)
GYG1 1.4059 3 (3q24) PODXL ‑0.1044 7 (7q32.3)
ALOX5AP 0.8693 13 (13q12.3) GNG7 ‑0.0608 19 (19p13.3)
PLAT 0.3894 8 (8p11.21) TUSC3 ‑0.0448 8 (8p22)
TPP1 0.2160 11 (11p15.4) BAG4 ‑0.0217 8 (8p11.23)
OASL 0.0979 12 (12q24.31) GCNT2 ‑0.0167 6 (6p24.3‑p24.2)
SPOCK1 0.0901 5 (5q31.2) SCP2 ‑0.0043 1 (1p32.3)
IVD 0.0382 15 (15q15.1) PODXL2 0.0052 3 (3q21.3)
TINAGL1 0.0064 1 (1p35.2) NRXN1 0.0064 2 (2p16.3)
ACAA2 ‑0.2064 18 (18q21.1) TNFRSF8 0.0070 1 (1p36.22)

ES, effect size.
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within the dataset (48). And, WGCNA is especially right for 
such an analysis, outperforming other clustering techniques 
on the majority of datasets. It is an agglomerative hierarchical 
clustering technique that enables assembling of functionally 
related genes to implicitly detect modules. The most vital 
factor on which WGCNA depends is the Pearson's correlation 
coefficient that quantifies the extent of linear dependency 
between the two expression profiles irrespective of absolute 
expression level differences. The whole functional role of a 
module remains the same unlike individual gene expression 
which fluctuates, thereby modules are considered as stable 
units in systems biology. Modularity of the biological system 
enables to gain an insight into its components independently 
and to establish a mutual connection between modules and 
genes. It also assists in interpreting the progression of any 
disorder in a more elaborate manner (49). Module‑based 
analysis from WGCNA resulted in the identification of 
4 modules (color‑coded by green, black, blue and greenyellow 
to distinguish them according to their nodes). Pathway and 
functional enrichment analysis showed that genes of module‑1 
and 2 were involved in the processes and pathways that 
correlate with OSF. Hence, both these modules were regarded 
as important ones. Module‑1 was found to be linked with 

immune response and MHC activities, making it a suitable 
candidate for OSF pathogenesis. The major role of immune 
response is the identification of the foreign antigen. This process 
will eventually lead to hyperactivity of B cells and abnormal 
lymphocyte function. The upsurge in the levels of IgA, IgM, 
and IgG is also noticed in OSF patients (50). OSF has an 
association with autoimmunity which may be caused by areca 
nut elements. Genes located in the HLA region are significant 
determinants of genetic susceptibility in OSF (51). Module‑2 
is mostly associated with muscle structure development and 
muscle‑related processes, which in turn have a sync with 
OSF. Masseter muscle is the toughest and largest one of the 
face. Because of continuous areca nut chewing for prolonged 
intervals of time, the masseter muscle becomes a victim of 
unnecessary stress. This results in escalated thicknesses of the 
muscle causing a major transformation in masseter muscle fiber 
size and composition (52). Restricted mouth open ing in OSF 
cases relies solely not only on subepithelial fibrosis but also on 
the degree of muscle destruction. There is a progressive decline 
observed in the muscle fibers from the epithelial surface as 
the advancement of OSF occurs (53). Also, features suggestive 
of muscle atrophy and necrosis have been demonstrated in 
moderate and advanced OSF cases (54). The light microscopic 
study of OSF has revealed varying degrees of alterations 
involving the muscle fibers as the disease progresses (55). 

The main crux of this whole work remains to be the 
identification of potent signature genes and studying their 
relevance in OSF progression. For this, we constructed 
3 gene sub‑sets (pre‑filtering sets) for each module and a 
post‑filtering set. Biological network comprises some of 
the crucial genes as they are involved in regulating the 
crucial processes. These genes are often found amongst the 
disease genes. As the importance of a protein is not judged 
in a complex PPI network, therefore the centrality measures 
assist in ranking the network components according to their 
importance. We calculated six different centrality measures 
to assess the importance of a protein in the PPI network for 
each module. Prominently, we evaluated the genes which are 
ranked (top 15%) higher in the PPI network and has major 
importance to the disorder. Biological importance of genes 
can be estimated via GO terms to which they were related 
as it gives information for protein functions, processes, and 
localization. To report genes linked with OSF, significantly 
enriched GO terms were characterized, and further pruning 
of these identified terms resulted in a set of more enriched 
terms for each module. To summarize the expression profile 
of a module, the module eigengene needs to be accessed. It 
is the first right‑singular vector of the standardized module 
expression data and most influential gene of whole module. 
Categorizing the data according to correlations of genes 
(and arrays) with eigengenes (and eigenarrays) provides a 
summarized snapshot of the gene expression dynamics. SVD 
or PCA is a robust and fast matrix factorization algorithm and 
offers a beneficial mathematical framework for processing 
and modeling genome‑wide expression data, where both 
the operations and mathematical variables may be allotted 
biological meaning (45). It can be united with unsupervised 
clustering and dimensionality reduction to reveal community 
structures of weighted or unweighted, bipartite or unipartite 
graphs in a computationally effective manner (56). Intersection 

