

Pituitary apoplexy after surgery for cervical stump adenocarcinoma: A case report and literature review

XIAODAN YU, CHEN SHI, LILI JIANG and KUIRAN LIU

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China

Received November 22, 2023; Accepted April 30, 2024

DOI: 10.3892/ol.2024.14543

Abstract. Pituitary apoplexy (PA) is an emergency condition caused by sudden hemorrhage or infarction and characterized by sudden sella turcica compression, intracranial hypertension and meningeal stimulation. PA usually occurs secondary to pituitary adenomas and can serve as the initial manifestation of an undiagnosed pituitary adenoma in an individual. In the present study, a case of PA following surgery for cervical stump adenocarcinoma was reported. The patient experienced an abrupt onset of headache and drowsiness on postoperative day 1 (POD1), and developed blurred vision and blepharoptosis of the left eye on POD4. Pituitary MRI confirmed the diagnosis of PA, prompting the initial administration of hydrocortisone to supplement endogenous hormones, followed by trans-sphenoidal resection. At the six-week follow-up, the patient had fully recovered, with only mild residual blurring of vision. Diagnosing PA post-surgery can be a challenging task due to its symptomatic overlap with postoperative complications. The existing literature on PA after surgery was also reviewed, including the symptoms, time of onset, imageological examination, management, potential

Correspondence to: Professor Lili Jiang or Dr Kuiran Liu, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, Liaoning 110004, P.R. China E-mail: jiangll311@163.com E-mail: liukr0412@163.com

Abbreviations: ACTH, adrenocorticotropic hormone; BP, blood pressure; CT, computerized tomography; FSH, follicle-stimulating hormone; FT3, free triiodothyronine; FT4, free thyroxine; HPV, human papillomavirus; K⁺, potassium ion; LH, luteinizing hormone; MRI, magnetic resonance imaging; Na⁺, sodium; PA, pituitary apoplexy; PET-CT, positron emission tomography-computed tomography; POD, postoperative day; TCT, thinprep cytology test; TSH, thyroid stimulating hormone

Key words: pituitary apoplexy, cervical stump adenocarcinoma, pituitary adenoma, case report

risk factors and outcome to improve on early detection and individualized treatment in the future.

Introduction

The term pituitary apoplexy (PA) was initially introduced by Brougham in 1950 (1), defined as an emergency condition caused by hemorrhage or infarction of the pituitary gland. However, PA can be generally neglected in 25% of pituitary tumors and there may only be radiological or histopathological evidence of infarction and/or hemorrhage without any clinical manifestation (2). In the present article, PA refers to clinically diagnosed PA with classical symptoms.

The prevalence of PA reported in different studies ranges from 0.6 to 7% (3-7), suggesting that numerous cases were undiagnosed and did not receive any clinical attention (8). While the pathophysiology of PA remains elusive, several risk factors have been identified, such as fluctuation of blood pressure (BP), use of anticoagulant drugs, major surgeries, pregnancy and pituitary function test (9-11). Clinical symptoms vary from person to person, commonly manifesting as sudden onset of headache, visual field defect, diplopia, ophthalmoplegia, decreased consciousness, increased urine volume, nausea and vomiting (12-14). Dysfunctions in the hypothalamic-pituitary hormone axis can result in a lack of various pituitary-related hormones, which may lead to physiological disorders in several ways (Fig. 1). Hypothyroidism and adrenal insufficiency secondary to PA may weaken the body's tolerance to surgical trauma. Glucocorticoid and thyroid hormones both have a role in post-operative stress. Glucocorticoids help maintain BP and blood sugar, facilitate fat mobilization, combat cellular damage and suppress inflammatory responses (15), and thyroid hormones can speed up the metabolism and increase peripheral cells' utilization of glucose (16). The choice of treatment between hormonal replacement therapy and trans-sphenoidal resection is determined based on the severity of neuro-ophthalmic symptoms and the patient's capacity to undergo a second surgery (2).

However, presenting as the initial sign of unknown pituitary tumors, it can be a challenging task to diagnose PA post-surgery due to its symptomatic overlap with postoperative complications. It is a rare postoperative complication that may have severe consequences if not treated timely and properly. Due to the lack of reviews on PA after surgery, the current article presented a clinical case and summed up the characteristics of relevant cases published over the years.

