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Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular
organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the
function of modifications found more broadly throughout the genome remains poorly understood. This is exem-
plified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene pro-
moters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative
genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout
the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes
widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5
phosphorylation on theC-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions
in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive
H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their
derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been charac-
terized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the
genome can be modulated by regulating the levels of a pervasive histone modification.
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In eukaryotes, DNA is wrapped around histones to form
nucleosomes and chromatin, which packages the genome
inside the nucleus. In addition to their structural role, his-
tones are subject to a variety of posttranslational modifi-
cations (PTMs), which have been proposed to play
important roles in regulation of gene expression and other
chromosomal processes (Groth et al. 2007; Kouzarides
2007; Bannister and Kouzarides 2011; Zhao and Garcia
2015; Hauer and Gasser 2017). If chromatin-modifying
systems are perturbed, this can lead to profound alter-
ations in gene expression, resulting in severe developmen-
tal disorders and cancer (Audia and Campbell 2016; Atlasi
and Stunnenberg 2017; Bracken et al. 2019; Zhao and
Shilatifard 2019). However, for many histone modifica-
tions, the mechanisms that control their levels through-
out the genome and ultimately how this influences gene
expression remain poorly understood.

Genome-wide profiling has revealed that some histone
modifications are specifically enriched at gene promoters
and distal regulatory elements (Barski et al. 2007; Ernst
and Kellis 2010; Kharchenko et al. 2011; Zhou et al.
2011; Ho et al. 2014), where they have been proposed to
regulate chromatin accessibility and work with the tran-
scriptional machinery to control gene expression (Lee
et al. 1993; Vettese-Dadey et al. 1996; Pray-Grant et al.
2005; Wysocka et al. 2006; Vermeulen et al. 2007; Lau-
berth et al. 2013; Zhang et al. 2017a). However, it has
also emerged that there are other histone modifications
that are extremely abundant and cover broad regions of
the genome, extending far beyondgenes and gene regulato-
ryelements (Kharchenkoet al. 2011; Ferrari et al. 2014; Lee
et al. 2015;Kahn et al. 2016;Zheng et al. 2016;Carelli et al.
2017; Fursova et al. 2019).Much less effort has been placed
on studying these more pervasive histone modifications,
raising the possibility that they could also have important
and previously underappreciated roles in gene regulation.
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The Polycomb repressive complex 1 (PRC1) is an E3
ubiquitin ligase that catalyzes monoubiquitylation of his-
tone H2A (H2AK119ub1) (de Napoles et al. 2004; Wang
et al. 2004; Buchwald et al. 2006). PRC1 is targeted to
CpG island-associated gene promoters where it can
deposit high levels of H2AK119ub1 (Ku et al. 2008; Farcas
et al. 2012; He et al. 2013; Wu et al. 2013; Bauer et al.
2016), and this is central to Polycomb-mediated gene re-
pression (Endoh et al. 2012; Blackledge et al. 2014, 2020;
Tsuboi et al. 2018; Fursova et al. 2019; Tamburri et al.
2020). A second Polycomb repressive complex, PRC2, is
recruited to the same sites (Boyer et al. 2006; Bracken
2006; Li et al. 2017a; Perino et al. 2018), where it deposits
histone H3 lysine 27 methylation (H3K27me3) (Cao et al.
2002; Czermin et al. 2002; Kuzmichev 2002; Müller et al.
2002), leading to the formation of transcriptionally repres-
sive Polycomb chromatin domains that have high levels of
PRC1, PRC2, and their respective histone modifications
(Mikkelsen et al. 2007; Ku et al. 2008). In addition to
this punctate high-level enrichment of H2AK119ub1 at
Polycomb target gene promoters, we and others have re-
cently demonstrated that H2AK119ub1 is also found
broadly throughout the genome, albeit at much lower
levels (Lee et al. 2015; Kahn et al. 2016; Fursova et al.
2019). However, whether this genome-wide pool of
H2AK119ub1 influences gene expression has remained
enigmatic.

Interestingly, H2AK119ub1 is highly dynamic (Seale
1981), and a number of deubiquitylating enzymes
(DUBs) have been proposed to regulate its levels (for re-
view, see Belle and Nijnik 2014; Aquila and Atanassov
2020). The most extensively characterized and evolution-
arily conserved of these DUBs is BAP1, which interacts
with ASXL proteins to form the Polycomb repressive deu-
biquitinase complex (PR-DUB) (Scheuermann et al. 2010;
Wu et al. 2015; Hauri et al. 2016; Kloet et al. 2016; Sahtoe
et al. 2016; Campagne et al. 2019). Previous attempts to
understand how BAP1 regulates gene expression and
whether this relies on its H2AK119ub1 deubiquitylase ac-
tivity have primarily focused on examining how the PR-
DUB complex is targeted to gene promoters and distal reg-
ulatory elements and how this regulates binding and/or
activity of chromatin-modifying transcriptional coactiva-
tors (Li et al. 2017b; Wang et al. 2018; Campagne et al.
2019; Kuznetsov et al. 2019; Kolovos et al. 2020; Szcze-
panski et al. 2020). While this has revealed that BAP1
can remove H2AK119ub1 at specific loci, its primary
site of action in the genome and the mechanisms by
which it controls gene expression have appeared to be con-
text-dependent and in some cases difficult to reconcile
with the known roles of H2AK119ub1 in gene regulation.
Therefore, how H2AK119ub1 levels in the genome are
modulated by BAP1 and how this influences transcription
remains poorly defined. Addressing these questions is par-
ticularly important in the light of the essential role
that BAP1 plays as a tumor suppressor (Ventii et al.
2008; Dey et al. 2012; Carbone et al. 2013; Murali et al.
2013; Daou et al. 2015) and could provide important
new insight into how BAP1 dysfunction causes cellular
transformation.

To dissect how BAP1 controls H2AK119ub1 levels and
gene expression, here, we integrate genome editing, in-
ducible genetic perturbations, and quantitative genomics.
We found that BAP1 functions to constrain pervasive
H2AK119ub1 throughout the genome, with no preference
for gene promoters or distal regulatory elements.We dem-
onstrate that by counteracting pervasive H2AK119ub1,
BAP1 plays a fundamental role in facilitating gene expres-
sion. In the absence of BAP1, elevated H2AK119ub1
broadly inhibits Serine 5 phosphorylation (Ser5P) on the
C-terminal domain (CTD) of RNA polymerase II at gene
regulatory elements and causes widespread reductions
in transcription and transcription-associated histone
modifications, without limiting chromatin accessibility.
Finally, we discover that a subset of Polycomb target
genes rely on BAP1 for their silencing and provide amech-
anistic rationale for how BAP1 can indirectly support Pol-
ycomb-mediated gene repression. Together, these
observations demonstrate how the levels of a pervasive
histone modification must be appropriately controlled to
enable the transcriptional potential of the genome.

Results

BAP1 functions pervasively throughout the genome
to constrain H2AK119ub1

Given our recent discovery thatH2AK119ub1 is deposited
more broadly throughout the genome than previously ap-
preciated (Fursova et al. 2019), we set out to determine
where in the genome BAP1 functions to control the levels
of H2AK119ub1 and how this influences gene expression.
To address these important questions, we developed a
BAP1 conditional knockout mouse embryonic stem cell
(ESC) line (Bap1fl/fl) in which addition of tamoxifen
(OHT) enables inducible removal of BAP1, allowing us to
capture the primary effects that BAP1 loss has on
H2AK119ub1 and gene expression. Importantly, tamoxi-
fen treatment of Bap1fl/fl cells resulted in a complete loss
of BAP1 protein, while the levels of BAP1-interacting part-
nerswere largelyunchanged (Fig. 1A). In linewithprevious
observations in BAP1 knockout mouse ESCs and human
cancer cell lines (Wang et al. 2018; Campagne et al. 2019;
He et al. 2019; Kolovos et al. 2020), Western blot analysis
showed thatH2AK119ub1 levelsweremarkedly increased
following BAP1 removal, whereas H2BK120ub1 was unaf-
fected (Fig. 1B).

Having shown that conditional knockout of BAP1 leads
to an increase in H2AK119ub1 (Fig. 1B), we set out to
define where in the genome H2AK119ub1 was elevated
using an unbiased quantitative genomic approach. To
achieve this, we carried out calibrated ChIP-seq (cChIP-
seq) for H2AK119ub1 before and after removal of BAP1.
Remarkably, this revealed a major and widespread accu-
mulation of H2AK119ub1, which was evident when we
visualized changes in H2AK119ub1 across an entire chro-
mosome and also when we focused on individual regions
of chromosomes (Fig. 1C; Supplemental Figs. S1A, S2D).
Importantly, the magnitude of H2AK119ub1 accumula-
tion appeared to be largely uniform throughout the
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genome (Fig. 1C), showing no preference for gene regulato-
ry elements, including promoters and enhancers (Fig. 1D;
Supplemental Fig. S2A), where BAP1 has been previously
proposed to function (Wang et al. 2018; Campagne et al.
2019; Kuznetsov et al. 2019). To characterize the effect of
BAP1 removal on H2AK119ub1 in more detail, we em-
ployed an unsupervised ChromHMM classification ap-
proach (Ernst and Kellis 2012) to segment the genome
into 13 chromatin states encompassing allmajor function-
al genomic annotations (Supplemental Fig. S2B) and exam-
ined changes in H2AK119ub1 across these distinct states.
This revealed that all chromatin states were significantly

affected and displayed similar increases in H2AK119ub1
(Fig. 1E; Supplemental Fig. S2C,D). Interestingly, these ef-
fects appeared to be less pronounced at Polycomb-en-
riched chromatin states (Fig. 1E). However, a closer
examination revealed that these regions gained similar
amounts of H2AK119ub1 to the rest of the genome (Sup-
plemental Fig. S2C), with higher initial levels of
H2AK119ub1 likely accounting for the smaller apparent
fold changes following BAP1 removal (Fig. 1E). Further-
more, states encompassing actively transcribed genes
also showed a less pronounced increase in H2AK119ub1
(Fig. 1E; Supplemental Fig. S2C), possibly due to the
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Figure 1. BAP1 functions pervasively throughout the genome to constrain H2AK119ub1. (A) Western blot analysis for BAP1 and other
subunits of the PR-DUB complex (ASXL1 and FOXK1) in untreated (UNT) and OHT-treated (OHT) Bap1fl/fl ESCs. BRG1 is shown as a
loading control. (B) Western blot analysis (left panel) and quantification (right panel) of H2AK119ub1 and H2BK120ub1 levels relative
to histone H3 in untreated and OHT-treated Bap1fl/fl ESCs. Error bars represent SEM (n= 3). P-values denote the result of a paired two-
tailed Student’s t-test. (C ) A chromosome density plot showing H2AK119ub1 cChIP-seq signal across chromosome 18 in Bap1fl/fl

ESCs (untreated and OHT-treated) with an expanded snapshot of a region on chromosome 18 shown below. BioCAP-seq and RING1B
cChIP-seq in wild-type ESCs are also shown to indicate the location of CGIs that are occupied by PRC1. (D) Box plots comparing log2
fold changes inH2AK119ub1 cChIP-seq signal at gene regulatory elements (enhancers and promoters), gene bodies, and intergenic regions
in Bap1fl/fl ESCs following OHT treatment. (E) Box plots comparing log2 fold changes in H2AK119ub1 cChIP-seq signal following OHT
treatment in Bap1fl/fl ESCs across different chromatin states derived from unsupervised genome segmentation using ChromHMM. Chro-
matin states are grouped based on the underlying gene regulatory elements (GREs) and transcriptional activity. The dashed gray line in-
dicates the overall change in H2AK119ub1 levels in the genome as determined by its median value in intergenic regions.
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previously proposed antagonism between the Polycomb
system and transcription (Klose et al. 2013; Riising et al.
2014; Beltran et al. 2016). Together, these observations
demonstrate that BAP1 functions pervasively and in-
discriminately throughout the genome to constrain
H2AK119ub1.

