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Chemotherapy, biological agents or combinations of both have had little impact on survival of patients with metastatic

melanoma. Advances in understanding the genetic changes associated with the development of melanoma resulted in

availability of promising new agents that inhibit specific proteins up-regulated in signal cell pathways or inhibit

anti-apoptotic proteins. Sorafenib, a multikinase inhibitor of the RAF/RAS/MEK pathway, elesclomol (STA-4783)

and oblimersen (G3139), an antisense oligonucleotide targeting anti-apoptotic BCl-2, are in phase III clinical studies

in combination with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901,

AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR

(axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors

(imatinib, dasatinib, sunitinib) may have a role in treatment of patients with melanoma harbouring c-Kit mutations.

Although often studied as single agents with disappointing results, new targeted drugs should be more thoroughly

evaluated in combination therapies. The future of rational use of new targeted agents also depends on successful

application of analytical techniques enabling molecular profiling of patients and leading to selection of likely therapy

responders.
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introduction

Treatment of melanoma once it has metastasised beyond
locoregional sites remains unsatisfactory. A range of different
treatments based on chemotherapy, biological agents or
a combination of both (reviewed elsewhere) has had little
impact on survival [1–3].

Single-agent chemotherapy produces responses in 10–20% of
patients with advanced melanoma, although there is no
evidence that this translates into a survival advantage.
Complete responses occur in �2% of the cases; median survival
associated with chemotherapy is 9 months and 13% of patients
are alive at 2 years [4]. Commonly used compounds include
dacarbazine (DTIC), temozolomide, fotemustine, cisplatin,
carboplatin, vinblastine, paclitaxel and docetaxel [5].

As a single agent, DTIC has been most commonly used even
when it has not been formally compared with other agents or
with observation alone. The usual dose is 1000 mg/m2 every 3–
4 weeks (given either in 1 day or at five daily doses of 200 mg/

m2). Some centres substitute DTIC with temozolomide for its
convenience of administration [2]. Temozolomide

demonstrated efficacy equal to that of DTIC in a phase III trial

at a dose of 200 mg/m2/day for 5 days every 28 days [6]. Recent

results from a large, randomised phase III trial (EORTC 18032),

which examined the efficacy of an extended schedule of

temozolomide (week on-week off, 150 mg/m2/day for 7 days

repeated every 14 days) compared with standard dose single-

agent DTIC, showed no difference in overall survival (OS),

progression-free survival (PFS) and overall response rate

(ORR) between the two arms [7].
Combination chemotherapy is associated with a response

rate of 30–50%, but with <5% complete responses and

a median survival of 9 months [2, 5]. The better-known

combinations are cisplatin–vinblastine–dacarbazine (CVD) and

cisplatin–dacarbazine–BCNU–tamoxifen (Dartmouth regimen)

[8, 9]. Although preliminary reports favoured the use of these

regimens over single-agent chemotherapy, further comparisons

with DTIC alone did not show differences in survival or even in

response rate [10]. In addition, combination chemotherapy

produces significant toxicity. Poor results with single-agent or

combination chemotherapy regimens have remained
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unchanged for decades and underscore the need for application
of fundamentally different strategies in treatment of advanced
melanoma.

Substantial advances have been made in understanding the
genetic changes associated with the onset of this malignancy. As
reviewed elsewhere [11], consensus is emerging about primary
events involved in the development of melanoma largely from
comparative genome hybridisation (CGH) [12]. These include
(a) up-regulation of the RAS/RAF/MEK pathway [12, 13]; (b)
down-regulation of the retinoblastoma protein (RB) by
increased cyclin D1 or CDK4 activity [12, 14]; and (c)
inactivation of the CDKN2A p16 suppressor of CDK4 and 6, in
>50% of melanoma [12, 15]. Activating mutations in c-Kit or
FGF may occur in some melanoma [16]. Inactivation of the
CDKN2A gene may also affect production of p14 ARF
(alternate reading frame), which is important in maintenance
of p53 protein levels by inhibiting the HDM2-mediated
ubiquitination of p53 that leads to its degradation.

