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Abstract

Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-
EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic
discharges can be detectable from background brain activity, provided they are associated with spatially extended
generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization
methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators
when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain
activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A
Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and
diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented
within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We
proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of
realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was
quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that
methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to
30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the
HB framework, a model using parcels larger than the size of the sources should be considered.
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Introduction

Epilepsy is a neurological disorder characterized by the

recurrence of clinical seizures. The state during which the seizure

takes place is called the ictal state. In between the seizures,

abnormal neuronal discharges, the so-called inter-ictal spikes may

take place and usually occur more frequently than the seizures.

They are generated by the brain without any clinical manifesta-

tions and originate partially from brain regions similar to the ones

involved during the seizures, i.e., from the epileptogenic focus.

Thus analysis of inter-ictal spikes is widely used as a marker of

epilepsy [1–3]. The context of the present study is the

identification and localization of the epileptogenic focus using

these markers, which is crucial during pre-surgical evaluation of

epilepsy surgery [4,5].

Epileptic activity originates from abnormal excitability and

synchronization of neurons. The large pyramidal neurons of the

cortical layer V, which are oriented perpendicularly to the cortical

surface of the brain, are the main generators of brain electro-

magnetic activity. Magneto-Encephalography (MEG) measures

the magnetic fields generated by the neuronal currents, using a

helmet of few hundred sensors uniformly distributed around the

head [6,7]. This non-invasive modality is used to localize brain

regions involved during the generation of epileptic discharges

[3,8–10].

The amplitude of MEG signals for physiological brain activity is

expected to range from femto-Teslas to pico-Teslas. As mentioned

by Huiskamp et al. [11], inter-ictal spikes are spontaneous signals

that can have relatively large amplitude (,3 pT in MEG). This

implies that epileptic MEG signals are likely to arise from large

spatially extended regions of active cortex [12]. A study by Mikuni

et al. [13] suggested that MEG can detect epileptiform activity

when a cortical area greater than 4 cm2 is synchronously involved.

Comparing MEG spikes with Electro-CorticoGraphy (ECoG)

spikes, studies performed by Oishi et al. [14] and Huiskamp et al.

[11] showed that MEG sensitivity varies for different regions in the

brain. As a result, not only the size of the generators matters, but
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their location and orientation affect the detection of the MEG

epileptic activity [1,13].

The MEG inverse problem of source localization consists in

inferring the location of the generators of brain activity from

signals detected outside the head [15]. Following a previous study

in which we proposed source localization techniques that are

sensitive to the spatial extent of the generators of epileptic activity

in EEG [16], the present study aims at evaluating the performance

of similar methods when applied on MEG data in this context.

MEG source localization did show excellent spatial accuracy when

validated using invasive studies such as ECoG [14,17], depth

electrode recordings [18,19] and post-operative follow-up [20].

While, MEG offers an excellent temporal resolution (few

milliseconds), our main objective is to propose a source localization

technique that is sensitive to the spatial extent of the underlying

generators.

MEG source localization is an ill-posed problem, as it admits no

unique solution unless additional information is used to regularize

the problem. Such regularizations consist in adding some a priori

knowledge or constraints to the problem. For instance, Dale and

Sereno [21] introduced anatomical constraints that provided prior

information about the sources by fixing the position of the sources

along the cortical surface in a distributed source model. This type

of constraint makes the inverse problem linear. However, the

problem is still under-determined due to the use of few sensors

(around 300) to estimate brain activity over a large number of

sources (around 4000).

In order to obtain a unique solution, additional constraints in

the form of a regularization scheme are required. Minimum Norm

Estimate (MNE), which chooses the minimum energy solution

[22], and Low Resolution Electromagnetic Tomography (LOR-

ETA) [23], which chooses the solution with maximum spatial

smoothness are among the first and still very popular regulariza-

tion techniques proposed to solve this issue. In the present study,

we compared two regularization schemes based on the following

statistical frameworks: (1) the Maximum Entropy on the Mean

(MEM) [16,24,25] and (2) the Hierarchical Bayesian (HB)

framework [26,27], because of their flexibility in including prior

information or constraint models of different natures.

Based on the rationale of obtaining realistic constraint models

describing the generators of epileptic activity, two types of spatial

models have been investigated. The first one is the idea that brain

activity may be modeled as organized among cortical parcels, that

can be active or not, when contributing to specific activity

[16,24,28]. The second model is an extension of the spatial

smoothness constraint originally proposed in LORETA [23] but

locally constrained within cortical parcels as proposed by Trujillo-

Barreto et al. [29]. Clustering of the brain activity into non-

overlapping cortical parcels is achieved using a Data Driven

Parcellization (DDP) technique similar to the ones described in

Amblard et al. (2004) [24], Lapalme et al. (2006) [28], and Grova

et al. (2006) [16]. In this study we denoted P(s) the spatial

clustering of the whole cortical surface at a spatial scale s,

controlling the spatial extent and the total number of parcels.

In order to implement these above-mentioned spatial models,

we proposed two new source localization methods within the

MEM framework (MEM-s and CMEM-s) and one within the HB

framework (COH-s). MEM-s refers to the MEM approach

proposed in Grova et al. [16] at a specific clustering scale s, while

CMEM-s refers to ‘‘Coherent’’-MEM-s, introducing local spatial

smoothness within each cortical parcel. On the other hand, within

the HB framework, we proposed the ‘‘Coherent at scale s’’ (COH-

s) localization method, modeling the covariance of the sources as a

linear combination of source covariance components [27], where

each component defines local spatial smoothness over a parcel of

P(s). COH-s uses the same spatial model as CMEM-s and has been

designed to compare MEM and HB frameworks in similar

conditions. In order to assess the ability of these three methods to

localize spatially extended epileptogenic generators, we evaluated

them within a fully controlled environment using realistic

simulations of MEG data. MEM-s, CMEM-s and COH-s were

evaluated together with two HB methods, proposed in Friston

et al. (2008) [27]: the independent and identically distributed

sources (IID) model and the spatially coherent sources (COH)

model, as implemented in the SPM8 software (http://www.fil.ion.

ucl.ac.uk/spm/software/spm8). We assessed the detection accu-

racy of all the methods by simulating sources of several spatial

extents se ranging from ,3 cm2 to 30 cm2, and at different cortical

depths. Secondly, for the three methods (COH-s, MEM-s and

CMEM-s) using the spatial model P(s), we assessed the influence of

the spatial clustering scale s on their detection accuracy. We

quantified the performance of each method using the area under

the ROC curve (AUC) as an index of detection accuracy. We also

considered the Mean Square Error (MSE) and minimum geodesic

distance (Dmin) as localization error metrics [16].