Pervasive accumulation of H2AK119ub1 in the absence
of BAP1 causes widespread reductions in gene expression

Given that H2AK119ub1 plays a central role in PRC1-me-
diated gene repression (Endoh et al. 2012; Blackledge et al.
2020; Tamburri et al. 2020), wewere curious to determine
what effect BAP1 removal and the resulting accumulation
of H2AK119ub1 throughout the genome would have on
gene expression. Therefore, we carried out calibrated nu-
clear RNA sequencing (cnRNA-seq) in our conditional
BAP1 knockout cells. This revealed that removal of
BAP1 caused widespread changes in gene expression,
with the majority of genes exhibiting reduced expression
(Fig. 2A). Remarkably, we found that 6440 genes (∼44%
of all expressed genes) (Supplemental Fig. S3A) showed
at least a 20% reduction in expression. Of these, 2828
genes (∼20% of all expressed genes) were significantly re-
duced by at least 1.5-fold, indicating that BAP1 plays a
broad role in promoting gene expression.

Although reductions in gene expression following BAP1
removal were widespread, expression of some genes was
more severely affected than others. Importantly, the ma-
jority of genes showing significantly reduced expression
were not classical Polycomb target genes (Fig. 2B; Supple-
mental Fig. S3B). However, interestingly, these geneswere
often found in regions of the genome that had higher lev-
els of H2AK119ub1 in wild-type cells and, in the absence
of BAP1, also acquired higher levels of H2AK119ub1 than
genes that were not significantly affected (Fig. 2C–E; Sup-
plemental Fig. S3C–F). Importantly, the increase in
H2AK119ub1 was not specific to the promoters or en-
hancers of these genes but was evident across the entire
gene and flanking regions (Fig. 2D,E; Supplemental Fig.
S3C–F). Together, these observations suggest that wide-
spread reductions in gene expression following BAP1 re-
moval likely result from pervasive accumulation of
H2AK119ub1, with some genes being more susceptible
to these effects than others.

To directly test whether elevated H2AK119ub1
was responsible for gene repression in the absence of
BAP1, we developed an inducible mouse ES cell line
(PRC1CPM;Bap1fl/fl) in which we could simultaneously
disrupt BAP1 and inactivate PRC1 catalysis to remove
H2AK119ub1 (Supplemental Fig. S3G,H; Blackledge
et al. 2020). We then carried out cnRNA-seq and com-
pared the effects on gene expression caused by concurrent
removal of BAP1 and H2AK119ub1 with the effects
caused by removing BAP1 or H2AK119ub1 individually
(Fig. 2A; Supplemental Fig. S3I). Strikingly, in the absence
of H2AK119ub1, removal of BAP1 no longer caused wide-
spread reductions in gene expression (Fig. 2A,C,F,G; Sup-
plemental Fig. S3J), indicating that H2AK119ub1 was
required for these effects. In contrast, Polycomb target

genes were derepressed following catalytic inactivation
of PRC1 regardless of whether BAP1 was disrupted (Fig.
2A; Supplemental Fig. S3K). Therefore, we conclude that
BAP1 counteracts accumulation of H2AK119ub1
throughout the genome, and in its absence elevated
H2AK119ub1 causes widespread inhibition of gene
expression.

BAP1 counteracts pervasive H2AK119ub1 to promote
Ser5 phosphorylation on the CTD of RNA polymerase II
at gene regulatory elements

To understand how accumulation of H2AK119ub1 coun-
teracts gene expression, we examined how RNA polymer-
ase II (Pol II) was affected after BAP1 removal. To achieve
this, we carried out cChIP-seq to quantitate total Pol II
levels and also examined its phosphorylation states,
which are associated with transcription initiation
(Ser5P) and elongation (Ser2P) (Buratowski 2009; Harlen
and Churchman 2017). When we inspected genes whose
expression was significantly reduced following BAP1 re-
moval, we found that levels of Pol II and its phosphorylat-
ed forms were decreased at promoters and over gene
bodies (Fig. 3A,C; Supplemental Fig. S4A–C). The reduc-
tion in Ser2P in gene bodies was similar in magnitude to
the decrease in total Pol II levels (Fig. 3A,C,D), indicating
that elongation-associated phosphorylation was not spe-
cifically disrupted, despite reduced transcription. In con-
trast, the reduction in Ser5P at the promoters of these
genes was larger in magnitude than the decrease in Pol II
occupancy (Fig. 3A,C,D; Supplemental Fig. S4A–C), sug-
gesting that elevated H2AK119ub1 limits Ser5 phosphor-
ylation on the CTD of Pol II, and this may lead to reduced
transcription and gene expression.

Given that removal of BAP1 caused pervasive accumu-
lation of H2AK119ub1 throughout the genome (Fig. 1), we
wondered whether the repressive effects of this histone
modification on transcription may in fact extend beyond
the subset of genes that showed significant reductions in
gene expression. When we examined genes whose expres-
sion did not change significantly after BAP1 removal, we
found that the occupancy of Pol II at their promoters
was only marginally affected, but there were widespread
reductions in the levels of Pol II and Ser2P over gene bod-
ies (Fig. 3A; Supplemental Fig. S4A,B,D), which were sim-
ilar in magnitude (Fig. 3A; Supplemental Fig. S4E).
Importantly, these effects on Pol II in the gene body corre-
lated well with changes in transcript levels (Supplemental
Fig. S4F), indicating that elevated H2AK119ub1 causes
widespread reductions in transcription and gene expres-
sion (Supplemental Fig. S4G), despite only a subset of
genes being captured as having significantly reduced ex-
pression in cnRNA-seq analysis. Importantly, in contrast
to Pol II occupancy, which was only modestly affected,
Ser5Pwasmarkedly reduced at the promoters of all genes,
including those whose expression did not change signifi-
cantly after BAP1 removal (Fig. 3A,E,F; Supplemental
Fig. S4A–E,H). This suggests that the widespread reduc-
tions in transcription following BAP1 removal are likely
linked to the observed reductions in Ser5P. Since the
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accumulation of H2AK119ub1 in the absence of BAP1 is
not restricted to genes or their promoters (Fig. 1D), we
wondered whether the observed effects on Pol II may in
fact extend to other gene regulatory elements, like en-

hancers, which have been also reported to bind Pol II
and initiate transcription (Li et al. 2016; Andersson and
Sandelin 2020; Sartorelli and Lauberth 2020). This re-
vealed that there was also a pronounced decrease in total
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Figure 2. Pervasive accumulation of H2AK119ub1 in the absence of BAP1 causeswidespread reductions in gene expression. (A) MAplots
showing log2 fold changes in gene expression (cnRNA-seq) in Bap1fl/fl, PRC1CPM;Bap1fl/fl, and PRC1CPM ESCs following OHT treatment.
Significant geneexpressionchanges (P-adj < 0.05and>1.5-fold) fora customnonredundant set of refGenegenes (n= 20,633) areshown in red.
The density of gene expression changes is shown at the right. (B) A bar plot illustrating the distribution of different gene classes among
genes showing significantly reduced expression following OHT treatment in Bap1fl/fl ESCs based on cnRNA-seq analysis (P-adj < 0.05
and >1.5-fold). (PcG) Polycomb-occupied genes, (Non-PcG) non-Polycomb-occupied genes, (Non-NMI) genes lacking a nonmethylated
CGI (NMI) at their promoter. (C ) Snapshotsof geneswhose expression is significantly reduced (P-adj < 0.05 and>1.5-fold) following removal
of BAP1, showing gene expression (cnRNA-seq) inBap1fl/fl, PRC1CPM;Bap1fl/fl, and PRC1CPM ESCs (untreated andOHT-treated). (D) Snap-
shots of genes whose expression is significantly reduced (P-adj < 0.05 and >1.5-fold) following removal of BAP1, showing H2AK119ub1
cChIP-seq in Bap1fl/fl ESCs (untreated and OHT-treated). Also shown is cChIP-seq for H3K27ac and H3K4me3 in untreated Bap1fl/fl