signal pathway inhibitors

Numerous studies have shown that several signal pathways
related to survival of cancer cells are frequently up-regulated in
melanoma. Arguably the most important of these is the RAF/
RAS/MEK pathway, which is involved in proliferation and
resistance to apoptosis. The pathway can be turned on by
activating mutations in NRAS or BRAF or by endogenous
receptor–ligand interactions. Importantly, activation of the
pathway was shown to be related to progression of the disease
[17] and resistance to apoptosis [18, 19]. Another survival
pathway is the PI3K/Akt3 pathway, activated in 5–10% of
melanomas by a mutation in the phosphatase and tensin
(PTEN) protein, receptor–ligand interactions or activating
mutations in NRAS [20–22]. The Src/Stat3 pathway was
reported to be variably activated in some melanoma lines and
metastatic melanoma in vivo [23]. Expression of c-Met/HGF
receptors was also associated with progression of melanoma
[24–26].

A number of new drugs have been developed that target
members of these pathways. These are summarised in Tables 1
and 2. Many of these agents are still being evaluated in
preclinical studies, and very few have been evaluated in
randomised phase III studies. Sorafenib is a multikinase
inhibitor with selectivity for B-Raf, C-Raf, VEGFR-2 and -3,
platelet-derived growth factor receptor (PDGFR) and c-Kit.
When used as a single agent, it stabilised the disease in 19% of

stage IV patients, and when given with carboplatin and
paclitaxel, it induced promising objective responses and PFS
[27]. A randomised phase II trial comparing DTIC with or
without sorafenib at twice-daily, 400 mg doses was conducted
in 101 patients. The group receiving sorafenib had a PFS of 21.1
weeks compared with 11.7 weeks in the DTIC-alone group.
Response rates were 24% and 12%, respectively [28]. Another
phase II trial with a complex design investigated sorafenib in
combination with temozolomide. Again, encouraging response
rates were reported [29]. Skin rashes and haematologic toxicity
were the main side-effects reported. A phase III trial recruited
270 patients into a second-line study and compared carboplatin
plus paclitaxel with or without sorafenib. The median PFS was
17.9 and 17.4 weeks in the placebo and sorafenib groups,
respectively. The ORR was 11% in both groups [30]. Although
the addition of sorafenib did not improve PFS or ORR in this
second-line patient population, the utility of carboplatin plus
paclitaxel with sorafenib in chemotherapy-naı̈ve advanced
melanoma patients remains to be determined. The Eastern
Cooperative Oncology Group (ECOG) is conducting a similar
trial in previously untreated patients that is now closed to
accrual (ECOG 2603). The results of the trial and further
studies on sorafenib plus DTIC are awaited with interest.

The specific MEK inhibitor AZD6244 was evaluated in
a randomised phase II trial of 200 patients with stage IV
melanoma. Patients were randomised to AZD6244 or
temozolomide; recently reported results indicate that there was
no significant difference in PFS between those arms [34].
However, AZD6244 monotherapy resulted in lasting remissions
mainly in patients with documented B-Raf mutations.
Combinations with other agents, such as a taxanes, are being
planned. Taxanes are known to activate the anti-apoptotic
MEK pathway [48], and combination therapy with inhibitors of
this pathway may be beneficial.

The other two B-Raf inhibitors, RAF265 and PLX4032 (Table
1), have high affinity for the mutated B-Raf and are in dose-
finding and early phase II studies. The MEK-specific inhibitor
PD0325901 was associated with some retinal disturbances, and
its further evaluation was halted. Tanespimycin (KOS-953), an
inhibitor of heat shock protein 90 (Hsp90), targets proteins
protected (chaperoned) by Hsp90. This includes RAF, Akt and
other signal pathway proteins. The drug was tested in a phase II
study in previously treated stage IV melanoma patients and
administered twice weekly for 2 weeks out of 3 weeks. Results
from a treatment of 14 patients met the criteria for further
evaluation in the second stage of the trial [31]. Another group,

Table 1. RAS/RAF/MEK signal pathway inhibitors

Agent Class of inhibitor Target protein(s) Reference

Sorafenib Multikinase inhibitor C-Raf; B-Raf; VEGF-2, -3; PDGF; Flt-3; c-Kit [27–30]

Tanespimycin (KOS-953, 17-AGG) Hsp90 inhibitor Hsp90 (client proteins, B-Raf, Akt, others) [31]

RAF265 Multikinase inhibitor Mutant B-Raf, VEGFR-2 [32]

PLX4032, PLX4720 Selective B-Raf kinase inhibitor Mutant B-Raf [33]

PD0325901 Non-ATP-competitive specific MEK inhibitor MEK1, 2 [32]

AZD6244 Non-ATP-competitive specific MEK inhibitor MEK1, 2 [34]

Tipifarnib (R115777) Farnesyl transferase inhibitor Prenylated proteins [35, 36]
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farnesyl transferase inhibitors, should in theory inhibit
activation of RAS. However, when used as a single agent this
group of drugs has been disappointing [35, 36].