After introducing the MEG inverse problem using a distributed

source model, the definition of the two general spatial models

considered in this study is provided: (i) the DDP and (ii) the local

spatial smoothness. Then, the MEM framework and the imple-

mentation of MEM-s and CMEM-s methods are described,

followed by the description of the HB framework and the

corresponding methods (COH-s, COH and IID). The evaluation

procedure of the source localization methods using realistic

simulations is then introduced. Finally the results and a detailed

discussion are presented.

Materials and Methods

MEG Inverse Solution Using Distributed Model
A distributed source model consists of a large number of dipolar

sources distributed along the cortical surface. We considered the

orientation of each dipole to be fixed perpendicular to the cortical

surface. Using this anatomical constraint, the relationship between

source amplitudes and MEG measurements is expressed by the

following linear model [21]:

M~GJzE ð1Þ

where M is a q|t matrix of the MEG signal measured at

q = 275 MEG sensors and t time samples. E models an additive

measurement noise (q|t matrix). J is a p|t unknown matrix of

the current density along the cortical surface (p,4000: unknown

dipolar moment amplitudes). G indicates the q|p lead field

matrix obtained by solving the forward problem, by estimating the

contribution of each dipolar source on the sensors.

However, the inverse problem is still an ill-posed problem as the

forward matrix G is under-determined (p..q). There is no

unique solution unless a priori model or assumptions regarding the

distribution of the sources J are added to regularize the problem.

To solve the ill-posed inverse problem, we investigated the

relevance of two types of spatial models, DDP and local spatial

smoothness, within two regularization frameworks (MEM and

HB). In the next sections, we will describe these two spatial models

before introducing their implementation within the MEM and the

HB frameworks.

Evaluation of MEG Source Localization Methods
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Definition of Realistic Spatial Models for Spatially
Extended Generators

Data Driven Parcellization (DDP) of the cortical

surface. We first assume that brain activity can be organized

into functional cortical parcels. Characterizing brain activity,

assuming functional homogeneity within brain parcels has proved

to be an efficient approach to analyze neuroimaging data, either in

EEG/MEG [16,28–31], in fMRI [32–34] or in multimodal fusion

[35,36].

In the present study, we proposed a Data Driven Parcellization

(DDP) method performing full parceling of the tessellated cortical

surface into non-overlapping parcels (see Figure 1). Such a

partition at a specific spatial scale s is denoted by P(s). DDP

consists in using partial information from the available data in

order to guide this spatial clustering.

The key aspect of DDP lies in the pre-localization of the sources

of brain activity using the Multivariate Source Pre-localization

(MSP) method [30] followed by a region growing algorithm. MSP

is a projection method that estimates a coefficient, which

characterizes the possible contribution of each dipolar source to

the data. A spatio-temporal extension of the MSP method is

described in Appendix S1. From this extension, seed points were

iteratively selected among the dipoles showing the highest MSP

coefficients. Region growing around each seed points was then

iterated until a given spatial neighborhood order s, resulting in a

partition of the whole brain into K parcels. This way of choosing

the seed points and parceling ensured dipoles contributing to the

same underlying generator to be gathered within the same parcel,

whereas dipoles contributing to distinct generators to be associated

within distinct parcels. A brief description of this DDP technique is

provided in Appendix S2.

Defining brain activity in terms of K parcels of functionally

homogenous activity (K,,p) aims at better conditioning the

under-determined inverse problem, while the inverse method will

infer the local source intensity inside each parcel.

Local spatial smoothness model. Spatial smoothness

model assumes that nearby dipoles are more likely to have similar

intensities. In this context, LORETA - originally proposed by

Pascual-Marqui et al. [23] - used a discrete Laplacian operator to

find the solution with maximum spatial smoothness over a 3D

grid.

In order to introduce local spatial smoothness over a geodesic

surface, we used the diffusion-based spatial prior proposed by

Harrison et al. [37]. Diffusion-based spatial priors are actually

constructed using the Green’s function of the adjacency matrix

defined over the geodesic cortical surface [37,38]. Let us denote A
as the (p|p) adjacency matrix of the cortical surface, where

Ai,i’~Ai’,i~1, if the dipoles i and i’ are distinct and directly

connected on the mesh, 0 otherwise. The non-zero elements of A
define a connection between dipolar sources in the immediate

spatial neighborhood.

Let us define ~AA, the discrete Laplacian over the geodesic surface

at the first spatial neighborhood order as:

~AA~A{

P
i
0

A
1,i
0 0 0

0 P 0

0 0
P
i
0

A
p,i
0

2
66664

3
77775 ð2Þ

Note that the non-null entries of ~AAk represent spatial

connections between dipolar sources within the kth order spatial

neighborhood. We used the spatial smoothness model W

introduced in Friston et al. (2008) [27], which is defined by:

W sð Þ~ exp s~AA
� �

&
X8

k~0

sk

k!
~AAk ð3Þ

Figure 1. Parcellization. Examples of clustering of the cortical surface at different spatial scales s obtained using the DDP technique (each color
represents one parcel).
doi:10.1371/journal.pone.0055969.g001

Evaluation of MEG Source Localization Methods
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where s is a parameter that tunes the strength of spatial

smoothness, varying between 0 and 1. In equation (3), the upper

bound of summation was set to 8 as in Friston et al. (2008) [27].

Note that from equation (3), the spatial smoothness matrix W can

be interpreted as a generalization of a discrete Laplacian over a

large neighborhood order.

Regularization Techniques
Maximum Entropy on the Mean (MEM) framework. In

the MEM framework, we consider the amplitude of the sources J

to be estimated as a multivariate random variable of dimension p,

with a probability distribution dp(j). The MEM principle aims at

estimating the distribution dp̂p(j) that provides ‘‘maximum

uncertainty about missing information carried by the data’’ [39],

with respect to some reference model assumed on J [24].

Regularization in this framework is introduced by writing the

solution in the form of dp(j)~f (j) dn(j), where the reference

distribution dn expresses some assumptions on J and f (j) is a n-

density to be found such that it explains the data in average:

M~

ð
Gj f jð Þdn(j) ð4Þ

Among all the distributions dp satisfying the above constraint,

the MEM solution dp̂p~f̂f dn is the one with maximum n-entropy

[16,24]. An interesting property of the MEM approach relies in its

inherent flexibility for introducing constraints through the

definition of the reference distribution dn. In this study, dn was

defined using the parcellization model P(s) assuming brain activity

to be described by K cortical parcels showing homogeneous

activation state.