Case report

A 64-year-old female with a history of subtotal hysterectomy 20 years prior presented with vaginal bleeding persisting for three months and was admitted in Shengjing Hospital of China Medical University (Shenyang, China) in March 2023. The patient's body mass index was 24.2 kg/m² (body height, 164 cm; body weight, 65 kg). The obstetric history included two pregnancies-one ending in abortion and the other in a vaginal birth. At the age of 44 years, the patient underwent a subtotal hysterectomy and left adnexectomy due to multiple uterine leiomyomas and a lateral ovarian cyst, with postoperative pathology confirming benignity. Irregular human papillomavirus (HPV) and thinprep cytology test (TCT) screening were conducted post-surgery, and the last screening was 2 years prior and the results remained negative. After undergoing minor but persistent vaginal bleeding for 3 months, the patient tested HPV-16 positive and negative for intraepithelial lesion or malignancy on TCT. The pelvic ultrasound, computerized tomography (CT) and positron emission tomography-computed tomography (PET-CT) identified a moderately hyperechoic mass in the cervical stump region, which was highly suggestive of cancer (Fig. 2). Gynecological examination revealed normal vulvar development with signs of aging and a smooth vaginal canal. An exogenous lesion with a diameter of ~2.5 cm was observed at the stump of the cervix, exhibiting lesion contact bleeding. The anterior fornix was shallow and the pelvic cavity was with no obvious abnormalities in the adnexal areas. The patient reported no comorbidities, aside from a sulfonamide allergy. General examination was unremarkable, except for admission BP of 148/96 mmHg. According to the latest guideline of hypertension in China (17), hypertension was defined as systolic BP \geq 140 mmHg/or diastolic BP \geq 90 mmHg. The patient's BP was monitored and a cardiologist was consulted. During hospitalization, the patient's BP was stable, ranging from 120/80 to 140/90 mmHg. The patient cooperated well in the physical examination. The bilateral pupils were equally large and round with a diameter of 3 mm and had no limitation of eye movement or visual field defect. The patient exhibited full mobility in all four limbs with normal muscle force and strength and neither had a history of pituitary adenoma nor manifested any related symptoms. The patient underwent tissue biopsy and cervical stump adenocarcinoma was diagnosed. After comprehensive pre-operative evaluations, including PET-CT, the patient underwent open extensive stump cervicectomy, pelvic lymph node dissection and transcystoscopic bilateral ureteral stenting. Pelvic drainage and vaginal drainage were used. The surgery proceeded smoothly with an intraoperative bleeding volume of 100 ml. Intraoperative anesthesia and medication details are provided in Fig. S1 [Illustrator 27.7 (Adobe, Inc.) was used to generate the translated version of this image]. The patient's BP remained stable during the operation and no hypotension was detected prior to or after the surgery. After the gynecological operation, the patient was treated with intravenous cefazolin sodium (Sinopharm CNBG Zhongnuo Pharmaceuticals Co., Ltd.) 0.5 g per 8 h, intramuscular enoxaparin sodium [Sanofi Aventis (Beijing) Pharmaceutical Co., Ltd.] 40 mg per day, intravenous methylprednisolone (Pharmacia & Upjohn Co., Ltd.) 20 mg per day and other supportive care (methylprednisolone is administered as a common treatment at the Enhanced Recovery After Surgery ward to alleviate peri-operative stress and inflammation). From postoperative day 1 (POD1), the patient complained of the sudden onset of a headache [pain visual analogue scale (VAS) score (18), 4/10] and drowsiness. Since the pre-operative PET-CT did not indicate any pituitary tumor (Fig. 3A), it was inferred that the patient's symptoms may be due to general anesthesia and the postoperative analgesia pump and the pump was turned off immediately. On POD2, the patient still reported headaches and a neurosurgery consultation was started. The neurosurgery doctor suggested recording a head CT but the patient perceived her headache to be of mild severity and signed to refuse relevant tests. On POD3, the patient's BP fluctuated between 120/70 and 145/85 mmHg. It was not until the patient's headache worsened (pain VAS 7/10) and a new complaint of blurred vision and blepharoptosis of the left eye occurred on POD4 that she consented to further examination. The patient's Glasgow coma scale score was 3-5-6 points (19). A head CT scan and an ophthalmic consultation were carried out immediately, revealing multiple lacunar infarctions and local density increases in the sella turcica and suprasellar regions (Fig. 3B). Enhanced pituitary MRI showed a 2.4x1.7x2.6 cm occupation in the sellar area with a heterogeneous signal, indicating a pituitary macroadenoma with apoplexy (Fig. 3C and D). Ophthalmic assessments showed bitemporal hemianopsia and abnormal findings in the fundus photography and visual pathway images (data not shown). Laboratory tests indicated panhypopituitarism (Table I). The patient was promptly transferred to the neurosurgery ward. Considering the visual field defect was stable, there was no indication of an emergency surgery and hydrocortisone (Tianjin Jinyao Amino Acid Co., Ltd.; 100 mg/day) replacement therapy was used to complete enhanced head CT and arterial angiography, and transsphenoidal hypophysical lesion resection through the neuroendoscope under general anesthesia was carried out successfully on POD12. After the neurosurgery operation, the patient took desmopressin acetate tablets [Huilin (Sweden) Pharmaceuticals Co., Ltd.] 0.1 mg to treat postoperative diabetes insipidus, sustained-release potassium tablets (Shenzhen Zhonglian Pharmaceutical Co., Ltd.) 1 g three times per day to treat hypokalemia and prednisolone acetate tablets (Tianjin Tianyao Pharmaceuticals Co., Ltd.) 10 mg at 8:00 a.m. and 5 mg at 4:00 p.m. each day. Postoperative pathology was performed by reticulin fiber staining with kit no. G3535 from Solarbio Science and Technology (Beijing) Co., Ltd (20), and it indicated hemorrhage of pituitary tumor (Fig. 4). The patient reported complete resolution of headaches, bitemporal hemianopia and visual field improvement the day after the operation and was discharged from the hospital a week later. The patient reported mild blurry vision during the follow-up of six weeks after the neurosurgery operation. After discharge, the patient underwent follow-up every three months, and her hormone levels completely returned to normal. The patient was advised to undergo hormone level assessments and pituitary imaging every six months, with continued lifelong follow-up.

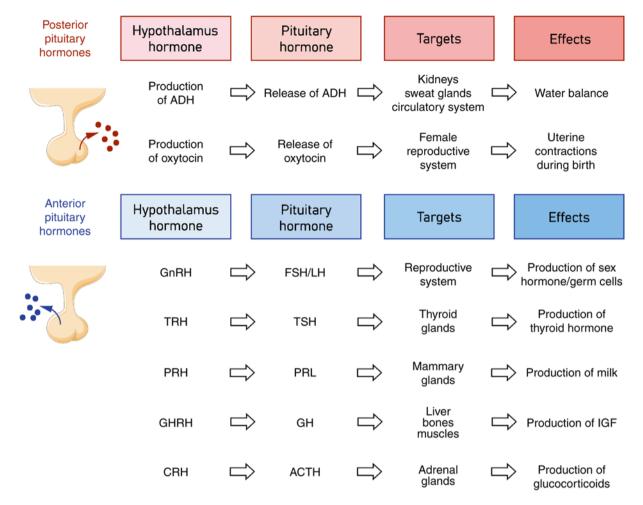


Figure 1. Hypothalamic-pituitary hormone axis and its main functions. ACTH, adrenocorticotropic hormone; ADH, antidiuretic hormone; CRH, corticotropin-releasing hormone; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone releasing hormone; GnRH, gonado-tropin-releasing hormone; LH, luteinizing hormone; PRH, prolactin releasing hormone; PRL, prolactin; TRH, thyrotropin-releasing hormone; TSH, thyroid stimulating hormone.