ESCs to highlight the position of promoters (H3K27ac-high, H3K4me3-high) and nearest putative enhancers (H3K27ac-high, H3K4me3-
low) for these genes. (E) Metaplots of H2AK119ub1 cChIP-seq signal in Bap1fl/fl ESCs (untreated and OHT-treated) across genes that
show a significant reduction (Down, n=2828) or no change (No Change, n=17,203) in expression following BAP1 removal based on
cnRNA-seq analysis (P-adj < 0.05 and >1.5-fold). (F ) Box plots comparing log2 fold changes in expression (cnRNA-seq) followingOHT treat-
ment inBap1fl/fl (green), PRC1CPM;Bap1fl/fl (red), andPRC1CPM (blue) ESCs for geneswhose expression is significantly reduced (P-adj < 0.05
and >1.5-fold) in the absence of BAP1. P-values denote the result of a two-tailed Student’s t-test. (∗∗∗∗) P <10−100. (G) AVenn diagram of the
overlap between genes that show a significant reduction in expression based on cnRNA-seq analysis (P-adj < 0.05 and >1.5-fold) following
OHT treatment inBap1fl/fl (green), PRC1CPM;Bap1fl/fl (red), and PRC1CPM (blue) ESCs. P-values denote the result of a Fisher’s exact test for
the pairwise overlaps between genes showing reduced expression in PRC1CPM;Bap1fl/fl and PRC1CPM, Bap1fl/fl and PRC1CPM;Bap1fl/fl, as
well as Bap1fl/fl and PRC1CPM ESCs. (∗∗∗∗) P< 10−100 for PRC1CPM;Bap1fl/fl and PRC1CPM, (∗∗) P< 10−5 for Bap1fl/fl and PRC1CPM;Bap1fl/fl,
(∗) P <0.05 for Bap1fl/fl and PRC1CPM.
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Pol II occupancy and an even larger reduction in Ser5P at
enhancers as well (Fig. 3B,G,H; Supplemental Fig. S4A,H).
Together, these observations demonstrate that BAP1

functions broadly throughout the genome to support tran-
scription from gene regulatory elements by constraining
pervasive H2AK119ub1.
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Figure 3. BAP1 counteracts pervasive
H2AK119ub1 to promote Ser5 phosphoryla-
tion on the CTD of RNA Pol II at gene regu-
latory elements. (A) Heat maps illustrating
cChIP-seq signal for total Pol II occupancy
and its Ser5 phosphorylation (S5P) at gene
promoters, as well as Pol II Ser2 phosphory-
lation (S2P) over gene bodies in Bap1fl/fl

ESCs (untreated and OHT-treated). Also
shown are the log2 fold changes in cChIP-
seq signal after BAP1 removal (LFC OHT/
UNT) and the log2 fold changes in the abun-
dance of Ser5P and Ser2P relative to total Pol
II levels (S5P/Total and S2P/Total). Genes
were segregated into those that show a sig-
nificant reduction (Down, n =2828) or no
change (No Change, n= 17,203) in expres-
sion following BAP1 removal based on
cnRNA-seq analysis (P-adj < 0.05 and >1.5-
fold). Intervals were sorted by total Pol II
cChIP-seq signal in untreated Bap1fl/fl

ESCs. (B) Heat maps illustrating cChIP-seq
signal for total Pol II occupancy, as well as
its Ser5P and Ser2P forms, at active enhanc-
ers in Bap1fl/fl ESCs (untreated and OHT-
treated). As in A, the log2 fold changes in
cChIP-seq signal after BAP1 removal (LFC
OHT/UNT) are shown together with the
log2 fold changes in the abundance of Ser5P
and Ser2P relative to total Pol II levels
(S5P/Total and S2P/Total). Intervals were
sorted by total Pol II cChIP-seq signal in un-
treated Bap1fl/fl ESCs. (C ) Violin plots com-
paring log2 fold changes in cChIP-seq signal
for total Pol II, as well as its Ser5P and
Ser2P forms, following OHT treatment in
Bap1fl/fl ESCs at the promoters and over the
bodies of genes that showasignificant reduc-
tion (Down, n =2828) in expression after
BAP1 removal based on cnRNA-seq analysis
(P-adj < 0.05 and >1.5-fold). P-values denote
the result of a one-tailed Student’s t-test.
(∗∗∗) P <10−10, (∗∗) P <10−5, (ns) P> 0.05. For
comparisons of Ser5P/Ser2P with total Pol
II, the alternative hypothesis was that the
log2 fold change in Ser5P/Ser2Pwas smaller.
For the comparison of Ser5P with Ser2P, the
alternative hypothesis was that the log2 fold
change in Ser5Pwas smaller. (D) Violin plots
comparing log2 fold changes in the abun-
dance of Ser5P and Ser2P relative to total
Pol II levels (S5P/Total and S2P/Total) fol-
lowing OHT treatment in Bap1fl/fl ESCs at

the promoters and over the bodies of genes defined inC. P-values denote the result of a one-sample one-tailed Student’s t-test to determine
whether the log2 fold changes were significantly smaller than 0. (∗∗) P <10−5, (ns) P>0.05. (E) Metaplots of total and Ser5P Pol II cChIP-seq
signal at activegenepromoters inBap1fl/flESCs (untreated andOHT-treated). (F ) Violin plots comparing log2 fold changes in total andSer5P
Pol II cChIP-seq signal at active gene promoters in Bap1fl/fl ESCs following OHT treatment. P-value denotes the result of a one-tailed Stu-
dent’s t-test with the alternative hypothesis that the log2 fold change in Ser5P was smaller. (∗∗∗∗) P <10−100. (G) As in E but for active en-
hancers. (H) As in F but for active enhancers. P-value denotes the result of a one-tailed Student’s t-test with the alternative hypothesis that
the log2 fold change in Ser5P was smaller. (∗∗∗) P <10−10.
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Aberrant accumulation of H2AK119ub1 compromises
transcription-associated histone modifications but does
not limit chromatin accessibility

Having established that elevated H2AK119ub1 in the ab-
sence of BAP1 broadly inhibits transcription from promot-
ers and enhancers (Fig. 3), we wanted to investigate
whether chromatin features associated with transcription
were also affected. To address this question,we carried out
cChIP-seq for histone modifications that are typically en-
riched at active promoters (H3K27ac andH3K4me3) or en-
hancers (H3K27ac and H3K4me1) (Calo and Wysocka
2013; Andersson and Sandelin 2020). Interestingly, we ob-
served a widespread decrease in H3K27ac at both types of
gene regulatory elements in the absence of BAP1, with en-
hancers showingmore pronounced reductions (Fig. 4A–D;
Supplemental Fig. S5A–C,E,F).Removalof BAP1alsocom-
promised H3K4me3 at gene promoters, but this effect was
onaveragemuchmoremodest andmostly limited to genes
that showed significant reductions in expression (Fig. 4A,
C; Supplemental Fig. S5A–C,E). In contrast, H3K4me3 at
enhancers wasmarkedly reduced, despite the starting lev-
els of this modification being considerably lower than at
promoters (Fig. 4A,B,D; Supplemental Fig. S5A,E,F). Final-
ly, we also observed a modest but widespread decrease in
H3K4me1 around promoters and enhancers, which was
accompanied by a slight increase at the center of these reg-
ulatory elements (Fig. 4A–D; Supplemental Fig. S5A–C,E,
F). Therefore,we found that BAP1 removal leads tomoder-
ate and seemingly indiscriminate effects on transcription-
associated histone modifications at both promoters and
enhancers, which correlate with the effects on gene ex-
pression (Supplemental Fig. S5D). This observation differs
fromprevious studies thathave implicatedBAP1andother
PR-DUB subunits in directly recruiting chromatin-modi-
fying transcriptional coactivators to either promoters or
enhancers to specifically affect histone modifications at
these sites (Li et al. 2017b; Wang et al. 2018; Szczepanski
et al. 2020). Instead, our new findings are more consistent
with a model in which, in the absence of BAP1, elevated
H2AK119ub1 inhibits early stages of transcription, which
then leads tomodest but broad effects on transcription-as-
sociated histone modifications.
Given that some chromatin modifications have been

proposed to function through making chromatin less ac-
cessible to gene regulatory factors (Francis et al. 2001,
2004; Danzer and Wallrath 2004; Soufi et al. 2012; Becker
et al. 2016; Fyodorov et al. 2018), we sought to determine
whether elevated H2AK119ub1 could elicit its wide-
spread effects on transcription by limiting chromatin ac-
cessibility. To test this possibility, we performed
calibrated ATAC-seq (cATAC-seq) thatmeasures chroma-
tin accessibility by its susceptibility to tagmentation by
Tn5 transposase (Buenrostro et al. 2015). Importantly,
we found that accumulation of H2AK119ub1 in the ab-
sence of BAP1 did not cause major reductions in chroma-
tin accessibility at gene promoters and enhancers (Fig. 4A,
B,F; Supplemental Figs. S5A, S6A–C). Instead, to our sur-
prise, we found that, following BAP1 removal, chromatin
accessibility was modestly increased throughout the ge-

nome, in a similar manner to the pervasive accumulation
of H2AK119ub1 (Fig. 4A,B,E,F; Supplemental Fig. S6D).
Importantly, this demonstrates that H2AK119ub1 does
not counteract transcription simply by limiting the access
of regulatory factors to promoters and enhancers. Instead,
pervasive accumulation of H2AK119ub1 in the absence of
BAP1 broadly counteracts Ser5 phosphorylation of the Pol
II CTD, resulting in widespread reductions in transcrip-
tion and its associated histone modifications. Together,
our findings illustrate how a pervasive histone modifica-
tion that can inhibit transcription must be appropriately
controlled to support the transcriptional potential of the
genome.

BAP1 indirectly supports repression of a subset
of Polycomb target genes

Our finding that BAP1 constrains pervasive H2AK119ub1
to facilitate gene expression is conceptually at odds with
genetic characterisation of the Drosophila orthologs of
BAP1 (Calypso) and other PR-DUB components as Poly-
comb group (PcG) transcriptional repressors (Jürgens
1985; Soto et al. 1995; de Ayala Alonso et al. 2007;
Scheuermann et al. 2010). Intriguingly, despite the major-
ity of genes showing reduced expression in BAP1-deficient
cells, we also identified 602 genes whose expression was
significantly increased in the absence of BAP1 (Fig. 2A).
Remarkably, when we examined these genes in more de-
tail, we found that the majority were Polycomb target
genes enriched in GO categories related to regulation of
developmental processes, which are characteristic of
PRC1-repressed genes in mouse ESCs (Fig. 5A–D). There-
fore, we show that BAP1 is required to repress a subset of
Polycomb target genes, consistent with its genetic desig-
nation as a PcG gene.
To better understand the interplay between BAP1 and