Each cortical parcel k is characterized by an activation state Sk,

describing if the parcel is active (Sk~1) or not (Sk~0). Assuming

a collection of mutually independent parcels, the global dn was

defined as a factorization of the joint probability distribution of the

K parcels:

dn jð Þ~dn1 j1ð Þdn2 j2ð Þ . . . dnk jkð Þ . . . dnK (jK ) ð5Þ

with the following mixture model for each parcel:

dnk jkð Þ~ 1{akð Þd jkð ÞzakN mk, Skð Þ jkð Þ½ �djk ð6Þ

where ak~Prob Sk~1ð Þ is the probability of the kth parcel to be

active. Multivariate jk denotes the intensities of the pk sources in

the kth parcel. d refers to the Dirac distribution allowing to ‘‘shut

down’’ inactive parcels when Sk = 0. N mk,Skð Þ is a Gaussian

distribution describing the intensities of the kth parcel when active

(Sk = 1); where mk and Sk represents respectively the mean and the

covariance of the pk sources within the kth parcel. These

parameters will be described in the next section.

The purpose of the present study was to evaluate different

initialization of dn in the MEM framework, considering spatial

modeling introduced using P(s) and local spatial smoothness within

parcels. Once dn is initialized, the MEM solution dp̂p is obtained

through the optimization of a convex function in a q-dimensional

space (see Appendix S3 for details). Note that whereas MEM

estimation was done iteratively at each time sample, the same

clustering model P(s) was used over the whole time window of

signal to localize.

Source localization methods within the MEM

framework. When incorporating the parcels P(s) through dn

in the MEM framework, the first step consists in the definition of

the parameters (ak, mk, Sk) of dnk for each parcel (equation 6).

N A spatio-temporal Activation Probability Map (stAPM) was

generated (see Appendix S4), by mapping the MSP coefficients

of pk sources in the kth parcel (Pk) along time. Therefore, the

probability of activation of the parcel Pk was initialized at each

time sample t as ak tð Þ~Mediani[Pk
stAPM(i,t)ð Þ.

N In the reference model (equation 6), we assumed the Gaussian

distribution of the active state to be a zero mean distribution;

therefore, mk of each parcel was initialized to zero.

N The covariance matrix for each parcel is a time varying matrix

Sk (t) defined as follows:

Sk(t)~g(t)Wk(s)T Wk(s) ð7Þ

where g tð Þ~0:05 1
pk

P
i[Pk

ĴJMN (i,t)2 is a scaling factor for the

covariance of each parcel Pk, estimated using the average of

the square of the mean activity provided by the Minimum

Norm solution ĴJMN [22] within the kth parcel. This scaling

factor was arbitrarily initialized as 5% of the energy within

each parcel. In equation 7, Wk sð Þ is defined as the pk|pk

matrix controlling local spatial coherence within the parcel,

obtained by selecting the rows and columns of W (s)

corresponding to the pk sources of the kth parcel..

Accordingly, under these assumptions, we propose the two

following methods:

(a) Maximum Entropy on the Mean at a specific cluster scale s (MEM-s)

consists in setting s~0 leading to Sk tð Þ~g tð ÞIpk
, where Ipk

is a pk|pk identity matrix.

(b) Coherent–MEM-s at a specific cluster scale s (CMEM-s) consists in

setting s=0 leading to Sk(t)~g(t)Wk(s)T Wk(s). We have

used s~0:6, as suggested in Friston et al. (2008) [27], to

introduce local spatial smoothness in each parcel.

For MEM-s and CMEM-s, we defined the reference distribu-

tion with mean mk = 0 with the hypothesis that we do not add

much information a priori, since MEM provides inference on the

mean of the distribution. On the other hand, we hypothesized that

the initialization of the covariance matrix Sk (t) for each parcel as

5% of the averaged energy of the Minimum Norm solution ĴJMN

will ensure a proper scale for the intensity of the reference

distribution.

Hierarchical Bayesian (HB) framework. Solving the

MEG inverse problem within the HB framework offers the

advantage of accommodating multiple priors and proposes

inference techniques to select the most likely combination of

priors using model selection approaches [26,27,40–44]. We thus

chose HB as a key framework in which we could consider similar

priors as the ones proposed for MEM thereby allowing an ideal

comparison of the two approaches.

HB model allows integrating uncertainties at different levels,

modeling the covariance in each level as linear combination of

covariance components. The different levels are the sensor noise

level and the source noise level.

At the sensor level (1st level), the relationship between the MEG

measurements (M) and the source amplitudes (J) is given by:

Evaluation of MEG Source Localization Methods
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M~GJzE1 ð8Þ

At the source level (2nd level), the prior distribution of the source

amplitudes (J) is given by:

J~E2 ð9Þ

where E1 and E2 represents additive random fluctuations in the

sensor and source space respectively. The a priori distribution of

these additive random noises is a zero mean Gaussian distribution

with spatial covariances Ssensor and Ssource and temporal

covariance ht, such as:

E1eN (0,ht6Ssensor) and E2eN (0,ht6Ssource) ð10Þ

Here ht was modeled as the identity matrix. The sensor spatial

covariance Ssensor was modeled as:

Ssensor~ exp (l(1))Q(1) ð11Þ

Where Q(1) refers to a spatial covariance component, i.e., the

identity matrix here, and l(1) represents the corresponding hyper-

parameter.

The source spatial covariance Ssource was modeled as a linear

combination of the form:

Ssource~ exp (l
2ð Þ

1 )Q1
(2)z exp (l

2ð Þ
2 )Q2

(2)

z . . . z exp (l(2)
m )Qm

(2)
ð12Þ

where Q(2)~ Q1
2ð Þ,Q2

2ð Þ, . . . ,Qm
2ð Þ

n o
describes the spatial co-

variance components of the source level and l
2ð Þ

i denotes the

corresponding hyper-parameters, i[½1,m�. The exponential term

on l ensures the covariance model to be positive [27]. The hyper-

parameters were estimated using Restricted Maximum Likelihood

(ReML) algorithm, selecting the most relevant linear combination

of covariance components (see details in Friston et al. (2002) [42]).

Source localization methods within the HB

framework. In addition to two standard source reconstruction

methods (IID and COH) implemented in SPM8 software package

[27], we proposed a new method within this HB framework

(COH-s).