Most of the agents in Table 2 are at early stages of
investigation and are listed to indicate the rich supply of agents
that remain to be evaluated in treatment of melanoma. Given
that activation of the Akt pathway has been implicated in
resistance to chemotherapy [22], trials with inhibitors of this
pathway or downstream targets such as mTOR, GSK3b or
HDM2 are awaited with much interest.

A key downstream target of Akt—mTOR exists in two
complexes, mTORC1 and mTORC2. The latter is not inhibited
by rapamycin or its analogues and is believed to be responsible
for rapamycin-induced activation of Akt and PKC-a [49].
Newer inhibitors, which target the mTORC2 complex or those
that inhibit both PI3K and mTOR (XL765), should avoid this
problem. XL765 has proved to be well-tolerated in phase I
studies [42].

A rich supply of inhibitors of receptor tyrosine kinases
(RTKs), such as those against Bcr-Ab1, c-Kit, PDGFR,
epidermal growth factor receptor (EGFR), c-Met and Src, may
have a role in the treatment of some melanomas. For example,
a high percentage of mucosal or acral melanoma and some
cutaneous melanoma have amplified and mutated c-Kit and
may respond to imatinib, sunitinib or dasatinib [44, 45]. Four
phase II trials with sunitinib or imatinib in patients with c-Kit
melanoma mutations are ongoing. A subgroup of melanoma
with overexpression of phosphorylated c-Kit and CDK4 were
resistant to B-Raf inhibitors but sensitive to imatinib [50].

Several agents of indeterminate action such as histamine [51]
and lenalidomide (CC-5013) [52] are no longer under
investigation. Elesclomol (STA-4783) is a new agent that
appears to increase reactive oxygen species. Results from
a recent randomised phase II study of elesclomol in
combination with paclitaxel indicated a significant benefit for
chemotherapy-naı̈ve patients in PFS (HR = 0.315, P = 0.02)
[53]. Evaluation of this combination therapy has progressed to
a phase III trial [54]. Axitinib (AG-013736), an oral inhibitor of
VEGFR-1, -2 and -3, c-Kit, PDGR-a and PDGR-b, is also at an
early stage of evaluation in melanoma [55], and recent results

from a phase II study demonstrated its single-agent activity in
a subgroup of melanoma patients [56].

inhibitors of anti-apoptotic proteins

Another group of new drugs targets the anti-apoptotic proteins.
Mitochondria-dependent apoptotic pathways are regulated
mainly by the Bcl-2 family of proteins, which, as reviewed
elsewhere [57–60], consists of a family of BH3-only pro-
apoptotic proteins, two multi-domain pro-apoptotic proteins
(Bax and Bak) and several multi-domain anti-apoptotic
proteins (Bcl-2, Bcl-XL, Bcl-W, Mcl-1 and A1). In one model,
binding the anti-apoptotic proteins to the BH3 proteins
displaces Bax or Bak from the anti-apoptotic proteins, allowing
them to bind to mitochondria and induce mitochondrial outer
membrane permeabilisation (MOMP) [58, 61]. Certain BH3
proteins have selectivity for different anti-apoptotic proteins. In
particular, Noxa binds selectively to Mcl-1. The latter also binds
Bak, and hence Noxa may displace Bak from Mcl-1, allowing it
to bind to mitochondria [62, 63].

It is of particular interest that immunohistological studies on
tissue sections from melanoma have shown that Mcl-1 and Bcl-
XL increase in expression with progression of the disease
whereas Bcl-2 decreased during progression of the disease [64].
Further studies are needed to define the regulators of these
proteins more closely, particularly Mcl-1, as current studies
suggest it is up-regulated as part of the unfolded protein
response to endoplasmic reticulum stress [65].