the Polycomb system, we investigated the effect that
BAP1 removal has on Polycomb chromatin domains by
examining the binding of PRC1 (RING1B), PRC2
(SUZ12), and levels of their respective histone modifica-
tions (H2AK119ub1 and H3K27me3) by cChIP-seq. This
showed that, in the absence of BAP1, H2AK119ub1 in-
creased across Polycomb chromatin domains at target
gene promoters (Fig. 5E), although the magnitude of this
effect was slightly smaller than at other regions of the
genome, in agreement with ChromHMM analysis
(Fig. 1E). Furthermore, H3K27me3 was also modestly ele-
vated (Fig. 5E), consistent with an essential role for
H2AK119ub1 in shaping H3K27me3 at Polycomb target
gene promoters (Blackledge et al. 2014, 2020; Cooper
et al. 2014; Kalb et al. 2014; Illingworth et al. 2015; Tam-
burri et al. 2020). In contrast, at the subset of Polycomb tar-
get genes that become derepressed in the absence of BAP1,
the levels ofH2AK119ub1andH3K27me3at their promot-
ers remained largely unchanged (Fig. 5D,F,G; Supplemen-
tal Fig. S7A,D), suggesting that reactivation of these genes
following BAP1 removal is not due to reductions in these
histone modifications. We then examined PRC1 and
PRC2 occupancy at Polycomb target gene promoters and
found that it was modestly reduced, despite the observed
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Figure 4. Aberrant accumulation ofH2AK119ub1 compromises transcription-associated histonemodifications but not chromatin acces-
sibility at gene regulatory elements. (A) Heat maps illustrating H3K27ac, H3K4me3, and H3K4me1 cChIP-seq signal at gene promoters in
Bap1fl/fl ESCs (untreated and OHT-treated). cATAC-seq is shown as a measure of chromatin accessibility. Also shown are the log2 fold
changes in cChIP-seq and cATAC-seq signal after BAP1 removal (LFC OHT/UNT). Genes were segregated into those that show a signifi-
cant reduction (Down, n =2828) or no change (NoChange,n =17,203) in expression following BAP1 removal based on cnRNA-seq analysis
(P-adj < 0.05 and >1.5-fold). Intervals were sorted by total Pol II cChIP-seq signal in untreated Bap1fl/fl ESCs. (B) As in A but for active en-
hancers. (C ) Violin plots comparing log2 fold changes in cChIP-seq signal for H3K27ac, H3K4me3, andH3K4me1 at active gene promoters
inBap1fl/fl ESCs followingOHT treatment. P-values denote the result of a one-sample one-tailed Student’s t-test to determinewhether the
log2 fold changes were significantly smaller than 0. (∗∗∗∗) P <10−100, (ns) P >0.05. (D) As inC but for active enhancers. P-values denote the
result of a one-sample one-tailed Student’s t-test to determine whether the log2 fold changes were significantly smaller than 0. (∗∗∗∗) P <
10−100, (∗) P <0.05. (E) A chromosome density plot showing chromatin accessibility across chromosome 18 as measured by cATAC-seq in
Bap1fl/fl ESCs (untreated and OHT-treated). This illustrates a widespread increase in cATAC-seq signal throughout the genome following
BAP1 removal. (F ) Box plots comparing log2 fold changes in cATAC-seq signal at gene regulatory elements (enhancers and promoters),
gene bodies, and intergenic regions in Bap1fl/fl ESCs following OHT treatment.
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Figure 5. BAP1 indirectly supports repression of a subset of Polycomb target genes by counteracting pervasive H2AK119ub1 to focus
Polycomb complex occupancy at target sites. (A) A bar plot illustrating the distribution of different gene classes among genes that become
significantly derepressed (P-adj < 0.05 and >1.5-fold) following OHT treatment in Bap1fl/fl ESCs. (PcG) Polycomb-occupied genes, (Non-
PcG) non-Polycomb-occupied genes, (Non-NMI) genes lacking a nonmethylated CGI (NMI) at their promoter. (B) A Venn diagram show-
ing the overlap between genes that become significantly derepressed (P-adj < 0.05 and >1.5-fold) following OHT treatment in Bap1fl/fl (red)
or PRC1CKO (blue) ESCs. P-value denotes the result of a Fisher’s exact test. (∗∗∗∗) P<10−100. (C ) A gene ontology (GO) analysis of biological
process term enrichment for genes that become significantly derepressed (P-adj < 0.05 and >1.5-fold) in Bap1fl/fl cells following OHT treat-
ment. (D) Snapshots of Polycomb target genes that become significantly derepressed (P-adj < 0.05 and >1.5-fold) following BAP1 removal,
showing gene expression (cnRNA-seq) and cChIP-seq for H2AK119ub1, H3K27me3, RING1B (PRC1), and SUZ12 (PRC2) in Bap1fl/fl ESCs
(untreated and OHT-treated). (E) Heat maps of cChIP-seq signal for H2AK119ub1, H3K27me3, RING1B (PRC1), and SUZ12 (PRC2) across
Polycomb chromatin domains at the promoters of Polycomb-occupied genes in Bap1fl/fl ESCs (untreated andOHT-treated). Intervals were
sorted by RING1B occupancy in untreated Bap1fl/fl ESCs. (F ) Metaplots of H2AK119ub1 cChIP-seq signal in Bap1fl/fl ESCs (untreated and
OHT-treated) at the promoters of Polycomb-occupied genes that become significantly derepressed (Up, n= 421) or do not change in expres-
sion (No Change, n =4075) following BAP1 removal based on cnRNA-seq analysis (P-adj < 0.05 and >1.5-fold). (G) As in F for H3K27me3
cChIP-seq. (H) As in F for RING1B cChIP-seq. (I ) As in F for SUZ12 cChIP-seq.
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increases in H2AK119ub1 and H3K27me3 (Fig. 5E), and
this was not due to reductions in RING1B and SUZ12 pro-
tein levels (Supplemental Fig. S7B). However, strikingly,
when we focused on the promoters of Polycomb target
genes that were derepressed in the absence of BAP1, we
found that they were on average occupied bymuch higher
levels of PRC1 and PRC2 in untreated cells and showed
much more dramatic reductions in their occupancy after
BAP1 removal (Fig. 5D,H,I; Supplemental Fig. S7A,C,D).
Based on these observations, we conclude that this subset
of Polycomb target genes are particularly reliant on high-
level occupancy of PRC1 and PRC2 for their silencing
and that themajor decrease in Polycomb complex binding
at their promoters causedby removalof BAP1 leads to their
derepression. Given that both Polycomb repressive com-
plexes can directly bind to H2AK119ub1 (Arrigoni et al.
2006; Kalb et al. 2014; Cooper et al. 2016; Zhao et al.
2020; Kasinath et al. 2021), we envisage that the reduc-
tions in PRC1 and PRC2 occupancy at this subset of genes
are likely caused by elevated H2AK119ub1 elsewhere in
the genome competing for their binding. Together, these
findings provide a potential molecular rationale for the
counterintuitive observation that disruption of the BAP1
ortholog inDrosophila (Calypso) gives rise to PcG pheno-
types in genetic assays, despite its role in counteracting
H2AK119ub1. Furthermore, it reveals that limiting perva-
siveH2AK119ub1 throughout the genome is important for
focusing Polycomb repressive complexes at target gene
promoters, while enabling transcription elsewhere in the
genome.

Discussion

Chromatin-modifying enzymes can function at defined
gene regulatory elements to support cell type-specific
gene expression patterns (Atlasi and Stunnenberg
2017; Yadav et al. 2018). Their recruitment to these sites
often relies on DNA- and chromatin-binding activities
(Smith and Shilatifard 2010), and these mechanisms un-
derpin how PRC1 creates high-level enrichment of
H2AK119ub1 at Polycomb target gene promoters to en-
able repression (Endoh et al. 2012; Blackledge et al. 2015,
2020; Fursova et al. 2019; Scelfo et al. 2019; Cohen et al.
2020; Tamburri et al. 2020). In addition to this punctate
pool of H2AK119ub1, we and others have recently discov-
ered that PRC1 also places low levels of H2AK119ub1
broadly throughout the genome (Lee et al. 2015; Kahn
et al. 2016; Fursova et al. 2019). However, whether perva-
sive H2AK119ub1 contributes to gene regulation or other
chromosomal processes has remained unclear. Here, we
found that BAP1 plays a central role in counteracting per-
vasive H2AK119ub1, and in its absence, accumulation of
H2AK119ub1 throughout the genome leads towidespread
reductions in transcription thatare likely related todefects
in Ser5 phosphorylation on the CTD of Pol II at gene regu-
latory elements. This reveals an important and previously
underappreciated mechanism for chromatin-based gene
regulation, whereby a pervasive histone modification can
broadly control the function of gene regulatory elements

without the need for elaborate site-specific targeting
mechanisms.

We envisage that this generic mode of gene regulation
could be particularly relevant during cellular differentia-
tion and development when the transcriptional activity
of the genome or large genomic regions needs to be coordi-
natelymodulated to support acquisition andmaintenance
of cell type-specific transcriptional states. In fact, support
for this concept has recently emerged from studies of X in-
activation where H2AK119ub1 was shown to accumulate
across the entire silenced X chromosome to drive tran-
scriptional repression and enable dosage compensation
(Bousard et al. 2019; Fursova et al. 2019; Nesterova et al.
2019; Żylicz et al. 2019). Furthermore, our discoveries
also indicate that there exists an important balance be-
tween the enzymes that place and remove pervasive
H2AK119ub1, with the levels of this histonemodification
regulating the capacity of the genome to be transcribed.
Given that the composition and expression of PRC1 and
BAP1 complexes changes extensively during development
(Fisher et al. 2006;Morey et al. 2012, 2015;O’Loghlen et al.
2012; Kloet et al. 2016), in future work, it will be interest-
ing to investigate how the balance between these two op-
posing activities is regulated at different developmental
stages and how cell type-specific H2AK119ub1 levels in-
fluence the transcriptional potential of the genome.Given
that BAP1 and other PR-DUB subunits are frequently mu-
tated in a variety of cancers with diverse origins (Wiesner
et al. 2011; Dey et al. 2012; Carbone et al. 2013; Katoh
2013; Murali et al. 2013; Masoomian et al. 2018; Zhang
et al. 2020), our findings also suggest that maintaining
the cell type-specific balance between the activities that
control H2AK119ub1 levels could play an important role
in protecting cells from transformation.