(a) COH-s: Coherent at a specific cluster scale s: COH-s incorporates

spatially smooth extended parcels within the HB framework, thus

accounting for the same spatial priors as the ones considered in

CMEM-s within the MEM framework. Three types of covariance

components were considered: 1) Minimum norm component

encoding independent sources Q
(2)
1 ~Ip, 2) global spatial smooth-

ness Q
(2)
2 ~WT sð ÞW(s) and 3) K locally spatially coherent parcels

of P(s) as independent covariance components denoted by

(C1,C2…CK ). Ck is a (p|p) block matrix generated using the

elements of WT(s)W(s), the block being extracted from the pk

row and column indices of the kth parcel, and zero elsewhere. Ck

thus assumes local spatial smoothness over the whole kth parcel.

To summarize, COH-s assumes the following spatial covariance

model:

Q(2)~fQ 2ð Þ
1 ~Ip,Q

2ð Þ
2 ~WT sð ÞW(s),

Q
2ð Þ

3 ~C1,Q
2ð Þ

4 ~C2, . . . ,Q
2ð Þ

Kz2~CKg,

where K represents the total number of parcels at a specific spatial

clustering scale s.

(b) Independent and Identically Distributed model (IID): This model

uses a single source covariance component encoding identically

and independently distributed sources Q 2ð Þ~Q
2ð Þ

1 ~Ip (Ip being a p

dimension identity matrix). This method provides a minimum

energy solution, similar to the one originally proposed by

Hamalainen and IImoneimi (1994) [22].

(c) Spatially Coherent Sources (COH): This method provides a

solution that is spatially smooth, similar to LORETA [23]. It

consists in a model with two spatial components modeling

respectively independent and spatially coherent sources:

Q(2)~fQ 2ð Þ
1 ~Ip,Q

2ð Þ
2 ~W (s)T W (s)g

Note that COH-s is an extension of COH method using the

concept of multiple parcels introduced in the Multiple Sparse Prior

method proposed by Friston et al. (2008) [27]. Both COH-s and

Multiple Sparse Prior methods are using several regional spatial

covariance components. Whereas Multiple Sparse Prior models

brain activity as small patches of coherent activity sparsely placed

in the left and right hemispheres with a priori maximum variance

at the center of the patch, COH-s incorporates spatially smooth

extended parcels. In COH-s model, the non-zero terms of the

diagonal of Ck have a priori the same energy. Multiple Sparse

Prior method was designed to localize focal ‘‘sparse’’ sources, and

was proved to be efficient in cognitive studies [45]. As our

objective was to localize spatially extended sources of epileptic

activity, we proposed COH-s as a method in the HB framework to

be compared with MEM-s and CMEM-s.

Evaluation Using Realistic Simulations
We evaluated the performance of the five above-mentioned

source localization methods in their ability to localize spatial

extended sources. To perform this validation, we proposed a fully

controlled environment to generate realistic simulations of MEG

data mimicking the generators of epileptic spikes with different

spatial extents, similarly to the evaluation proposed for EEG

source localization in Grova et al. (2006) [16]. This section

describes the validation dataset and validation metric used for the

evaluation.

Ethics statement. Realistic simulations were generated using

MEG data obtained from a patient with focal epilepsy showing

normal tracing with no epileptic activity. This patient participated

as a research subject of the project entitled: ‘‘Application of

magnetoencephalography in the assessment of the epileptic focus’’

(Dr. E. Kobayashi being the principal investigator for this project).

Written informed consent for this study was obtained from the

subject as approved by the Research Ethics Committee of the

Montreal Neurological Institute and Hospital (MNI/H). At its full

board meeting of June 14, 2011, the Research Ethics Board (REB)

of the MNI/H has endorsed the review of this project and found

this research to be acceptable for continuation at the McGill

University Healthcare Centers. The REB of the MNI/H acts in

conformity with standards set forth in the (US) Code of Federal

Evaluation of MEG Source Localization Methods
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Regulations governing human subjects’ research and functioning

in a manner consistent with internationally accepted principles of

good clinical practice.

Validation dataset. The subject we selected to generate our

realistic simulations had normal cortical surface segmented from

his anatomical Magnetic Resonance Imaging data. This acquisi-

tion was done at the MEG center of Université de Montréal on a

275 channels CTF whole-head MEG system. The detection coils

used in the system were first order radial gradiometers. The CTF

system is equipped with reference sensors using a 3rd order

gradient correction to subtract background interferences. During

the acquisition, the head position of the subject was tracked using

localization coils placed on three fiducial points (nasion, left and

right peri-auricular points).

A high resolution T1 weighted MRI was acquired on the same

subject at the MRI center of the Montreal Neurological Institute.

Co-registration between MEG sensors position and the anatomical

T1-weighted MRI of the subject was obtained in three steps: (i)

manual identification of the three fiducial points on the MRI, (ii)

digitalization of the position of the fiducials on the head of the

subject using a 3D Polhemus localizer and (iii) the rigid

geometrical transformation between the MRI’s space and the

subject’s space was obtained by fitting these points using

Procrustes method [46].

A realistic head model was obtained by segmenting the surface

of the brain from the subject’s anatomical T1-weighted MRI [47].

The distributed source model was obtained by segmenting the

white/gray matter interface from the MRI using Brainvisa

software (BrainVISA: http://www.brainvisa.info). The source

model consisted in a realistic 3D mesh of the cortical surface

(4203 vertices, 7 mm mesh). The forward matrix G (in equation 1)

was computed using the Boundary Element Method (BEM)

proposed by Kybic et al. (2006) [48]. A 1-layer BEM model

consisting of only the inner skull surface was considered and

estimated using OpenMEEG software (OpenMEEG: http://

www-sop.inria.fr/odyssee/software/OpenMEEG/).

Simulation parameters. 100 simulation configurations in-

volving one extended source were generated. The position of each

source was selected by choosing a seed point randomly on the

cortical surface mesh. The spatial extent of each source was

obtained by region growing around the seed following the cortical

surface using different spatial neighborhood orders ranging from a

source spatial extent se = 2 (,3 cm2) to se = 6 (,30 cm2). The

amplitude of each vertex of the simulated source was set to

9.5 nA.m, generating an overall maximum signal of 1.5 pT for

MEG when all the sources of the cortex were set active. This value

has been chosen to mimic realistic amplitude of a typical epileptic

spike.