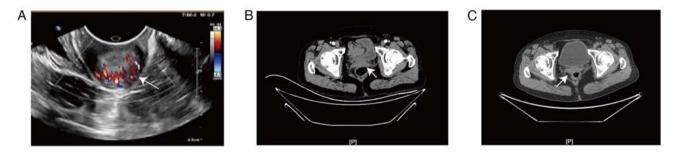


Figure 2. Preopreative imaging examination. (A) The ultrasound indicated blood flow signals visible in the cervical stump mass. (B) CT and (C) positron emission tomography-CT showed a mass in the cervical stump.

Discussion

PA is a rare postoperative complication that may be lifethreatening if not diagnosed and treated properly. It is usually caused by a sudden ischemic or hemorrhagic infarction of a preexisting pituitary adenoma, while only pituitary apoplexy rarely occurs in normal pituitary glands. Bonicki *et al* (3) reported that PA occurs in 5% of patients with pituitary adenomas; however, >40% of PA cases have never been diagnosed with a pituitary tumor prior to onset (21). PA is related to a variety of inducible factors, but its exact pathogenesis remains elusive. Due to the specific features of the pituitary vascular system, pituitary tissue is more susceptible to hypoperfusion, ischemia and intraoperative embolism, particularly during pump-on surgery. During the literature review for the current study, it was found that predisposing factors of PA included not only transient hypertension or hypotension, but also diabetes, angiographic test, cardiac surgery, hemodialysis, pituitary dynamic function test, radiation therapy, positive pressure mechanical ventilation and anticoagulant therapy (22).

Table I. Hormor	ne and ion l	levels of th	e patient a	t different	t stages.				
Time-point	K+, mmol/l	Na⁺, mmol/l	FT3, pmol/l	FT4, pmol/l	TSH, μmol/l	ACTH- 8:00 a.m., pg/ml	Cortisol- 8:00 a.m., µg/dl	FSH, μIU/ml	LH, µIU/ml
Pre-operation	3.78	139	4	9.42	1.75	16.74	15.6	23.45	6.09
Between two operations	3.27↓	135↓	2.48	6.81↓	0.19↓	3.83↓	5.63↓	3.77↓	<0.2↓
Post-operation	3.24↓	137	<1.54↓	8.48↓	0.2↓	2.25↓	11.94	2.49↓	<0.2↓
6 weeks after	4.49	141	3.24	12.22	0.9	11.9	10.11	2.41↓	0.62↓

9.01-

19.05

2.43 -

6.01

Ta

136-

145

K⁺, potassium ion; Na⁺, sodium; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; LH, luteinizing hormone; 1, decreased.

0.3-4.8

7.2-66.3

6.02-18.4

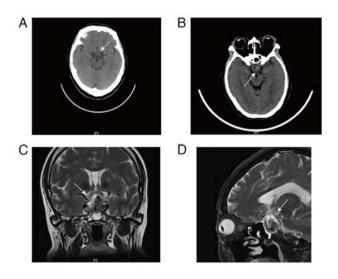
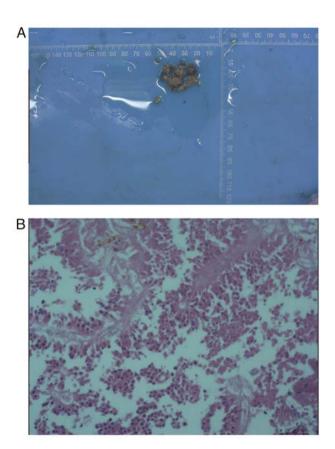



Figure 3. Imageological examination. (A) No obvious abnormalities were detected in the pituitary gland (arrow) on pre-operative positron emission tomography-CT scans. (B) Local density increase in the sella turcica and suprasellar regions (arrow) was observed in the transverse section on CT on POD4. (C and D) Contrast-enhanced sellar MRI showed a 2.4x1.7x2.6 cm-sized mixed signal (arrow) expanding from the sellar fossa and suprasellar region and compressing the optic chiasm in the (C) coronal and (D) sagittal section on POD4. POD4, postoperative day 4.

To the best of our knowledge, the present study was the first case report of PA after gynecological malignancy. Since the pre-operative PET-CT did not indicate any pituitary tumor, postoperative symptoms such as headache, visual field defect, ptosis and hypopituitarism were confused with common postoperative complications and PA was not detected in the initial stage. This may be for the following two primary reasons. First, PET-CT lacks specificity and sensitivity in the hypothalamic-pituitary region, potentially resulting in undetected pituitary microadenomas. Furthermore, the pituitary adenoma became enlarged due to hemorrhage post-surgery, thereby facilitating detection. However, headaches likely occurred due to extravasation of blood into the subarachnoid space, causing meningeal irritation (22). Bitemporal hemianopia is the most common type of visual field defect caused by a pituitary tumor, which occurs due to the PA

Prolactin.

ng/ml

38.28

1.13↓

1.57↓

3.75

2.74-

19.64

10.87-

58.64

6.74-

113.59

Figure 4. Postoperative paraffin pathology of pituitary tumor. (A) Gross observation: A clump of fragmented tissue measuring 3.5 cm, mostly greyish-white in color with some parts dark red. (B) Under the microscope: Massive hemorrhage and necrosis were observed and only tumor cell remnants were seen [stained for reticulin with kit no. G3535 from Solarbio Science and Technology (Beijing) Co., Ltd.; magnification, x200].