BAP1 has previously been proposed to regulate gene ex-
pression through diverse mechanisms, some of which are
thought to function independently of H2AK119ub1 (Yu
et al. 2010; Dey et al. 2012; Li et al. 2017b; Wang et al.
2018; Campagne et al. 2019; Kuznetsov et al. 2019). We
now discover that BAP1 plays a widespread role in sup-
porting gene expression and show that this relies on
BAP1 counteracting H2AK119ub1, as catalytic inactiva-
tion of PRC1 reverts the effects of BAP1 removal on
gene expression, consistent with previous reports of epis-
tasis between BAP1 and PRC1 (Campagne et al. 2019; He
et al. 2019). This raises the important question of how per-
vasive H2AK119ub1 can function at such a broad scale to
constrain gene expression. Many histone modifications
are thought to regulate gene expression through reader
proteins that bind to modified nucleosomes and directly
affect transcription (Musselman et al. 2012; Patel and
Wang 2013). This is particularly relevant for histonemod-
ifications that are of low abundance yet highly enriched at
gene regulatory elements. However, we estimate that
∼5.9 × 106 H2AK119ub1 molecules decorate the genome
of ES cells (Huseyin and Klose 2021), and this number in-
creases ∼1.5-fold to twofold after conditional removal of
BAP1 (Fig. 1), which is comparable with the at least two-
fold increase in H2AK119ub1 levels reported previously
in constitutive BAP1 knockout cells (Campagne et al.
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2019; Kolovos et al. 2020). If a reader protein was required
for the widespread repressive effects of H2AK119ub1,
we envisage that it would also need to be immensely
abundant, a requirement that none of the proposed
H2AK119ub1-binding proteins fulfill (Arrigoni et al.
2006; Richly et al. 2010; Beck et al. 2011; Schwanhäusser
et al. 2011; Kalb et al. 2014; Wisńiewski et al. 2014; Qin
et al. 2015; Cooper et al. 2016; Zhang et al. 2017b). Alter-
natively, addition of a bulky ubiquitin moiety to histone
H2A could simply restrict access of the transcriptional
machinery to gene regulatory elements. However, in
agreement with previous work (Hodges et al. 2018;
King et al. 2018), we found that accumulation of
H2AK119ub1 does not limit chromatin accessibility,
and if anything, the genome becomes slightly more acces-
sible when H2AK119ub1 levels are increased. Based on
these observations, we favor the possibility that
H2AK119ub1 controls gene expression by counteracting
the process of transcription more directly, which is in
agreement with previous work showing that PRC1 and
H2AK119ub1 can inhibit various aspects of transcription,
including initiation, pause release, and elongation (Del-
lino et al. 2004; Stock et al. 2007; Nakagawa et al. 2008;
Zhou et al. 2008; Lehmann et al. 2012; Aihara et al. 2016).
To investigate how H2AK119ub1 might regulate the

process of transcription, we examined Pol II and its phos-
phorylated forms by cChIP-seq. This revealed that elevat-
ed H2AK119ub1 preferentially compromised Ser5
phosphorylation on the CTD of Pol II at gene regulatory
elements, which is primarily carried out by the CDK7
subunit of the general transcription factor TFIIH (Phat-
nani and Greenleaf 2006; Buratowski 2009; Harlen and
Churchman 2017). It is thought that during transcription
initiation, CDK7 catalyzes Ser5 phosphorylation of the
Pol II CTD to promote the transition of Pol II into
early elongation (Larochelle et al. 2012). Therefore, given
the disproportionate effect of elevated H2AK119ub1
on Ser5 phosphorylation, we speculate that pervasive
H2AK119ub1 may regulate the function of gene regulato-
ry elements by limiting productive transcription initia-
tion or the transition from initiation to early elongation.
Consistent with this, we have recently shown that rapid
depletion of H2AK119ub1 leads to increased Polycomb
target gene expression, which results from a higher rate
of transcription initiation, as suggested by elevated burst
frequency (Dobrinic ́ et al. 2020). These findings are also
in agreement with observations from in vitro studies
where installation of H2AK119ub1 into chromatin tem-
plates was sufficient to impede transcription initiation
(Nakagawa et al. 2008). In future work, examining how
BAP1 removal affects transcriptionally engaged Pol II us-
ing high-resolution techniques (Wissink et al. 2019) will
help to pinpoint the step of transcription that is disrupted
by elevated H2AK119ub1.
Our molecular understanding of how BAP1 and its

H2AK119ub1 deubiquitylase activity contribute to gene
regulation has been complicated by the initial characteri-
zation of the Drosophila ortholog of BAP1 as a PcG gene
in genetic experiments (de Ayala Alonso et al. 2007;
Scheuermann et al. 2010). Given that PcG genes are

known to maintain Polycomb target gene repression dur-
ing development, it was puzzling why BAP1, which re-
moves H2AK119ub1, would be required for this process.
Initially, it was proposed that BAP1 functioned at
Polycomb target gene promoters to appropriately balance
H2AK119ub1 levels by enabling its dynamic turnover and
that this would somehow facilitate repression of these
genes (Scheuermann et al. 2010; Schuettengruber and
Cavalli 2010). While alternative and less direct mecha-
nisms have also been previously considered (Schue-
ttengruber and Cavalli 2010; Gutiérrez et al. 2012;
Scheuermann et al. 2012), here, we demonstrate that
BAP1 indirectly supports repression of a subset of Poly-
comb target genes by limiting pervasive H2AK119ub1
elsewhere in the genome to promote high-level occupancy
of Polycomb complexes at target gene promoters. This
mechanism has conceptual similarities to regulation of
telomeric gene silencing in budding yeast where the
Dot1 histone methyltransferase has been proposed to de-
posit H3K79me pervasively throughout the genome to
counteract promiscuous binding of SIR proteins and focus
their repressive activity at telomeric regions (van Leeu-
wen and Gottschling 2002; van Leeuwen et al. 2002; Ver-
zijlbergen et al. 2009). Interestingly, mutations in the
BAP1 and ASXL components of the PR-DUB complex
can also lead to phenotypes that are reminiscent of muta-
tions inTrithorax group (TrxG) genes, which are known to
oppose PcG gene activity and facilitate gene expression
(Sinclair et al. 1992; Milne et al. 1999; Gildea et al. 2000;
Baskind et al. 2009; Fisher et al. 2010; Scheuermann
et al. 2010). In line with these observations, we demon-
strate at the molecular level that, by counteracting
pervasive H2AK119ub1, BAP1 directly promotes gene ex-
pression, akin to a TrxG gene (Fig. 6A), while also indirect-
ly supporting repression of a subset of Polycomb target
genes, akin to a PcG gene (Fig. 6B). Together, these new
discoveries provide a potential mechanistic rationale for
the dual role that BAP1 has in gene regulation based on ge-
netic assays and reveal that the balance between activities
that place and remove pervasive H2AK119ub1 is essential
for supporting the expression of some genes, while main-
taining the repression of others.

Materials and methods

Cell culture conditions and treatments

E14TG2a mouse embryonic stem cells (ESCs) were grown on gel-
atin-coated plates at 37°C and 5% CO2 in Dulbecco’s modified
Eagle medium (DMEM) supplemented with 15% fetal bovine se-
rum (Labtech), 2mML-glutamine (Life Technologies), 1× penicil-
lin/streptomycin (Life Technologies), 1× nonessential amino
acids (Life Technologies), 0.5 mM β-mercaptoethanol (Life Tech-
nologies), and 10 ng/mL leukemia inhibitory factor (in-house). To
induce conditional removal of BAP1, on its own or in combina-
tion with PRC1 catalytic activity, Bap1fl/fl and PRC1CPM;Bap1fl/fl

cells were treated with 800 nM 4-hydroxytamoxifen (OHT) for
96 h. To induce conditional removal of PRC1 catalytic
activity on its own, PRC1CPM cells were treated with 800 nM
OHT for 72 h. Cells were regularly tested for the presence of
mycoplasma.
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Human HEK293T cells used for spike-in calibration of cChIP-
seqwere grown at 37°C and 5%CO2 inDulbecco’smodified Eagle
medium (DMEM) supplemented with 10% fetal bovine serum
(Labtech), 2 mM L-glutamine (Life Technologies), 1× penicillin/
streptomycin (Life Technologies), and 0.5 mM β-mercaptoetha-
nol (Life Technologies). Drosophila S2 (SG4) cells used for
spike-in calibration of native cChIP-seq, cnRNA-seq, and
cATAC-seq were grown adhesively at 25°C in Schneider’sDroso-
philamedium (Life Technologies), supplementedwith 1× penicil-
lin/streptomycin (Life Technologies) and 10% heat-inactivated
fetal bovine serum (Labtech).

Cell line generation

Bap1fl/fl cells were derived fromE14TG2a ESCs by a two-step pro-
cess. First, parallel loxP sites flanking exon 4 of the Bap1 gene
were inserted using a targeting construct with homology arms
of ∼1 kb and three different Cas9 guides specific for the Bap1 lo-
cus (sgRNA target sequences: TCAAATGGATCGAAGAGCGC,
CAAGGTAGGGACACAATAAA, TAAAACACCACCAACTA
CAG). Second,CreERT2was inserted into theRosa26 locus using
a Rosa26-specific Cas9 guide (sgRNA target sequence: CGCC
CATCTTCTAGAAAGAC). The same BAP1-specific targeting

construct and Cas9 guides were used to generate PRC1CPM;
Bap1fl/fl cells from a PRC1CPM parental cell line. Loss of BAP1
in response to OHT treatment in Bap1fl/fl and PRC1CPM;Bap1fl/fl

ESCs was confirmed using RT-qPCR and Western blot analysis.
PRC1CPM cells were generated and characterized in a previous

study (Blackledge et al. 2020). Briefly, a targeting construct for
this cell line comprised exon 3 of Ring1b in forward orientation
(flanked by 100 bp ofRing1b intron 2/intron 3), followed by amu-
tant copy of exon 3 (encoding I53A and D56K mutations) in re-
verse orientation (flanked by splice donor and acceptor sites
from mouse IgE gene). Both the wild-type and mutant versions
of exon 3 were codon-optimized at wobble positions to minimize
sequence similarity. The wild-type/mutant exon 3 pair was
flanked by doubly inverted LoxP/Lox2272 sites and ∼1-kb ho-
mology arms. The targeting construct was transfected into
E14TG2a ESCs in combination with three different Cas9 guides
specific for the Ring1b gene. Correctly targeted homozygous
clones were identified by PCR screening, followed by RT-PCR
and sequencing to check for splicing defects. Using a similar ap-
proach, the I50A/D53K mutation was constitutively knocked-in
into both copies of the endogenous Ring1a gene. Finally,
CreERT2 was inserted into the Rosa26 locus using a Rosa26-spe-
cific Cas9 guide.