The time course of the simulated sources was the time course of

an epileptic spike modeled with three Gamma functions, although

only signal around the main peak of the spike was analyzed (about

21 samples around the peak with a sampling rate of 600 Hz). Let

us refer to Jtheo as the simulated theoretical current distribution

obtained from the spatial distribution of the simulated sources

together with the corresponding time course. Noise-free MEG

data were then simulated by applying the forward model G to the

simulated current density (GJtheo). Realistic physiological noise

was extracted from a three minutes segment of MEG background

activity acquired on a patient with focal epilepsy showing normal

traces without any epileptic discharge. MEG data acquired at

600 Hz were filtered between 0.3 Hz and 70 Hz. Periods with

motion and eye blinks were excluded. Each noise-free simulated

MEG signals were then corrupted by adding some real MEG

background activity. In order to mimic MEG spikes averaging,

128 trials of 700 ms of MEG background activity were manually

identified. For each simulation, 20 trials were randomly selected

among the 128 trials, averaged and added to the simulated signal.

The amplitude of all 128 trials was scaled to ensure a signal-to-

background ratio of 1 (0 dB) for most superficial sources when

using reference source amplitude of 9.5 nA.m along a patch of 6

cm2. Consequently, the simulation of deep sources resulted in

simulated signals with lower amplitude than the superficial

sources. Therefore, the Signal-to-Noise Ratio (SNR, defined as

the ratio of maximum activity at the peak to the standard deviation

of the background activity) of the realistic simulated data varied

depending upon the location and extent of the underlying sources.

In order to investigate the influence of the spatial clustering

scale s of P(s) for MEM-s, CMEM-s and COH-s, we tested the

performance of the methods when varying the spatial clustering

scale s from s = 3 (K,200 parcels) to s = 6 (K,40 parcels), for each

source spatial extent varying from se = 2 (,3 cm2) to se = 6

(,30 cm2), and for each of the 100 random source positions,

leading to a total of 4(s)65(se)6100(configurations)65 meth-

ods = 10,000 source localizations.

We also performed the following investigations: 1) to compare

the performance of the methods that uses DDP model (MEM-s,

CMEM-s and COH-s) when initializing parcels P(s) either with the

data of interest or with some background MEG activity and 2) to

compare the ability of the methods to localize single spike versus

averaged spike data (average of 20 spikes). For these two tests we

considered 50 source configurations of spatial extent se = 3

(,7 cm2) and the methods involving P(s) were localized using a

spatial clustering scale of s = 5.

All the simulations were performed with Matlab (R2010a) using

the simulation environment Pipeline System for Octave and

Matlab (PSOM) [49].

Validation metric. In this section we describe the validation

metrics used to evaluate the detection accuracy of the source

localization methods presented in section: Regularization
techniques. Note that the solution of the inverse problems was

estimated and evaluated at one single time sample, at the peak of

the spike.

(a) Area Under the ROC Curve (AUC): To assess the detection

ability of the different localization methods, we used the Area

Under the Receiver Operating Characteristic (ROC) curve [50],

denoted by AUC, as a detection accuracy index assessing the

sensitivity to the spatial extent of the sources. This metric was

adapted by Grova et al. [16] to fit the context of a distributed

source model. We chose the AUC index as the validation metric

mainly because of the difficulty of providing a valid statistical

threshold for all the proposed methods. The AUC index was

estimated at the main peak t0 of the simulated spike. We estimated

the energy ÊE of the current density distribution at t0, for each

localization. To compare ÊE with Eref (energy of the simulated

current density distribution), ÊE and Eref were first normalized

between 0 and 1 for each dipole i: ÊE(i)~EĴJ(i)E2=maxn(EĴJ(n)E2)

and Eref (i)~EJref (i)E2=maxn(EJref (n)E2). We quantified the

specificity and sensitivity of the localization method by varying a

threshold b between 0 and 1 and considering a dipole i to be active

if ÊE i,t0ð Þwb. ROC curves were then obtained by plotting

sensitivity (b) against (1– specificity(b)). AUC was finally estimated

to assess detection accuracy. In our study, a value of AUC.0.8

was considered to be good detection accuracy, suggesting 80% of

detections were accurate.

However, to interpret the area under the ROC curve as a

detection accuracy index, one should provide the same number of

active and inactive sources to the ROC analysis [16]. Indeed, in
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the context of distributed source evaluation, the estimation of

AUC is biased by the fact that among the p~4203 dipoles of the

source model, only few dipoles (pa) were actually active compared

to the large number of inactive dipoles (p{pa). A more accurate

estimation of AUC was obtained by using as many inactive sources

as active sources during the evaluation. This was done by

randomly selecting pa inactive or fictive sources among the

(p{pa) available either within the immediate spatial neighbor-

hood of the simulated sources (AUCclose) or within far local

maxima of the source localization results (AUCfar). The final AUC

index was computed as the mean of AUCclose and AUCfar, thus

providing a metric assessing both the ability of the method to

focalize the reconstructed activity and the eventual generation of

spurious sources far from the simulated one (see [16] for more

details).

(b) Mean Square Error (MSE): To assess the ability of the methods

to accurately recover the amplitude of the simulated current

density (Jtheo), we estimated the mean square error (MSE) [16]

between the simulated current amplitude and the reconstructed

one over the whole brain at the peak of the spike. Lower MSE

values indicate that the method is able to recover the current

amplitude with high accuracy.

(c) Minimal geodesic distance to the source (Dmin): To quantify source

localization accuracy, we estimated the minimum geodesic

distance between the dipolar source showing the global maximum

of reconstructed activity source and the closest dipole belonging to

the simulated source. This geodesic distance following the

circumvolutions of the cortical surface was denoted by Dmin

[16]. Solutions for which this global maximum was localized on

the wrong hemisphere, Dmin could not be estimated since the

surfaces of the two hemispheres were not connected geodesically.

Therefore, Dmin was finally set at the largest Dmin value obtained

over all source configurations in such cases. A value of Dmin close

to 0 indicated that the maximum of reconstructed activity source

was found within the simulated source.

In addition, AUC was measured as a function of eccentricity to

check for the influence of the depth of the source on detection

accuracy. The eccentricity of a simulated source was defined as the

distance between the seed point of the spatially extended source to

the center of the head, whereby the deepest source have a lower

eccentricity value (10 mm) and the most superficial ones have a

higher eccentricity value (90 mm). Sources with eccentricity

ranging between 40 mm and 60 mm corresponded mainly to

mesio-temporal sources and the ones with eccentricity less than

40 mm corresponded to the sub-cortical sources.

Results

Qualitative Assessment
The purpose of this first section is to evaluate qualitatively the

performance of three simulations together with the corresponding

validation metrics AUC, MSE and Dmin. To visualize the results,

we showed the absolute value of the reconstructed activity at the

peak of the simulated spike, thresholded upon the level of

background activity [51].