pressing on the middle of the optic chiasma (14). Ptosis presented as a result of oculomotor nerve compression and hypopituitarism was a sign of pituitary dysfunction. Besides, severe hypoglycemia and hyponatremia may occur due to a reduced glucocorticoid effect because of low cortisol response, as well as water overload caused by adrenocorticotropic hormone deficiency.

the operation

Normal ranges

3.5-5.5

A total of four primary factors contributing to the occurrence of PA were identified for the present case. First, general anesthesia carries a greater risk of low BP than local anesthesia. General anesthesia may also lead to reduced cerebral perfusion. Second, surgery can cause intravascular fluid to spread into the interstitial space, leading to edema and a drop in BP. Third, blood loss may also be a contributing factor. Although only 100 ml of blood loss was stated in the surgical record, the patient underwent a major resection and lymph node dissection with postoperative nausea and vomiting, which indicated the possibility of local bleeding after abdominal closure and blood loss may be difficult to estimate accurately. Fourth, anticoagulant therapy is another risk factor, as it increases the risk of bleeding from damaged pituitary tissue.

PA can also occur in various types of surgery, particularly in surgery of the circulatory system. A literature search was conducted through PubMed, using 'pituitary apoplexy' and 'surgery or operation' as key terms to identify relevant articles published between 1984 and 2023. The search was limited to articles in English and only studies with sufficient information were included in the literature review (Table II). Based on the literature review, PA after surgery mostly occurred in males (76%), with an average age of 53 years for women and 68 years for men. Only 8% of cases had known pituitary disease (23,24). Clinical symptoms usually occur on the operation day or on POD1 (72%) and headache (76%) was the main and the earliest complaint in most cases. This symptom was possibly triggered by dural stretching and meningeal irritation caused by extravasation of blood and necrotic tissue into the subarachnoid space (25). Further examination of the literature indicated that visual disturbances were mentioned in 64% (visual deterioration in 24%, diplopia in 24%, visual defects in 20% and loss of light reflex in 20%), which was caused by pressure on different parts of the optic nerve and oculomotor nerve involvement may present as ptosis (44%). In addition, adrenal insufficiency may reduce the level and the efficiency of glucocorticoids and eventually cause arterial hypotension and/or hypoglycemia, as well as varying degrees of consciousness change, which was noted in 12% of cases in the present review.

The diagnosis of PA is based on imaging evaluation, mainly by MRI, which is more sensitive than CT. Pituitary MRI is the radiological examination of choice (26). It can identify areas of bleeding and necrosis and determine the relationship between the tumor and neighboring structures, such as the optic chiasm, cavernous sinuses and hypothalamus (27). However, CT is also an examination that cannot be ignored, which can exclude headaches caused by subarachnoid hemorrhage and make a tentative diagnosis of intrasellar mass in most cases (28). In the present review, 80% of cases were detected by CT and 80% by MRI.

Endocrine deficiencies can exist at the onset and urgent evaluation of hormonal levels is suggested. According to the latest guidelines from Oxford and Royal College of Physicians (29), empirical hormonal replacement is indicated in each patient with secondary adrenal insufficiency no matter whether to perform a surgery or not. Applying hydrocortisone 100-200 mg intravenously and then applying either continuous intravenous infusion 2-4 mg/h or intramuscular injection 50-100 mg/6 h are suggested. Reviewing the series of patients with PA, 84% of cases received hormonal replacement therapy regardless of whether surgery was performed, while 72% of cases ended up receiving neurosurgical intervention. Applying exogenous hormones alone has certain inherent imperfections, as different hormones can influence the regulation of each other to a certain extent (30). The indications for surgery following hormonal replacement are as follows: i) Evidence of worsening or persistent neurological symptoms, such as visual impairment and ophthalmoplegia (paralysis or weakness of the eye muscles); ii) altered mental state; iii) patient is stable (no progressive deterioration in visual or mental state) and shows improvement with conservative treatment (26). Most cases (84%) achieved partial or complete remission in the visual field and ophthalmoplegia after prompt treatment. However, most studies demonstrate that surgical treatment, usually within 7 days of the event, leads to a higher rate of recovery from visual impairment (31). Nevertheless, certain retrospective studies confirm that there is no significant difference in the recovery of vision and endocrine function between patients with pituitary tumors treated conservatively and those undergoing surgical decompression (32,33). Currently, there is a lack of high-level evidence-based medical evidence for choosing a treatment approach. The UK guidelines for the management of pituitary tumor apoplexy recommend that the treatment plan should be determined through multidisciplinary collaboration, considering emergency surgical treatment based on the patient's pituitary apoplexy score evaluation (9).

A limitation of this study was the omission of ophthalmic assessment figures. These results were not included in our hospital's electronic medical records. Consequently, only copies of photographs of these results are available. Additionally, paper reports were not preserved, precluding the possibility of scanning them for enhanced clarity.

In conclusion, this review emphasized that even as an uncommon postoperative complication, PA is potentially life-threatening. It may occur in postoperative patients either with diagnosed or undiagnosed prior pituitary adenoma. Early diagnosis is essential for the timely treatment of hypopituitarism and prevention of serious neurological complications. In short, the wise surgeon should: i) Recognize PA after surgery in a timely manner by obtaining early neuroimaging tests and pituitary-related hormone tests and remember MRI is more sensitive than CT in observing early changes of hemorrhage or infarction. ii) Take initial action, such as applying intravenous glucocorticoids and mannitol. Transsphenoidal surgery should be considered and performed at the early stage of PA, if possible, to achieve better recovery. iii) If vision and the visual field are not affected, or vision defects are stable or temporary, hormonal replacement therapy alone may be considered, which is more appropriate for patients with surgical contraindications and may also spare patients from unnecessary surgery.

Acknowledgements

Not applicable.

Funding

No funding was received.