B

A

Figure 6. Amodel illustrating how BAP1 can regulate gene expression by constraining pervasive H2AK119ub1. (A) BAP1 facilitates gene
expression by constraining the pervasive sea of H2AK119ub1 that covers the genome. Inducible removal of BAP1 (+OHT) results in a broad
accumulation of H2AK119ub1 throughout the genome. Elevated H2AK119ub1 indiscriminately counteracts Ser5 phosphorylation (S5P)
on theCTDof Pol II at gene regulatory elements ([P] promoters, [E] enhancers), and causeswidespread reductions in transcription and gene
expression. This explains why disruption of BAP1 and other PR-DUB subunits can lead to Trithorax group (TrxG)-like phenotypes. (B)
BAP1 also indirectly supports repression of a subset of Polycomb target genes by counteracting pervasive H2AK119ub1 and focusing
high levels of Polycomb complexes at target gene promoters. In the absence of BAP1, PRC1/PRC2 occupancy at Polycomb target sites
is reduced, presumably due to the increased binding of these complexes to elevated H2AK119ub1 elsewhere in the genome. This leads
to derepression of a subset of Polycomb target genes that appear to rely on high-level Polycomb complex occupancy for their silencing,
providing a potential molecular rationale for why the BAP1 ortholog inDrosophila has been originally characterized as a Polycomb group
(PcG) gene.
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Genome engineering by CRISPR/homology-directed repair (HDR)

The pSptCas9(BB)-2A-Puro(PX459)-V2.0 vector was obtained
from Addgene (62988), and sgRNAs were designed using the
CRISPOR online tool (http://crispor.tefor.net/crispor.py). Target-
ing constructs with appropriate homology arms were generated
by Gibson assembly using the Gibson Assembly Master Mix kit
(NEB). Targeting constructs were designed such that Cas9 recog-
nition siteswere disrupted by the presence of the LoxP sites. ESCs
(one well of a six-well plate) were transfected with 0.5 μg of each
Cas9 guide and 2 μg of targeting construct using Lipofectamine
3000 (ThermoFisher) according to the manufacturer’s guidelines.
The day after transfection, cells were passaged at a range of den-
sities and subjected to selection with 1 μg/mL puromycin for
48 h to eliminate nontransfected cells. Approximately 1 wk later,
individual clones were isolated, expanded and PCR-screened for
the desired genomic modifications.

Preparation of nuclear and histone extracts
for immunoblotting analysis

For nuclear extraction, ESCs were washed with 1× PBS and resus-
pended in10volumesofbufferA (10mMHEPESatpH7.9, 1.5mM
MgCl2, 10mMKCl, 0.5 mMDTT, 0.5 mMPMSF, 1× protease in-
hibitor cocktail [PIC] [Roche]). After 10 min incubation on ice,
cells were recovered by centrifugation at 1500g for 5 min and re-
suspended in 3 vol of buffer A supplemented with 0.1% NP-40.
The released nuclei were pelleted by centrifugation at 1500g for
5min, followed by resuspension in 1 vol of buffer C (5mMHEPES
at pH 7.9, 26% glycerol, 1.5 mM MgCl2, 0.2 mM EDTA, 1× PIC
[Roche], and 0.5 mM DTT) supplemented with 400 mM NaCl.
The extraction was allowed to proceed on ice for 1 h with occa-
sional agitation, then the nuclei were pelleted by centrifugation
at 16,000g for 20min at 4°C. The supernatantwas taken as the nu-
clear extract. The Bradford protein assay (Bio-Rad) was used to
compare protein concentrations across samples.
For histone extraction, ESCs were washed in RSB (10 mM Tris

HCl at pH 8, 10 mM NaCl, 3 mM MgCl2) supplemented with
20 mM N-ethylmaleimide (NEM), incubated for 10 min on ice
in RSB with 0.5% NP-40 and 20 mM NEM, pelleted by centrifu-
gation at 800g for 5 min, and incubated in 2.5 mM MgCl2, 0.4 M
HCl, and 20 mM NEM for 30 min on ice. After that, cells were
pelleted by centrifugation at 16,000g for 20min at 4°C, the super-
natant recovered and precipitated on ice with 25% TCA for
30 min, followed by centrifugation at 16,000g for 15 min at 4°C
to recover histones. Following two acetone washes, the histones
were resuspended in 1× SDS loading buffer (2% SDS, 100 mM
Tris at pH 6.8, 100 mM DTT, 10% glycerol, 0.1% bromophenol
blue) and boiled for 5 min at 95°C. Finally, any insoluble precip-
itate was pelleted by centrifugation at 16,000g for 10 min and
the soluble fraction retained as the histone extract. Histone con-
centrations across samples were compared using SDS-PAGE fol-
lowed by Coomassie blue staining. Western blot analysis of
nuclear and histone extracts was performed using LI-COR IRDye
secondary antibodies, and imaging was done using the LI-COR
Odyssey Fc system. The list of antibodies used in this study for
Western blot and cChIP-seq analysis is in Supplemental Table S1.

Calibrated ChIP sequencing (cChIP-seq)

For RING1B and SUZ12, cChIP-seq was performed as described
previously (Fursova et al. 2019; Blackledge et al. 2020). Briefly, 5
× 107 mouse ESCs (untreated and OHT-treated) were cross-linked
in 10 mL of 1× PBS with 2 mM DSG (Thermo Scientific) for 45
min at 25°C, and then with 1% formaldehyde (methanol-free;
Thermo Scientific) for a further 15 min. Cross-linking was

stopped by quenching with 125 mM glycine. Cross-linked ESCs
were mixed with 2 ×106 human HEK293T cells, which have
been similarly double-cross-linked, and incubated in lysis buffer
(50mMHEPES at pH 7.9, 140mMNaCl, 1mMEDTA, 10% glyc-
erol, 0.5%NP40, 0.25%Triton X-100, 1× PIC [Roche]) for 10 min
at 4°C. Released nuclei were washed (10 mM Tris-HCl at pH 8,
200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1× PIC [Roche])
for 5min at 4°C. Chromatinwas then resuspended in 1mL of son-
ication buffer (10 mM Tris-HCl at pH 8, 100 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 0.1% Na deoxycholate, 0.5% N-lauroyl-
sarcosine, 1× PIC [Roche]) and sonicated for 30min using the Bio-
Ruptor Pico (Diagenode), shearing genomic DNA to an average
size of 0.5 kb. Following sonication, Triton X-100 was added to
a final concentration of 1%, followed by centrifugation at
20,000g for 10min at 4°C to collect the clear supernatant fraction.
For Pol II and its phosphorylated forms, cChIP-seq was done as

described previously (Turberfield et al. 2019). Briefly, 5 × 107

ESCs (untreated and OHT-treated) were cross-linked in 10 mL
of 1× PBS with 1% formaldehyde (methanol-free; Thermo Scien-
tific) for 10 min at 25°C and then quenched by addition of
125 mM glycine. Cross-linked ESCs were mixed with 2 ×106 hu-
man HEK293T cells, which have been similarly single-cross-
linked, and then incubated in FA-lysis buffer (50 mM HEPES at
pH 7.9, 150 mM NaCl, 2 mM EDTA, 0.5 mM EGTA, 0.5%
NP40, 0.1% sodium deoxycholate, 0.1% SDS, 10 mM NaF, 1
mM AEBSF, 1× PIC) for 10 min at 4°C. Chromatin was sonicated
for 30 min using the BioRuptor Pico (Diagenode), followed by
centrifugation at 20,000g for 10min at 4°C to collect the clear su-
pernatant fraction.
For RING1B and SUZ12 ChIP, sonicated chromatin was dilut-

ed 10-fold with ChIP dilution buffer (1% Triton X-100, 1 mM
EDTA, 20 mM Tris-HCl at pH 8, 150 mM NaCl, 1× PIC). For
Pol II ChIP, 300 ug of chromatin per one IP was diluted in FA-ly-
sis buffer up to a final volume of 1 mL. Diluted chromatin was
precleared for 1 h using Protein A agarose beads (Repligen) that
were preblocked with 1 mg/mL BSA and 1 mg/mL yeast tRNA.
For each ChIP reaction, 1 mL of diluted and precleared chroma-
tin was incubated overnight with the appropriate antibody, anti-
RING1B (3 μL; CST D22F2), anti-SUZ12 (3 μL; CST D39F6),
anti-Rpb1-NTD (15 μL; CST D8L4Y) as a measure of total Pol
II occupancy, anti-Rpb1-CTD-Ser5P (12.5 μL; CST D9N5I), and
anti-Rpb1-CTD-Ser2P (12.5 μL; CST E1Z3G) as a measure of
Pol II phosphorylation levels. To capture antibody-bound chro-
matin, ChIP reactions were incubated with preblocked protein
A agarose beads (Repligen) for 2 h (RING1B and SUZ12) or 3 h
(Pol II) at 4°C. For RING1B and SUZ12, ChIP washes were per-
formed as described previously (Farcas et al. 2012). For Pol II,
washes were performed with FA-lysis buffer, FA-lysis buffer con-
taining 500 mM NaCl, DOC buffer (250 mM LiCl, 0.5% NP-40,
0.5% sodium deoxycholate, 2 mM EDTA, 10 mM Tris-HCl at
pH 8), followed by two washes with TE buffer (pH 8). ChIP
DNA was eluted in elution buffer (1% SDS, 0.1 M NaHCO3)
and cross-linking was reversed overnight at 65oC with 200
mM NaCl and 2 μL of RNase A (Sigma). Matched input samples
(10% of original ChIP reaction) were treated identically. The fol-
lowing day, ChIP samples and inputs were incubated with Pro-
teinase K (Sigma) for at least 1.5 h at 56oC and purified using
a ChIP DNA Clean and Concentrator kit (Zymo Research).
cChIP-seq libraries for both ChIP and Input samples were pre-

pared using a NEBNext Ultra II DNA library preparation kit for
Illumina, following the manufacturer’s guidelines. Samples
were indexed using NEBNext Multiplex oligos. The average
size and concentration of all libraries were analysed using the
2100 Bioanalyzer high-sensitivity DNA kit (Agilent) followed
by qPCR quantification using SensiMix SYBR (Bioline) and
KAPA Illumina DNA standards (Roche). Libraries were
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sequenced as 40-bp paired-end reads in biological triplicate or
quadruplicate on the Illumina NextSeq 500 platform.