Figure 2 illustrates the ability of the five evaluated methods to

localize a right occipito-parietal source with an extent of

se = 2(,3 cm2) and an eccentricity of 79 mm (superficial source).

Note the AUC values were in agreement with visual inspection.

We observed that methods MEM-s and CMEM-s were the most

accurate in detecting the spatial extent of the source (AUC.0.90,

MSE < 0.70 and Dmin = 0 mm for MEM-s and CMEM-s at s = 3

and 5). IID and COH showed slightly less accurate localization

(AUC = 0.88, MSE = 0.98, Dmin = 28.7 mm), probably due to the

presence of low amplitude frontal spurious sources. Note that both

IID and COH underestimated the spatial extent of the source

equally and exhibited very similar solutions. For COH method,

ReML model selection actually pushed forward the minimum

energy prior over the spatial smoothness prior (cf. ReML estimates

for COH, l
2ð Þ

1 ~ 0.057 and l
2ð Þ

2 ~ 0 in equation (12)). This makes

COH interesting when localizing focal sources, as it is able to

choose between the minimum energy solution for more focal

sources and the spatial smoothness solution for spatially extended

sources. Finally, in this specific case, COH-s failed to find the

simulated occipito-parietal source (Figure 2b, 2c), as it exhibited a

spurious source (Dmin = 120.3 mm at s = 3 and at s = 5 the

maximum activity was found on wrong hemisphere) in the deep

fronto-mesial region, resulting in poor localization accuracy

(AUC = 0.49 and MSE = 891 at s = 3 and AUC = 0.75 and

MSE = 6.8 at s = 5).

We also illustrated the impact of the clustering scale s in P(s) (see

Figure 2b and Figure 2c). MEM-s and CMEM-s provided similar

AUC values at s = 3 and s = 5. CMEM-s reproduced accurately

the extent of the source following a smooth diffusion along the

cortical surface (AUC = 0.96 and MSE = 0.74 at s = 3,

AUC = 0.95 and MSE = 0.78 at s = 5), whereas MEM-s

(AUC = 0.96 and MSE = 0.70 at s = 3, AUC = 0.97 and

MSE = 0.79 at s = 5) recovered a similar spatial extent with less

local smoothness. The profile of reconstructed intensities using

MEM-s is actually similar to typical profiles observed in a

minimum norm solution; however, it exhibits a larger contrast

over the actual extent of the source. We also noticed a slight over-

estimation of the extent of the source when using MEM-s and

CMEM-s at s = 5. On the other hand, increasing the clustering

scale s from 3 to 5 had very little impact on the accuracy of COH-s

localization in this example, probably because of the presence of

spurious sources. Whereas COH-s did show a larger AUC value of

0.75 for s = 5 when compared to AUC = 0.49 at s = 3, an accurate

low intensity source was found at s = 5, but did not pass Otsu’s

threshold [51], as the intensity of the spurious source was larger.

Figure 3 illustrates the ability of the five methods to localize the

same right occipito-parietal source but more spatially extended

(extent se = 5 (,15.7 cm2), eccentricity = 79 mm). All methods

were able to localize this source, but the spatial extent of the source

has been slightly under-estimated. COH was the most accurate in

reproducing the source spatial extent with AUC = 0.97,

MSE = 0.78 and Dmin = 0 mm. In this example, COH favored

the spatial smoothness solution (cf. ReML estimates for COH,

l
2ð Þ

1 ~ 0 and l
2ð Þ

2 ~ 0.28), hence, provided better localization than

for the previous example. IID showed less accurate localizations

(AUC = 0.84, MSE = 0.88) due to under-estimation of the spatial

extent of the simulated source, whereas the maximum of activity

was accurately localized (Dmin = 0 mm, Figure 3d). MEM-s and

CMEM-s reproduced the source spatial extent with good accuracy

at s = 3 and s = 5 (AUC = 0.88 and 0.85 for MEM-s, 0.90 and 0.83

for CMEM-s, with MSE,0.80 and Dmin = 0 mm). CMEM-s was

able to detect the local maximum activity of the source following a

smooth diffusion along the cortical surface; however, the source

spatial extent was slightly under-estimated. MEM-s was able to

localize the source but lacked smooth diffusion along the cortical

surface. COH-s provided less accurate source localization for both

s = 3 and 5 (AUC = 0.78, and 0.71). At s = 3 COH-s was able to

detect the source and its spatial extent but also presented a higher

intensity deep spurious source (cf. Dmin: maximum located in the

wrong hemisphere, MSE = 0.91) (Figure 3b). At s = 5, COH-s

detected the source with a low intensity and under-estimated its

spatial extent (AUC = 0.71), whereas the maximum was accurately

localized (MSE = 0.67, Dmin = 0 mm). Note that the size of the
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parcels used in COH-s (s = 3 and 5) are smaller than the source

spatial extent.

Figure 4 illustrates the ability of the five methods to localize a

deeper and less extended left orbito-frontal mesial source (spatial

extent se = 3 (,9.8 cm2), eccentricity = 70 mm). Overall the

deeper aspects of the source were difficult to localize. MEM-s

and CMEM-s provided good localization of some superficial

aspects of the source (MEM-s with AUC = 0.90, MSE = 0.92 and

Dmin = 0 mm at s = 4 and AUC = 0.87, MSE = 0.95 and

Dmin = 2.5 mm at s = 6, CMEM-s with AUC = 0.93,

MSE = 0.90 and Dmin = 0 mm at s = 4 and AUC = 0.94,

MSE = 0.94 and Dmin = 0 mm at s = 6). Increasing the clustering

scale s from 4 to 6 had no impact on the localization of MEM-s

and CMEM-s (Figure 4b and 4c). On the other hand, increasing

the clustering scale s from 4 to 6 had a great impact on the

accuracy of COH-s localization (AUC = 0.72, MSE = 0.99 and

Dmin = 4.4 mm for s = 4 to AUC = 0.95, MSE = 0.68 and

Dmin = 0 mm for s = 6). COH-s at s = 6 provided the most

accurate localization of this source. COH and IID provided the

least accurate localizations (AUC = 0.70, MSE = 0.91 and Dmin =

2.5 mm, Figure 4d). In this last case, COH actually chooses

the minimum norm solution when localizing focal sources (cf.

ReML estimates for COH, l
2ð Þ

1 ~ 0.024 and l
2ð Þ

2 ~ 0).