	•		0	0		1					
Authors, year	Age, years/sex	Prior lesion	Operation method	Clinical presentation	Onset time	Pituitary imaging MRI/CT	Potential risk factors	Treatment hormone replacement therapy	Surgery	Prognosis	(Refs.)
Mura <i>et al</i> , 2014	85/male		Laparoscopic colorectal resection	Left palpebral ptosis, anisocoria, divergent strabismus, mydriasis without photo- motor reflex	During the operation	CT: Pituitary gland increase; MR1: Pituitary gland increase with hematoma	Preoperative anticoagulant therapy, intraoperative BP fluctuation	Dexamethasone 4 mg x2/day	1		(34)
McClain <i>et al</i> , 2022	75/female		Elective rotator cuff repair	Headache, vomiting, diplopia, inability to open the right eye	PODI	CT: A large sellar mass; MRI: A sellar and suprasellar mass effect compressing the optic chiasm	History of essential hypertension		Urgent transsphenoidal endoscopic resection of the pituitary mass	Ptosis and ophthal- moplegia completely recovered and visual field deficits stabilized	(35)
Liberale <i>et al</i> , 2006	73/male		Subrenal aortic abdominal aneury sm repair by subcostal bilateral laparotomy	Diplopia, right palpebral ptosis, mydriasis, divergent strabism	On the operation day	MRI: A large sellar mass compressing back carotid arteries and the optical chiasma	Preoperative anticoagulant therapy	Cortisone acetate 50 mg/ morning and 25 mg/evening, sodique levothyroxin, 50 g/day	Transsphenoidal adenectomy	Partially recovered the right third oculomotor palsy and remained stable during the 4-year follow-up	(36)
Naito <i>et al</i> , 2019	14/female		Recurrent cardiac myxoma resection surgery	Headache and visual impairment	PODI	CT: A tumor surrounding the hypothalamopituitary lesion; MRI: An intra- and supra-sellar tumor compressing optic chiasma and bilateral optic nerves	Hemodynamic instability during surgery, use of anticoagulant	I-T4 treatment for 3 months		Improved visual field of both eyes before discharge	(37)
Hidiroglu <i>et al</i> , 2010	47/male	T	Coronary artery bypass grafting operation	Ptosis of both eyes, headache	POD2	CT: A solid mass compressing the optic chiasm		ı	Transsphenoidal adenectomy	I	(38)

Table II. Summary of information on PA cases during and after surgery from the literature review and the present case.

6

Authors, year	Age, years/sex	Prior lesion	Operation method	Clinical presentation	Onset time	Pituitary imaging MRI/CT	Potential risk factors	Treatment hormone replacement therapy	Surgery	Prognosis	(Refs.)
Yakupoglu <i>et al</i> , 2010	74/male	1	Open three- vessel CABG and insertion of a saphenous vein graft	Right ophtha- lmoplegia with ptosis, right mydriasis, headache	6 h after the operation	CT: A mass on the pituitary gland; MRI: Pituitary macroadenoma with haemorrhage and infarction	Hemodynamic changes	Intravenous hydrocortisone 50 mg/day, oral levothyroxine 0.2 mg/day	Transcranial adenoma excision	Full recovery of ptosis, visual field deficits and mental changes within 2 weeks of surgery	(39)
Yoshino <i>et al</i> , 2014	78/male	ı	Right upper and middle lobectomy and lymph node dissection	Headache, sudden increase in urine volume	POD6	MRI: A high- intensity area inside the pituitary gland		Hydrocortisone 200 mg/day		Complete recovery	(40)
Joo <i>et al</i> , 2018	73/male	I	Lumbar fusion surgery in prone position	Severe headache, ophthalmalgia and ptosis on right eye	POD2	CT and MRI: A mass in the sellar fossa and suprasellar region, compressing the optic chiasm	Intraoperative BP fluctuation	Hydrocortisone 300 mg/day	Transsphenoidal hypophysectomy	Improved ptosis and anisocoria	(41)
Goel <i>et al</i> , 2009	76/male		Elective left total hip athroplasty	Sudden headache, total left vision loss and temporal right hemianopia	IGOA	CT: A mass in the left pituitary fossa; MRI: Intersellar mass with a suprasellar extension on the left side, compressing the optic chiasma and cavernous sinus	Transient episode of hypotension in the postoperative period	Dexamethasone 2 mg/6 h	Transnasal transphenoidal decompression of the pituitary tumor	Complete recovery	(42)
Goel <i>et al</i> , 2009	61/male	I	Elective left total knee athroplasty	Sudden headache, nausea, vomiting, right ptosis	PODI	CT: An intersellar tumor	Microembolism	High-dose dexamethasone intravenously	Craniotomy and decompression of pituitary adenoma	Complete recovery	(42)
Kim <i>et al</i> , 2015	69/male	1	Open heart mitral valvuloplasty	Severe headache, visual field defects, double vision	After the operation	MRI: A sellar mass with hemorrhage pituitary macroadenoma	Excessive anticoagulation, hemodynamic instability	High-dose steroids	Transsphenoidal resection of the tumor	Complete recovery	(43)

Table II. Continued.