Native cChIP sequencing

Native cChIP-seq for H2AK119ub1, H3K27me3, H3K27ac,
H3K4me3, and H3K4me1 was performed as described previously
(Fursova et al. 2019). Briefly, 5 × 107 mouse ESCs (untreated and
OHT-treated) were mixed with 2 ×107 Drosophila SG4 cells in
1× PBS. Mixed cells were pelleted and nuclei were released by re-
suspending in ice-cold lysis buffer (10 mM Tris-HCl at pH 8,
10 mMNaCl, 3 mMMgCl2, 0.1%NP40, 5 mM sodium butyrate,
5 mM N-ethylmaleimide). Nuclei were then washed and resus-
pended in 1 mL of MNase digestion buffer (10 mM Tris-HCl at
pH 8.0, 10 mMNaCl, 3 mMMgCl2, 0.1%NP40, 0.25 M sucrose,
3 mM CaCl2, 10 mM sodium butyrate, 10 mM N-ethylmalei-
mide, 1× PIC [Roche]). Each sample was incubated with 200 U
ofMNase (Fermentas) for 5 min at 37°C, followed by the addition
of 4 mM EDTA to halt MNase digestion. Following centrifuga-
tion at 1500g for 5 min at 4°C, the supernatant (S1) was retained.
The remaining pellet was incubated with 300 µL of nucleosome
release buffer (10 mM Tris-HCl at pH 7.5, 10 mM NaCl,
0.2 mM EDTA, 10 mM sodium butyrate, 10 mM N-ethylmalei-
mide, 1× PIC [Roche]) for 1 h at 4°C, passed five times through
a 27G needle using a 1-mL syringe, and spun at 1500g for 5 min
at 4°C. The second supernatant (S2) was collected and combined
with the corresponding S1 sample from above. Digestion tomost-
ly mononucleosomes was confirmed by agarose gel electrophore-
sis of purified S1/S2 DNA.
For ChIP, S1/S2 nucleosomes were diluted 10-fold in native

ChIP incubation buffer (70 mM NaCl, 10 mM Tris at pH 7.5,
2 mM MgCl2, 2 mM EDTA, 0.1% Triton X-100, 10 mM sodium
butyrate [for H3K27ac and H3K4me3 ChIPs], 10 mMN-ethylma-
leimide, 1× PIC [Roche]). For each ChIP reaction, 1 mL of diluted
nucleosomes was incubated overnight at 4oC with the appropri-
ate antibody, anti-H2AK119ub1 (5 μL; CST D27C4), anti-
H3K27me3 (5 μL; in-house), anti-H3K27ac (3 μL CST D5E4),
anti-H3K4me3 (4 μL; in-house), or anti-H3K4me1 (5 μL; CST
D1A9). Antibody-bound nucleosomes were captured for 1 h at
4°C using Protein A agarose (Repligen) beads, preblocked in na-
tive ChIP incubation buffer supplemented with 1 mg/mL BSA
and 1 mg/mL yeast tRNA, and collected by centrifugation. Im-
munoprecipitated material was washed four times with native
ChIP wash buffer (20 mM Tris at pH 7.5, 2 mM EDTA, 125 mM
NaCl, 0.1% Triton X-100) and once with TE buffer (pH 8). ChIP
DNA was eluted using 100 μL of elution buffer (1% SDS, 0.1 M
NaHCO3) for 30 min at room temperature, and then purified us-
ing a ChIP DNA Clean and Concentrator kit (Zymo Research).
For each ChIP sample, DNA from amatched input control (corre-
sponding to 10% of original ChIP reaction) was purified in the
same way. Native cChIP-seq library preparation and sequencing
was performed as described above for cChIP-seq.

Calibrated nuclear RNA sequencing (cnRNA-seq)

For cnRNA-seq, 1 × 107 ESCs (untreated and OHT-treated) were
mixed with 4 ×106 Drosophila SG4 cells in 1× PBS. Nuclei were
isolated in 1mLHS lysis buffer (50mMKCl, 10mMMgSO4.7H2-

0, 5 mM HEPES, 0.05% NP40 [IGEPAL CA630], 1 mM PMSF,
3 mM DTT, 1× PIC [Roche]) for 1 min at room temperature,
and then recovered by centrifugation at 1000g for 5 min at 4°C,
followed by a total of three washes with ice-cold RSB buffer
(10 mM NaCl, 10 mM Tris at pH 8, 3 mM MgCl2). Nuclei integ-
rity was assessed using 0.4% Trypan blue staining (Thermo Sci-
entific). Pelleted nuclei were resuspended in 1 mL of TRIzol

reagent (Thermo Scientific), and RNA was extracted according
to the manufacturer’s protocol, followed by treatment with the
TURBODNA-free kit (ThermoScientific) to remove any contam-
inating DNA. Quality of RNA was assessed using the 2100 Bioa-
nalyzer RNA6000 Pico kit (Agilent). RNA samples were depleted
of rRNA with the NEBNext rRNA depletion kit (NEB) prior to
preparing cnRNA-seq libraries using the NEBNext Ultra (for
Bap1fl/fl and PRC1CPM ESCs) or Ultra II (for PRC1CPM;Bap1fl/fl

ESCs) Directional RNA library preparation kit (NEB). To quanti-
tate the consistency of spike-in cell mixing for each individual
sample, a small aliquot of nuclei was saved to isolate genomic
DNA using phenol-chloroform extraction. This was followed by
sonication of DNA for 15 min using the BioRuptor Pico (Diage-
node), shearing genomic DNA to an average size of <1 kb. Librar-
ies from sonicated genomic DNA were constructed as described
above for cChIP-seq. Both cnRNA-seq and gDNA-seq libraries
were sequenced as 80-bp paired-end reads on the Illumina Next-
Seq 500 platform in biological triplicate.

Calibrated ATAC-seq (cATAC-seq)

To assay chromatin accessibility, calibrated ATAC-seq was per-
formed as described previously (Turberfield et al. 2019). First,
1 × 107 ESCs (untreated and OHT-treated) were mixed with
4 × 106 Drosophila SG4 cells in 1× PBS and then lysed in 1 mL
of HS lysis buffer (50 mM KCl, 10 mM MgSO4.7H20, 5 mM
HEPES, 0.05% NP40 [IGEPAL CA630], 1 mM PMSF, 3 mM
DTT, 1× PIC [Roche]) for 1 min at room temperature. Nuclei
were recovered by centrifugation at 1000g for 5 min at 4°C and
washed three times in ice-cold RSB buffer (10 mM NaCl,
10 mM Tris at pH 7.4, 3 mM MgCl2). The concentration and in-
tegrity of nuclei were assessed using 0.4% Trypan blue staining
(Thermo Scientific). Next, 5 × 105 nuclei were resuspended in
Tn5 reaction buffer (10 mM TAPS, 5 mMMgCl2, 10% dimethyl-
formamide) and incubated with Tn5 transposase (25 µM, generat-
ed in-house as previously described) (King and Klose 2017) for 30
min at 37°C. Tagmented DNA was purified using MinElute col-
umns (Qiagen) and eluted in 10 μL of elution buffer. To control
for the Tn5 transposase sequence bias and to determine the exact
spike-in ratio for each individual sample, 50 ng of genomic DNA,
isolated from the same nuclei preparation by phenol-chloroform
extraction, was tagmented with Tn5 transposase (25 µM) for
30 min at 55°C and purified using MinElute columns (Qiagen).
Libraries for cATAC-seq and gDNA-seq were prepared by PCR

amplification using the NEBNext high-fidelity 2× PCR Master
Mix and custom-made Illumina barcodes (Buenrostro et al.
2015). Libraries were purified by two rounds of Agencourt
AMPure XP bead cleanup (1.5× bead:sample ratio). Library con-
centration and fragment size distribution were determined as de-
scribed above for cChIP-seq. Libraries were sequenced using the
Illumina NextSeq 500 platform in biological quadruplicate using
80-bp paired-end reads.

Data processing and normalization for massive parallel sequencing

Following massive parallel sequencing, reads were mapped and
processed as described previously (Fursova et al. 2019; Turberfield
et al. 2019). Briefly, for cChIP-seq, cATAC-seq, and gDNA-seq,
Bowtie 2 (Langmead and Salzberg 2012) was used to align
paired-end reads to the concatenatedmouse and spike-in genome
sequences (mm10+dm6 for native cChIP-seq, cATAC-seq, and
gDNA-seq; mm10+hg19 for cross-linked cChIP-seq) with the
“‐‐no-mixed” and “‐‐no-discordant” options. Nonuniquely map-
ping reads were discarded, and PCR duplicates were removed
with Sambamba (Tarasov et al. 2015). For cATAC-seq, reads
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mapping to the mitochondrial chromosome and other genomic
regions with artificially high counts or low mappability, derived
from the ENCODE blacklist (Amemiya et al. 2019), were also
discarded.
For cnRNA-seq, first, Bowtie 2 was used with “‐‐very-fast,”

“‐‐no-mixed,” and “‐‐no-discordant” options to identify and dis-
card reads mapping to the concatenated mm10+dm6 rDNA ge-
nomic sequences (GenBank BK000964.3 and M21017.1). Next,
all unmapped reads were aligned against the concatenated
mm10+dm6 genomeusing STAR (Dobin et al. 2013). To improve
mapping of intronic sequences, reads that failed to be mapped by
STAR were further aligned with Bowtie 2 (with “‐‐sensitive-lo-
cal,” “‐‐no-mixed,” and “‐‐no-discordant” options). Uniquely
aligned reads from the last two stepswere combined, and PCRdu-
plicates were removed using Sambamba (Tarasov et al. 2015). A
list of all genomics data sets produced in this study and the num-
ber of uniquely aligned reads in each experiment are in Supple-
mental Table S2.
To visualize the cChIP-seq, cATAC-seq, and cnRNA-seq and

quantitatively compare genome enrichment profiles, chromatin
accessibility, and gene expression between conditions, the data
were internally calibrated using dm6 or hg19 spike-in as de-
scribed previously (Fursova et al. 2019; Turberfield et al. 2019).
Briefly, uniquely alignedmm10 reads were randomly subsampled
based on the total number of spike-in (dm6 or hg19) reads in each
sample. To account for variations in the spike-in cell mixing, we
used the ratio of spike-in/mouse total read counts in the corre-
sponding Input/gDNA-seq samples to correct the subsampling
factors. After normalization, read coverages across genomic re-
gions of interest (RING1B peaks for H2AK119ub1, H3K27me3,
RING1B and SUZ12 cChIP-seq, TSS±2.5 kb for cATAC-seq and
H3K27ac, H3K4me3 and H3K4me1 cChIP-seq, or gene bodies
for total Pol II, Ser5P-Pol II and Ser2P-Pol II cChIP-seq, and
cnRNA-seq) were compared for individual biological replicates
using multiBamSummary and plotCorrelation from deepTools
(Ramírez et al. 2014). For each experimental condition, biological
replicates showed a good correlation (Pearson correlation coeffi-
cient > 0.9) (see Supplemental Table S3) and were merged for
downstream analysis. Genome coverage tracks were generated
using the pileup function from MACS2 (Zhang et al. 2008) for
cChIP-seq, bamCoverage from deeptools (Ramírez et al. 2014)
for cATAC-seq, and genomeCoverageBed from BEDTools (Quin-
lan and Hall 2010) for cnRNA-seq, and visualized using the
UCSC genome browser (Kent et al. 2002). BigwigCompare from
deepTools was used to make differential genome coverage tracks
(log2 ratio of two conditions or ratio of Pol II phosphorylated
forms to its total levels).