Effect of the Spatial Extent of the Simulated Sources
Table 1 reports the medians of AUC values obtained over 100

source configurations for all the five methods and all the source

spatial extents se = 2, 3, 4, 5, and 6. For this comparison, MEM-s,

CMEM-s and COH-s were considered using a clustering scale of

s = 5. For all the spatial extents, COH, MEM-s and CMEM-s

exhibited median AUC values greater than 0.8, indicating overall

good detection accuracy with these methods. COH-s showed

Figure 2. Qualitative assessment. Visual analysis of source localization results together with Area Under the ROC curve (AUC) values for a
simulated source of spatial extent se = 2 and eccentricity 79 mm. All source localization results are presented as the absolute value of the current
density at the peak of the spike, normalized to its maximum activity and thresholded upon the level of background activity [51]. (a) Theoretical
simulated source: spatial extent of the cortical source and associated simulated MEG signal for all MEG sensors (data being localized within a window
of 20 time samples around the first peak of the spike). (b) Source localization results obtained for MEM-s, CMEM-s and COH-s at s = 3. (c) Source
localization results obtained for MEM-s, CMEM-s and COH-s at s = 5. (d) Source localization results obtained for IID and COH.
doi:10.1371/journal.pone.0055969.g002
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median AUC values greater than 0.8 for all extents less than se = 5.

Note that for se $5, COH-s provided low median AUC values

(,0.8) when localizing using a clustering scale s = 5. IID showed

median AUC values lower than 0.8 for all the extents.

The above results are presented with more details in Figure 5,

which illustrates the distributions of AUC values for all the five

methods using boxplot representations for se = 2, 3, 4, 5 and 6. For

this boxplot representation, MEM-s, CMEM-s and COH-s are

considered using a clustering scale s = 5. We observed an overall

very good accuracy for MEM-s and CMEM-s source localizations

(median AUC.0.8 for all spatial extents). However, we noticed

that their accuracy in localization decreased slightly when

increasing the source spatial extent (Figure 5c and 5d), but still

remained among the most accurate methods. For COH, we

observed that accuracy in the localization of sources showed slight

tendency to increase with the increase in source spatial extent

(Figure 5b). For COH-s at s = 5, we observed poor localization

accuracy for se = 5 and 6, and excellent accuracy for smaller

sources se,5 (Figure 5e). Overall IID was not really sensitive to the

spatial extent of the sources, showing the smallest AUC values

(Figure 5a).

Table 2 reports the median and L1 dispersion (i.e., the average

of the absolute deviations from the median) of MSE and Dmin

metrics obtained over 100 source configurations for the five

methods and all the source spatial extents se = 2, 3, 4, 5, and 6. For

all the spatial extents, MEM-s and CMEM-s provided very similar

MSE values (,0.90) indicating an accurate recovery of the source

amplitude for all the spatial extents. Similar MSE values were

found for COH and IID for all the spatial extents. From all the five

methods, only COH-s showed the highest MSE error with a large

standard deviation. Overall, MSE was not very informative to

compare localization methods in our context, except for detecting

important false detection when using COH-s.

The minimum geodesic Dmin distance indicated that in most

cases the maximum of reconstructed activity was located within

the simulated sources (Dmin = 0), except for some large false

detections observed with COH-s at smaller cluster scales s and for

the more focal sources se = 2. Keeping in mind that the average

distance between two vertices of the cortical surface was 7 mm,

Dmin results at se = 2 illustrated that for MEM-s, CMEM-s and

IID, whenever Dmin was not 0, the maximum activity was found

within the 1st or 2nd spatial neighborhood order of the source,

which is still quite close (Dmin,10 mm).

Whereas Table 2 showed that, except for clear mis-localizations

(cf. COH-s for s = 3), all methods performed similarly well

according to standard localization metrics (MSE and Dmin), only

AUC results (Tables 1 and Figure 5) were able to illustrate that

MEM-based methods were indeed sensitive to the spatial extent of

the sources. In other words, most methods localized accurately the

maximum intensity of the sources, but only methods using a DDP

model were sensitive to their spatial extents.

Figure 3. Qualitative assessment. Visual analysis of source localization results together with Area Under the ROC curve (AUC) values for a
simulated source of spatial extent se = 5 and eccentricity 79 mm. Remaining information same as in Figure 2.
doi:10.1371/journal.pone.0055969.g003
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Effect of the Clustering Scale s
This section aims at assessing the impact of the clustering scale s

in MEM-s, CMEM-s and COH-s methods that are all using the

DDP model, P(s). Figure 6 shows the distribution of AUC values

for these three methods, at the different clustering scales (s = 3, 4,

5, and 6) and for three spatial extents of the source (se = 2, 4 and 6).

Distributions of AUC values illustrated that the choice of the

underlying clustering scale s had no impact on MEM-s and

CMEM-s detection accuracy. On the other hand, accuracy of

COH-s clearly increased when increasing clustering scale s.

Figure 6, Figure 2b and Figure 3b demonstrate the poor

performance of COH-s at s = 3. We observed that COH-s

provided accurate localization for sources with spatial extent se

lower than the clustering scale s. However, this was not the case for

the smallest spatial extent, se = 2. In this case, even though the

clustering scale s = 3 was greater than the spatial extent se = 2, the

overall detection accuracy for this spatial extent was accurate only

when s .3 (Figure 2b and Figure 6).

Table 2 reports the median and L1 dispersion of MSE and

Dmin values for different cluster scales for MEM-s, CMEM-s and

COH-s. Similarly to AUC findings, we found that MSE and Dmin

remained unaffected by the size of the clusters in MEM-s and

CMEM-s. For COH-s we found that MSE and Dmin indicated

accurate localization as soon as the cluster scale was larger than 3

Figure 4. Qualitative assessment. Visual analysis of source localization results together with Area Under the ROC curve (AUC) values for a
simulated source of spatial extent se = 3 and eccentricity 70 mm. Remaining information same as in Figure 2, except that cluster scales s = 4 (b) and
s = 6 (c) were considered for MEM-s, CMEM-s and COH-s.
doi:10.1371/journal.pone.0055969.g004
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(s .3), whereas performances at any scale s were very weak for

focal sources at se = 2.