Figure 6. Box‑and‑whisker plot comparing the relative gene expression of 
KLF6 and SPOCK1 in OSF and normal samples. The centre line of each 
box indicates the median result. SPOCK1, SPARC (osteonectin), cwcv and 
kazal like domain proteoglycan 1; KLF6, kruppel like factor 6. OSF, oral 
submucous fibrosis.
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amongst all the four sets revealed 21, 12, 10 and 4 genes from 
each module respectively. The results lay a foundation that 
a blend of GO, network centralities and eigengene play an 
important role in the detection of signature genes. SPOCK1 
and KLF6 were found to have a prominent role in the EMT 
process‑one of the major events of OSF and were regarded as 
reliable biomarkers. Location of KLF6 and SPOCK1 genes are 
on human chromosomes 10 and 5 respectively.

KLF6 (Kruppel‑like factor 6) is a pervasive transcrip-
tion factor with several targets and activities and is highly 
expressed in skin epithelial cells, lung, thymus, cornea, testis, 
lymphocytes and cardiac myocytes. It belongs to a family 
of conserved zinc‑finger proteins that regulates a number of 
cellular events such as cell proliferation, differentiation, apop-
tosis and neoplastic transformation (57). It primarily works by 
enhancing p21 expression by a pathway independent of p53, 
and hence acts as a tumor‑suppressor gene (58). It is down-
regulated in several human cancers and its reduced expression 
has been correlated with cellular proliferation and poor prog-
nosis in oral cancer (59). One of the studies has demonstrated 
its role in metastasis and EMT (60). Downregulation of KLF6 
in our study suggests its role in the EMT process of OSF. 
Expression of KLF6 decreases in chronic inflammation which 
is a common feature in OSF. It binds to the promoter region of 
MMP‑9 (matrix metalloproteinase‑9) and inhibits its expres-
sion in endothelial cells (61). Expression and activity levels of 
MMP‑9 was significantly upregulated in primary keratino-
cytes derived from healthy gingival epithelium treated with 
arecoline (62). MMP‑9 also shows positive stromal expression 
in OSF cases (63). Thus, targeting KLF6 would be highly 
effective in improving the prognosis of OSF.

On the other hand, SPOCK1, an extracellularly secreted 
proteoglycan originally called ‘TESTICAN’, as it was first 
isolated from human testis (64). Altered regulation of SPOCK1 
has been observed in multiple tissues and organs, including 
lymphocytes, brain cartilage, vascular endothelium and 
neuromuscular junctions (65‑67). It has been reported to be 
overexpressed in distinct cancer types. In addition, SPOCK‑1 
induces EMT to facilitate cancer cell migration. EMT plays 
a role in OSF and its malignant transformation. During this 
transition, epithelial cells are degraded, and they acquire 
mesenchymal properties, thereby causing an increase in the 
expression of mesenchymal markers such as N‑cadherin, snail, 
and vimentin. Moreover, the glycan portion of SPOCK1 has 
an interplay with matrix architecture, growth factors and 
chemokines (68). These properties are utilized by cancer cells 
to invade tissues and achieve survival advantage over the 
organism. Based on our study, we infer that SPOCK1 can be a 
crucial gene for early detection of OSF.

We have identified two putative signature genes, SPOCK1, 
and KLF6 which are aberrantly expressed in the case of OSF. 
Dysregulation of these signature genes might probably lead to 
the development of oral cancer. Thus, more detailed analysis of 
mechanisms and pathways associated with these genes would 
provide us a deep insight into the process of oncogenesis 
and would prove to be an effective guide in designing novel 
therapeutic strategies against oral cancer. In this context, the 
present study provides a road map leading to a nearly ideal 
situation where putative results may be transformed into a 
robust tool for routine prognosis. 
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