Genome segmentation by ChromHMM

ChromHMM (Ernst and Kellis 2012) was used to perform unsu-
pervised segmentation of the genome into distinct chromatin
states, enriched with different combinations of histone modifica-
tions and other chromatin features, as described previously,
but without extension of the reads (Ernst and Kellis 2017).
Briefly, to build the model, cATAC-seq and cChIP-seq for
H2AK119ub1, H3K27me3, H3K27ac, H3K4me3, and H3K4me1
from this study (GEO: GSE161996), together with published
ChIP-seq data sets for CTCF (GEO: GSE153400) (Huang et al.
2020), OCT4, NANOG, SOX2 (GEO: GSE87822) (King and Klose
2017), H3K36me3 and H3K9me3 (GEO: GSE120376) (Ramisch
et al. 2019) in wild-type ESCs were aligned as described above,
subsampled to the same number of reads, and binarized using
the binarizeBam function in a paired-end mode. These data
were used to learn ChromHMM models with 10–15 states using

the LearnModel function with default parameters. Finally, a
13-state ChromHMM model was selected for the downstream
analysis, as this was the minimal number of states required to ac-
curately segregate an active enhancer state based on the high fre-
quency of OCT4/NANOG/SOX2 binding. This resulted in 13
different chromatin states, which were interpreted as described
in Supplemental Figure S2B based on the underlying functional
genomic annotations and their transcriptional activity. These in-
cluded CTCF-bound insulators, distal gene regulatory elements
(weak to highly active enhancers), actively transcribed promoters
and gene body regions, Polycomb-repressed and bivalent chroma-
tin domains, H3K9me3-enriched heterochromatin, and inter-
genic regions that are not enriched with any examined
chromatin features. The genomic coordinates of chromatin
states identified by ChromHMM were deposited in GEO:
GSE161993.

Peak calling and annotation of genomic regions

To define active gene regulatory elements, we first performed
peak calling for H3K27ac cChIPseq in Bap1fl/fl ESCs (untreated
and OHT-treated) for four biological replicates using the dpeak
function (-kd 500, -kw 300, -p 1e-30) from DANPOS2 (Chen
et al. 2013), discarding peaks that overlapped with a custom set
of blacklisted genomic regions. We then intersected ATAC peaks
defined previously (King et al. 2018) with our H3K27ac peak set.
This resulted in a set of active gene regulatory elements, which
were further segregated into active enhancers (non-TSS, n=
12,006) or active promoters (TSS, n=10,840), based on their over-
lap with TSS±1-kb regions. To obtain the most complete set of
TSS positions, we combined TSS annotations from the UCSC
refGene (n=34,852), NCBI RefSeq (n =106,520), and GENCODE
VM24 (n =67,573) databases. To eliminate the contribution of
gene body signal for Pol II cChIP-seq, only intergenic active en-
hancers (n=4156), which did not overlap with any of the above
gene annotations, were considered for the downstream analysis.
To associate genes with putative distal regulatory elements, for
each gene promoter we identified the nearest intergenic enhanc-
er located within the 250-kb distance using the closest function
from BEDTools. For differential gene expression analysis and
quantification of cChIP-seq and cATAC-seq signal at promoters
or over the bodies of genes, we used a custom nonredundant
set of genes (n =20,633), derived from mm10 UCSC refGene
genes by removing very short genes with poor sequence mapp-
ability and highly similar transcripts as described previously
(Rose et al. 2016). For the purposes of read quantification, pro-
moters were defined as TSS±2.5-kb intervals, with the exception
of Pol II cChIP-seq, in which case they were defined as TSS± 0.5
kb to specifically capture the promoter signal and eliminate the
contribution of the gene body signal. A set of intergenic intervals
was obtained using the complement function from BEDTools as
regions of the genome that do not overlap with any of the genes
from a complete UCSC refGene set.
Mouse genes in a custom nonredundant set (n =20,633) (Rose

et al. 2016) were classified into three groups based on the overlap
of their gene promoters with nonmethylated CpG islands (NMI),
as well as RING1B- and SUZ12-bound sites. NMIs (n= 27,047)
were identified using MACS2 peak calling with the matching in-
put control from BioCAP-seq (Long et al. 2013). All genes with
promoters (TSS±1 kb) not overlapping with NMIs were referred
to as non-NMI genes (n =6333). NMI-overlapping genes were
further subdivided into PcG-occupied genes (n =5582), if their
promoters overlapped with both RING1B- and SUZ12-bound
sites defined in a previous study (Blackledge et al. 2020), and
non-PcG-occupied genes (n =8718), if they did not. The overlap
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between NMIs, RING1B- and SUZ12-bound regions with gene
promoters (TSS± 1 kb) was determined using the closest function
from BEDTools. In the text, we refer to PcG-occupied genes as
Polycomb target genes.

Read count quantitation and analysis

For cChIP-seq and cATAC-seq, computeMatrix and plotProfile/
plotHeatmap from deepTools were used to perform metaplot
and heatmap analysis of read density at regions of interest. Meta-
plot profiles represented the mean read density over a set of geno-
mic regions, except for Pol II cChIP-seq, for which the median
read densitywas plotted due to an extremely broad range of signal
intensities across the intervals of interest. For chromosome-wide
density plots, read coverage in 250-kb bins was calculated using a
custom R script using GenomicRanges, GenomicAlignments,
and Rsamtools Bioconductor packages (Huber et al. 2015) and vi-
sualized using ggplot2. For cChIP-seq and cATAC-seq, target re-
gions of interest were annotated with read counts from merged
spike-in normalized replicates using multiBamSummary from
deepTools (“‐‐outRawCounts”). For differential gene expression
analysis, we used a custom Perl script using SAMtools (Li et al.
2009) to obtain read counts from individual biological replicates
prior to spike-in normalization for a custom nonredundant
mm10 gene set (n=20,633).
Normalized read counts and log2 fold changes for different ge-

nomic intervals were visualized using custom R scripts and
ggplot2. For box plot analysis of cChIP-seq and cATAC-seq signal,
read counts were normalized to the genomic region size (in kb)
and log2 transformed following addition of a pseudocount of
1. For box plots, boxes show the interquartile range (IQR) and
whiskers extend by 1.5 × IQR. ggcor function from the GGally R
package was used to generate a correlation matrix for the associ-
ation between log2 fold changes in gene expression (cnRNA-seq)
and log2 fold changes in cChIP-seq signal for Pol II and transcrip-
tion-associated histonemodifications at gene promoters or bodies
following OHT treatment in Bap1fl/fl ESCs. All correlation anal-
yses used the Pearson correlation coefficient to measure the
strength of the association between the variables and were visu-
alized using scatterplots colored by density with stat_density2d.
Linear regression was plotted using the stat_poly_eq function
from the ggpmisc R package, together with the model’s R2

adj co-
efficient of determination. To calculate statistical significance,
we carried out Student’s t-test using R, with samples considered
to be independent and a two-tailed alternative hypothesis, unless
specified otherwise.

Differential gene expression analysis

To identify significant gene expression changes in cnRNA-seq,
we used a custom R script that incorporates spike-in calibration
into DESeq2 analysis (Love et al. 2014) as described previously
(Fursova et al. 2019; Blackledge et al. 2020). Briefly, dm6 read
counts were obtained for unique dm6 refGene genes to calculate
DESeq2 size factors for normalization of raw mm10 read counts
for a custom nonredundant mm10 gene set. Prior to quantifica-
tion, dm6 reads were prenormalized using the dm6/mm10 total
read ratio in the corresponding gDNA-seq samples in order to ac-
count for variations in spike-in cell mixing. For visualization and
ranking of the effect sizes, we performed shrinking of log2 fold
changes using the original DESeq2 shrinkage estimator with an
adaptive normal distribution as prior (Love et al. 2014). For visu-
alization of DESeq2-normalized read counts, they were averaged
across the replicates and used to calculate RPKM following addi-
tion of a pseudocount of 1. For a change to be called significant,

we applied a threshold of P-adj < 0.05 and fold change> 1.5. To dis-
tinguish genes that are robustly expressed in ESCs from
genes that show no or low expression, we used a threshold of
RPKM=2.838, which was defined based on the density distribu-
tion of log2 transformed RPKM gene expression levels from
cnRNA-seq in untreated Bap1fl/fl ESCs (Supplemental Fig. S3A).
This resulted in a set of 14,779 robustly expressed genes, which
was used to estimate the proportion of expressed genes that
showed reductions in expression following BAP1 removal. Log2
fold change values were visualized using R and ggplot2 with
MA plots, heat maps, and box plots/violin plots. ComplexHeat-
map R package (Gu et al. 2016) was used to plot heat maps of
log2 fold gene expression changes. For MA plots, the density of
the data points across the y-axis was shown to reflect the general
direction of gene expression changes. Venn diagramswere plotted
using Vennerable R package. The significance of pairwise over-
laps for Venn diagrams was calculated by a Fisher’s exact test us-
ing GeneOverlap R package. HOMER v4.9.1 (Heinz et al. 2010)
was used to perform gene ontology (GO) term enrichment analy-
sis for differentially expressed genes, with the custom nonredun-
dant mm10 gene set used as background.

Data and software availability

The high-throughput sequencing data reported in this study have
been deposited in GEO under the accession number GSE161996.
Published data used in this study include BioCAP-seq, GEO:
GSE43512 (Long et al. 2013); cnRNA-seq in PRC1CKO ESCs,
GEO: GSE119619 (Fursova et al. 2019); RING1B- and SUZ12-
bound regions in ESCs, GEO: GSE132752 (Blackledge et al.
2020); ATAC peaks from E14 ESCs, GEO: GSE98403 (King et al.
2018); CTCF ChIP-seq in wild-type ESCs, GEO: GSE153400
(Huang et al. 2020); ChIP-seq for OCT4, NANOG, and SOX2 in
untreated Brg1fl/fl ESCs, GEO: GSE87822 (King and Klose 2017);
and H3K9me3 and H3K36me3 ChIP-seq in LIF-grown ESCs,
GEO: GSE120376 (Ramisch et al. 2019). Custom R and Perl
scripts used for data analysis in this study have been deposited
to GitHub and are available at https://github.com/nFursova/
Calibrated_ChIPseq_RNAseq.
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