7

Age, Prior Operation years/sex lesion method 73/male - Elective	ш́		Clinical presentation Right ptosis	Onset time 4 h after	Pituitary imaging MRI/CT CT and MRI:	Potential risk factors Strong	Treatment hormone replacement therapy	Surgery Endonasal	Prognosis Complete	(Refs.)
coronary artery bypass grafting		iwi dil lig los	with completely dilated pupils, light reflex loss, headache	the surgery	A large suprasellar mass with bleeding	heparinization, BP fluctuation during CPB		transsphenoidal resection of the pituitary gland	recovery	í
- Coronary artery bypass grafting		Blindne no light percept miosis	ion,	Following extubation	CT: A large pituitary mass; MRI: The mass extended into the suprasellar cistern and compressed the optic chiasm	Hemodilution, hypotension, anticoagulation	Intravenous dexamethasone sodium phosphate 8 mg	Transsphenoidal decompression	Remained blind with no light perception on follow-up	(45)
64/male - Coronary Blindness, artery bypass no light grafting perception, miosis		Blindness no light perceptio miosis	n, "	Following extubation	CT: A large pituitary mass; MRI: The mass extended into the suprasellar cistern and compressed the optic chiasm	Hemodilution, hypotension, anticoagulation	Intravenous dexamethasone sodium phosphate 12 mg	Transsphenoidal decompression	Remained blind with no light perception on follow-up	(45)
56/female - Living donor Headache, liver trans- thirst, frequent plantation urination	or	Headache, thirst, frequ urination	ent	POD10	CT: A high-density area in the pituitary gland; MRI: A suspicious area between the anterior and posterior of the pituitary gland	Intraoperative hypotension, coagulopathy, transient hypertension, dopamine agonist therapy	Prednisolone, 20 mg/days		Complete recovery	(46)
70/male - Elective Headache, coronary visual field bypass defects, surgery diplopia		Headache, visual field defects, diplopia		Following extubation	CT and MRI: A sellar mass with suprasellar extension	T	High-dose steroids	T	Complete recovery	(47)
67/male Non- Bilateral Reduced secreting endoscopic vision, pituitary middle diplopia, macro- meatal headache adenoma antrostomy, ethmoidec- tomy and polypectomy	Bilateral g endoscopic y middle meatal a antrostomy, tomy and polypectomy	Reduced vision, diplopia, headache		POD2	CT and MRI: Haemorrhage within the pituitary tumor	Hypertension, diabetes, anticoagulation therapy, prolonged intraoperative hypotension	Corticosteroid replacement therapy	Microscopic endoscopic transsphenoidal resection	Regained vision and oculomotor nerve function partly	(23)

8

Table II. Continued.

YU et al: CASE REPORT OF PITUITARY APOPLEXY AFTER SURGERY

Authors, year	Age, years/sex	Prior lesion	Operation method	Clinical presentation	Onset time	Pituitary imaging MRI/CT	Potential risk factors	Treatment hormone replacement therapy	Surgery	Prognosis	(Refs.)
Absalom <i>et al</i> , 1993	61/male	Non- secreting pituitary tumor	Coronary artery bypass grafting	Sudden onset of headache, nausea, vomiting	40 h after the surgery	CT: A 3-cm suprasellar mass with a large bleeding area in the pituitary	Preoperative anticoagulant therapy, sudden coronary revascularization	Mannitol 80 g and dexamethasone 10 mg iv	Craniotomy, de- compression of the optic nerves, intracapsular removal of pituitary tumor	Dead of acute myocardial infarction	(24)
Madhusudhan et al, 2011	62/male		Right total shoulder replacement	Bilateral frontal headaches, binocular diplopia, increased urinary output, confusion, drowsiness	PODS	CT: A low attenuation signal in the pituitary fossa; MRI: The pituitary stalk was markedly deviated to the right with an enhancing area in the pituitary fossa, suggesting an adenoma	Preoperative anticoagulant therapy, postoperative hypoperfusion	Hydrocortisone and thyroxine supplements, testosterone replacement therapy	· '	Complete recovery	(48)
Cohen <i>et al</i> , 2004	50/female	ı	Liposuction on abdomen, hips and thighs	Persistent headache, nausea, vomiting	After the surgery	MRI: An intrasellar and suprasellar mass extending into the right cavernous sinus	Large dose of local anesthetic, hypovolemia, fluid overload	ı	Transsphenoidal resection of the pituitary mass	Complete recovery	(49)
Shapiro, 1990	60/female	ı.	Coronary artery bypass surgery	Headache, severe right ptosis, unresponsive pupil on the right side	PODI	CT: A right-sided sellar mass with extension into the sphenoid sinus; MRI: A pituitary tunnor with surroun- ding hemorrhage	Reduced perfusion pressure during cardiopulmonary bypass, anticoagulant therapy	Hydrocortisone 50 mg every 6 h	Transsphenoidal surgery	Third nerve palsy persisted post- operatively	(50)
Tansel <i>et al</i> , 2010	60/male		Coronary artery bypass grafting	Unexplained episodes of hypotension, dysrhythmia, electrolyte imbalances, somnolence, agitation, respiratory distress, high fever	Following extubation	MRI: Pituitary infarction	Protamine hypersensitivity	Hydrocortisone, testosterone, thyroxin	r	In good condition except for a certain degree of visual disturbance	(51)

SPANDIDOS PUBLICATIONS

Table II. Continued.

9

Authors, year	Age, years/sex	Prior lesion	Operation method	Clinical presentation	Onset time	Pituitary imaging MRI/CT	Potential risk factors	Treatment hormone replacement therapy	Surgery	Prognosis	(Refs.)
Slavin and Budabin, 1984	57/male	 	Three-vessel coronary bypass surgery	Mild periorbital pain, unable to open right eye, headache	Awakening from anesthesia	CT: An intrasellar mass with right parasellar extension	Intraoperative or postoperative hypotension, anticoagulation, positive pressure ventilation	Corticosteroids	Transsphenoidal hypophysectomy	Complete recovery except for a mild visual field defect	(52)
Slavin and Budabin, 1984	55/male		Mitral valve replacement under cardio- pulmonary bypass	Bilateral blepharoptosis and partial oph- thalmoplegia on each side, bilateral confrontation visual fields disclosed nasal field defects	After the surgery	CT: An intrasellar mass with large radiolucent areas encroaching on the right cavernous sinus	Intraoperative or postoperative hypotension, anticoagulation, positive pressure ventilation	Corticosteroids	Transsphenoidal hypophysectomy	Complete recovery except for a mild right abduction defect	(52)
Present case, 6 2024	64/female		Extensive stump cervicectomy, pelvic lymph node dissection	Sudden onset of headache, drowsiness	PODI	CT: Multiple lacunar infarctions and local density increase in saddle and suprasellar region; MRI: The pituitary was enlarged and mixed signals were seen	Reduced cerebral perfusion, anticoagulant therapy	Hormone replacement therapy	Microscopic endoscopic transsphenoidal resection	Complete recovery except for a mild blurry vision	1

Table II. Continued.