These findings are important in the design of treatment
strategies in melanoma. As shown in Table 3, a number of new
agents can be used clinically to target the anti-apoptotic
proteins. Oblimersen is an antisense agent targeted to
mitochondrial Bcl-2. Results from a randomised phase III trial
comparing DTIC combined with oblimersen with DTIC alone
in 771 patients showed improved PFS (2.6 months compared
with 1.6 months, P < 0.01) and response rate (13.5% compared
with 7.5%, P = 0.007) but no statistical difference in overall
survival (9.0 months compared with 7.8 months, P = 0.077)
[66]. Problems with study design and failure to measure
tumour Bcl-2 expression made these results difficult to
interpret. A significant interaction between baseline serum
lactate dehydrogenase (LDH) and treatment was noted, with
oblimersen significantly increasing survival in patients with
normal LDH (11.4 months compared with 9.7 months,
P = 0.02). Another agent, ABT-737, has high affinity for Bcl-2,

Table 2. Akt, receptor tyrosine kinase (RTK) and Stat signal pathway

inhibitors

Agent(s) Target protein Reference

PI 103 PI3K/mTOR [37]

SF1126 (LY294002-prodrug) PI3K [38]

Perifosine, PX-866 Akt [22]

CMEP Akt [39]

Temsirolimus (CCI-779) mTOR [40]

Everolimus (RAD001) mTOR [40]

Deforolimus (AP23573) mTOR [41]

XL765 P13K/mTOR [42]

SB216763, DW1/2 GSK3b [43]

Imatinib, dasatinib, sunitinib, erlotinib RTKs [44]

Dasatinib Src [45]

S31-M2001 Stat3 [46]

SUI1274 c-Met/HGF [24, 47]

Table 3. Targeting anti-apoptotic proteins

Agent Target protein(s) Reference

Oblimersen (G3139) Bcl-2 (specific) [66]

YM155 Survivin [67]

ABT-737 (ABT-263) BH3-mimetic (inhibits Bcl-2 group:

Bcl-2, Bcl-XL, Bcl-W, not Mcl-1)

[68–70]

Gossypol (AT-101) BH3-mimetic (inhibits Bcl-2 group) [71]

Obatoclax (GX015-070) BH3-mimetic (inhibits Bcl-2 group) [72]

TW37 Bim-mimetic (inhibits Bcl-2 group) [73]

Smac mimetic Inhibitor of IAP1,2, XIAP [74]
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Bcl-XL and Bcl-W, but not Mcl-1. Preclinical studies have
shown that many tumours are resistant to this agent due to its
failure to inhibit Mcl-1 in cancer cells; down-regulation of Mcl-
1 resulted in sensitivity to ABT-737 [68, 69]. ABT-263 is an
orally active form of ABT-737 [70]. Sorafenib or MEK
inhibitors may down-regulate Mcl-1 and may thus be useful in
combination studies. As shown in Table 3, however, a number
of protein inhibitors have selectivity for all the anti-apoptotic
proteins. One of these inhibitors, obatoclax, is now in
preliminary trials in patients with haematological malignancies
[75] and was shown to overcome Mcl-1 resistance to apoptosis
[76]. At this stage, we would expect that these broad-spectrum
inhibitors would be more effective when given in combination
with a treatment that induces apoptosis, such as
immunotherapy or chemotherapy.

conclusions

We may already have agents that would control the disease if
targeted to patient subgroups or if given in appropriate
combinations. A number of new agents are in various stages of
clinical evaluation. The current strategy of testing new targeted
drugs as single agents is necessary, but should be regarded as
the first step in evaluation of the agent for future combination
with other agents. For example, agents that induce apoptosis,
such as taxanes, platinum compounds or immunotherapy, can
be combined with agents that inhibit anti-apoptotic proteins.
Failure of a drug as a single agent is probably no guide to the
ultimate effectiveness of the drug when given in combination
and planning for trials of combined agents would appear to be
an important part of drug evaluation (e.g. as carried out in the
evaluation of the elesclomol–paclitaxel combination). Future
research will also need to develop approaches that help to select
subgroups of patients that are more likely to respond to
particular agents. Combining high-density single-nucleotide
polymorphism arrays and the mutation analysis of relevant
oncogenes might provide the rational basis for a sophisticated
use of new agents in the treatment of melanoma [77]. To
improve the outcome of melanoma treatments and to
determine the biological mechanisms of efficacy or failure,
future studies with small molecules and targeted therapies will
also require strict monitoring of biological end points.
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