Availability of data and materials

The data generated in the present study may be requested from the corresponding author.

Authors' contributions

KL and XY conceived the study and revised the manuscript. CS made substantial contributions to the acquisition and analvsis of the data and drafted the tables of the manuscript. LJ drafted the figures of the manuscript and interpreted the data. All authors read and approved the final manuscript. XY and KL checked and confirmed the authenticity of the raw data.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

Competing interests

The authors declare that they have no competing interests.

References

- 1. Brougham M, Heusner AP and Adams RD: Acute degenerative changes in adenomas of the pituitary body-with special reference
- to pituitary apoplexy. J Neurosurg 7: 421-439, 1950.
 Muthukumar N: Pituitary apoplexy: A comprehensive review. Neurol India 68: S72-S78, 2020.
- 3. Bonicki W, Kasperlik-Załuska A, Koszewski W, Zgliczyński W and Wisławski J: Pituitary apoplexy: Endocrine, surgical and oncological emergency. Incidence, clinical course and treat-ment with reference to 799 cases of pituitary adenomas. Acta Neurochir (Wien) 120: 118-122, 1993.
- 4. Verrees M, Arafah BM and Selman WR: Pituitary tumor apoplexy: Characteristics, treatment, and outcomes. Neurosurg Focus 16: E6, 2004.
- 5. Sibal L, Ball SG, Connolly V, James RA, Kane P, Kelly WF, Kendall-Taylor P, Mathias D, Perros P, Quinton R and Vaidya B: Pituitary apoplexy: A review of clinical presentation, management and outcome in 45 cases. Pituitary 7: 157-163, 2004.
- 6. Lubina A, Olchovsky D, Berezin M, Ram Z, Hadani M and Shimon I: Management of pituitary apoplexy: Clinical experience with 40 patients. Acta Neurochir (Wien) 147: 151-157, 2005.
- 7. Capatina C, Inder W, Karavitaki N and Wass JA: Management of endocrine disease: Pituitary tumour apoplexy. Eur J Endocrinol 172: R179-R190, 2015.
- 8. Bills DC, Meyer FB, Laws ER Jr, Davis DH, Ebersold MJ, Scheithauer BW, Ilstrup DM and Abboud CF: A retrospective analysis of pituitary apoplexy. Neurosurgery 33: 602-609, 1993.
- Bujawansa S, Thondam SK, Steele C, Cuthbertson DJ, Gilkes CE, Noonan C, Bleaney CW, Macfarlane IA, Javadpour M and Daousi C: Presentation, management and outcomes in acute pituitary apoplexy: A large single-centre experience from the United Kingdom. Clin Endocrinol (Oxf) 80: 419-424, 2014.
- 10. Dubuisson AS, Beckers A and Stevenaert A: Classical pituitary tumour apoplexy: Clinical features, management and outcomes in a series of 24 patients. Clin Neurol Neurosurg 109: 63-70,
- 11. Nawar RN, AbdelMannan D, Selman WR and Arafah BM: Pituitary tumor apoplexy: A review. J Intensive Care Med 23: 75-90, 2008.
- 12. Randeva HS, Schoebel J, Byrne J, Esiri M, Adams CB and Wass JA: Classical pituitary apoplexy: Clinical features, management and outcome. Clin Endocrinol (Oxf) 51: 181-188, 1999.

- 13. Ranabir S and Baruah MP: Pituitary apoplexy. Indian Endocrinol Metab 15 (Suppl 3): S188-S196, 2011.
- 14. Briet C, Salenave S, Bonneville JF, Laws ER and Chanson P: Pituitary apoplexy. Endocr Rev 36: 622-645, 2015.
- 15. Pivonello R, De Leo M, Cozzolino A and Colao A: The treatment of cushing's disease. Endocr Rev 36: 385-486, 2015.
- Mullur R, Liu YY and Brent GA: Thyroid hormone regulation of metabolism. Physiol Rev 94: 355-382, 2014.
- Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, Shao L, Tian Y, Dong Y, Zheng C, *et al*: Status of hypertension in China: Results from the China hypertension survey, 2012-2015. Circulation 137: 2344-2356, 2018.
- 18. Kelly AM: The minimum clinically significant difference in visual analogue scale pain score does not differ with severity of pain. Emerg Med J 18: 205-207, 2018.19. Reith FC, Van den Brande R, Synnot A, Gruen R and Maas AI:
- The reliability of the Glasgow Coma Scale: A systematic review. Intensive Care Med 42: 3-15, 2016.
- 20. Noh S, Kim SH, Cho NH and Kim SH: Rapid reticulin fiber staining method is helpful for the diagnosis of pituitary adenoma in frozen section. Endocr Pathol 26: 178-184, 2015.
- 21. Shaikh AA, Williams DM, Stephens JW, Boregowda K, Udiawar MV and Price DE: Natural history of pituitary apoplexy: A long-term follow-up study. Postgrad Med J 99: 595-598, 2023.
- 22. Johnston PC, Hamrahian AH, Weil RJ and Kennedy L: Pituitary tumor apoplexy. J Clin Neurosci 22: 939-944, 2015
- 23. Fyrmpas G, Constantinidis J, Foroglou N and Selviaridis P: Pituitary apoplexy following endoscopic sinus surgery. J Laryngol Otol 124: 677-679, 2010.
- 24. Absalom M, Rogers KH, Moulton RJ and Mazer CD: Pituitary apoplexy after coronary artery surgery. Anesth Analg 76: 648-649, 1993
- 25. Suri H and Dougherty C: Presentation and management of headache in pituitary apoplexy. Curr Pain Headache Rep 23: 61, 2019.
- 26. Barkhoudarian G and Kelly DF: Pituitary apoplexy. Neurosurg Clin N Am 30: 457-463, 2019.
- 27. Hong CS and Omay SB: Pituitary Apoplexy. N Engl J Med 387: 2366, 2022.
- 28. Goyal P, Utz M, Gupta N, Kumar Y, Mangla M, Gupta S and Mangla R: Clinical and imaging features of pituitary apoplexy and role of imaging in differentiation of clinical mimics. Quant Imaging Med Surg 8: 219-231, 2018.
- 29. Rajasekaran S, Vanderpump M, Baldeweg S, Drake W, Reddy N, Lanyon M, Markey A, Plant G, Powell M, Sinha S and Wass J: UK guidelines for the management of pituitary apoplexy. Clin Endocrinol (Oxf) 74: 9-20, 2011.
- 30. Feldt-Rasmussen U, Klose M and Benvenga S: Interactions between hypothalamic pituitary thyroid axis and other pituitary dysfunctions. Endocrine 62: 519-527, 2018.
- 31. Abdulbaki A and Kanaan I: The impact of surgical timing on visual outcome in pituitary apoplexy: Literature review and case illustration. Surg Neurol Int 8: 16, 2017.
- 32. Ayuk J, McGregor EJ, Mitchell RD and Gittoes NJ: Acute management of pituitary apoplexy-surgery or conservative management? Clin Endocrinol (Oxf) 61: 747-752, 2004.
- 33. Gruber A, Clayton J, Kumar S, Robertson I, Howlett TA and Mansell P: Pituitary apoplexy: Retrospective review of 30 patients-is surgical intervention always necessary? Br J Neurosurg 20: 379-385, 2006.
 34. Mura P, Cossu AP, Musu M, De Giudici LM, Corda L, Zucca R
- and Finco G: Pituitary apoplexy after laparoscopic surgery: A case report. Eur Rev Med Pharmacol Sci 18: 3524-3527, 2014.
- 35. McClain IJ and Skidd PM: Case of pituitary apoplexy after surgery. J Neuroophthalmol 42: e385-e386, 2022.
- 36. Liberale G, Bruninx G, Vanderkelen B, Dubois E, Vandueren E and Verhelst G: Pituitary apoplexy after aortic abdominal aneurysm surgery: A case report. Acta Chir Belg 106: 77-80, 2006
- 37. Naito Y, Mori J, Tazoe J, Tomida A, Yagyu S, Nakajima H, Iehara T, Tatsuzawa K, Mukai T and Hosoi H: Pituitary apoplexy after cardiac surgery in a 14-year-old girl with Carney complex: A case report. Endocr J 66: 1117-1123, 2019.
- 38. Hidiroglu M, Kucuker A, Ucaroglu E, Kucuker SA and Sener E: Pituitary apoplexy after cardiac surgery. Ann Thorac Surg 89: 1635-1637, 2010.
- 39. Yakupoglu H, Onal MB, Civelek E, Kircelli A and Celasun B: Pituitary apoplexy after cardiac surgery in a patient with subclinical pituitary adenoma: Case report with review of literature. Neurol Neurochir Pol 44: 520-525, 2010.

- 40. Yoshino M, Sekine Y, Koh E, Hata A and Hashimoto N: Pituitary apoplexy after surgical treatment of lung cancer. Ann Thorac Surg 98: 1830-1832, 2014.
- 41. Joo C, Ha G and Jang Y: Pituitary apoplexy following lumbar fusion surgery in prone position: A case report. Medicine (Baltimore) 97: e0676, 2018.
- 42. Goel V, Debnath UK, Singh J and Brydon HL: Pituitary apoplexy after joint arthroplasty. J Arthroplasty 24: 826.e7-10, 2009.
- 43. Kim YH, Lee SW, Son DW and Cha SH: Pituitary apoplexy following mitral valvuloplasty. J Korean Neurosurg Soc 57: 289-291, 2015.
- 44. Mizuno T: Pituitary apoplexy with third cranial nerve palsy after off-pump coronary artery bypass grafting. Interact Cardiovasc Thorac Surg 13: 240-242, 2011.
- 45. Thurtell MJ, Besser M and Halmagyi GM: Pituitary apoplexy causing isolated blindness after cardiac bypass surgery. Arch Ophthalmol 126: 576-578, 2008.
- 46. Matsusaki T, Morimatsu H, Matsumi J, Matsuda H, Sato T, Sato K, Mizobuchi S, Yagi T and Morita K: Pituitary apoplexy precipitating diabetes insipidus after living donor liver transplantation. J Anesth 25: 108-111, 2011.
- 47. Telesca M, Santini F and Mazzucco A: Adenoma related pituitary apoplexy disclosed by ptosis after routine cardiac surgery: Occasional reappearance of a dismal complication. Intensive Care Med 35: 185-186, 2009.

- 48. Madhusudhan S, Madhusudhan TR, Haslett RS and Sinha A: Pituitary apoplexy following shoulder arthroplasty: A case report. J Med Case Rep 5: 284, 2011. 49. Cohen A, Kishore K, Wolansky L and Frohman L: Pituitary
- apoplexy occurring during large volume liposuction surgery. J Neuroophthalmol 24: 31-33, 2004.
- 50. Shapiro LM: Pituitary apoplexy following coronary artery bypass surgery. J Surg Oncol 44: 66-68, 1990.
- 51. Tansel T, Ugurlucan M and Onursal E: Pituitary apoplexy following coronary artery bypass grafting: Report of a case. Acta Chir Belg 110: 484-486, 2010.
- 52. Slavin ML and Budabin M: Pituitary apoplexy associated with cardiac surgery. Am J Ophthalmol 98: 291-296, 1984.

Copyright © 2024 Yu et al. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.