Effect of the Depth of the Simulated Sources
We assessed the effect of the depth of sources on detection

accuracy by plotting for each method, AUC as a function of

eccentricity of the source for source spatial extents se = 2,3,4,5 and

6. We illustrate the results of only one source spatial extent se = 4 in

Figure 7. The solid lines in Figure 7 correspond to the local

moving average of the AUC values for each method. For all the

source spatial extents se, COH-s (for s.se), MEM-s, CMEM-s and

COH were able to localize most superficial sources (eccentricity

.60 mm) with high accuracy (AUC .0.90). For sources with

eccentricity ranging between 40 mm and 60 mm, which corre-

sponded mainly to mesio-temporal sources, almost all the methods

showed lower localization accuracy than for the superficial

sources. Notably, COH-s at s = 6, MEM-s and CMEM-s still

provided relatively good localization accuracy for these mesio-

temporal sources (most AUC values .0.8). However, none of the

methods (except COH-s at s = 6) were able to localize accurately

deep sources (eccentricity,40 mm). COH-s at s = 6 performed

better than other methods when localizing deep sources, although

AUC was greater than 0.8 for se = 4 only (Figure 7). IID exhibited

poor localization accuracy for all the deep and mesio-temporal

sources, although it provided better localization accuracy for

superficial sources (AUC,0.8). Figure 7b clearly demonstrated

that when increasing the clustering scale s, COH-s showed an

increase in detection accuracy for all sources; this was observed for

the other source spatial extents too. From figure 7c and 7d, we

observed that MEM-s and CMEM-s showed no notable influence

of the clustering scale s on detection accuracy, which was observed

for the other source spatial extents too.

This analysis also confirmed that most of the low AUC values

considered as outliers in boxplot distributions, presented in

Table 1. AUC medians obtained over 100 source
configurations for all five methods and all five spatial extents
se.

Methods - AUC median

Spatial
Extents IID COH

MEM-s
(s = 5)

CMEM-s
(s = 5)

COH-s
(s = 5)

se = 2 0.77 0.80 0.86 0.89 0.82

se = 3 0.78 0.82 0.88 0.89 0.86

se = 4 0.75 0.85 0.87 0.89 0.83

se = 5 0.74 0.85 0.86 0.86 0.77

se = 6 0.74 0.87 0.83 0.84 0.72

(in bold font: median AUC.0.80).
doi:10.1371/journal.pone.0055969.t001

Figure 5. Effect of source spatial extent se. Distribution of AUC results using boxplot representations over 100 simulations of randomly placed
sources for all source localization methods. x-axis from left to right: source spatial extent se = 2 (cyan), se = 3 (blue), se = 4 (green), se = 5 (purple) and
se = 6 (red); (y-axis: AUC values); (Horizontal line, AUC = 0.8). MEM-s, CMEM-s and COH-s results are reported when using a spatial clustering scale s = 5.
(a) IID, (b) COH, (c) MEM-s, (d) CMEM-s and (e) COH-s.
doi:10.1371/journal.pone.0055969.g005
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Figure 5 and 6, were mainly due to the weak localization of deep

sources.

Effect of Parcellization using Data of Interest or
Background Activity

Figure 8a illustrates the effect of initializing the parcellization

P(s) (cf. Appendix S1) when using some MEG background activity

or the data of interest, whereas only data of interest was considered

to initialize the other parameters (ak, mk, Sk). This investigation

was performed using 50 source configurations with source spatial

extent se = 3 (,7 cm2) and the methods involving P(s) were

localized using a spatial clustering scale of s = 5. As localization of

deeper sources would provide lower AUC values (see section:
Effect of the depth of the simulated sources), in order not to

bias our comparisons, we decided to consider only the most

superficial sources with an eccentricity greater than 70 mm for this

section i.e., 22 out of the 50 simulated sources were thus

considered.

We can see that there was no impact on the detection accuracy

of MEM-s, CMEM-s and COH-s when using the data of interest

or MEG background activity to initialize the DDP model

(Figure 8a), suggesting the importance of using a parcellization,

but the accuracy of such a parcellization was not an issue.

Effect of Single Spike versus Averaged Spike Localization
Figure 8b illustrates the comparison between detection accuracy

of all the five methods when localizing single spike versus the

average of 20 spikes. For this investigation, we used the same

superficial source configurations as for the previous evaluation

(section: Effect of Parcellization using data of interest or
background activity). As expected, results showed a higher

accuracy for the averaged data than the single spike data. We can

also notice that the percentage of single spike simulations that were

localized with a good detection accuracy (i.e., AUC.0.8) were

respectively: CMEM-s = 37%, MEM-s = 18%, COH-s = 9%,

COH = 4%, IID = 4%. These results suggest the robustness of

both MEM-s and CMEM-s methods to low SNR conditions.

Discussion

We have presented an evaluation of source localization methods

for their ability to localize spatially extended sources of epileptic

activity by incorporating realistic spatial models. We proposed

three new source localization techniques that can detect the

location of the sources with a good sensitivity to their spatial extent

when using MEG data: MEM-s, CMEM-s and COH-s.

Source Localization of Spatially Extended Sources
To be detectable from background activity on MEG, epileptic

discharges need to be associated with spatially extended generators

[11,13,14,52,53]. Several studies have been done on reconstruct-

ing extended cortical sources based on distributed model using

EEG or MEG data [31,36,54]. Other studies have been proposed

in the context of extended cortical patches and beamformer

approaches; these methods are extensions or generalizations of

dipole scanning approaches [11,55–61]. All these methods indeed

showed sensitivity for source spatial extents based on either

controlled simulations [11,55–58,60,61] or intracranial stereotac-

tic EEG recordings [59]. However, our investigation involved a

more detailed and larger range of spatial extents (3 cm2230 cm2)

than the ones evaluated in these studies (3 cm2212 cm2 [11], 7

cm2210 cm2 [56], 0.14 cm226 cm2 [57], 0.5 cm2220 cm2 [58],

and 0.09 cm222.2 cm2 [61]). In fact, the study by Birot et al. [58]

simulated a range of spatially extended EEG sources very similar

to ours and validated their localization methods using the

validation metric (AUC) we proposed in Grova et al. (2006)

[16]. Whereas, their proposed method, 4-EXO-MUSIC per-

formed very well for large superficial sources (AUC.0.8 for 6

cm2220 cm2), poor performances were observed for estimated

sources smaller than 4 cm2 (AUC,0.6 for extent #4 cm2). On the

other hand, our proposed MEM methods were providing very

accurate localization (AUC.0.8) for all spatial extents considered

in our study (3 cm2230 cm2).

Standard localization metrics (Dmin and MSE) demonstrated

overall good accuracy for most of the evaluated methods (except

Table 2. Median (Med) and L1 Dispersion (Disp) of MSE and Dmin over 100 source configurations for all five methods, all five
spatial extents se = 2,3,4,5,6 and all four clustering scale s = 3,4,5,6 in MEM-s, CMEM-s and COH-s.

Methods Metrics se = 2 Med(Disp) se = 3 Med(Disp) se = 4 Med(Disp) se = 5 Med(Disp) se = 6 Med(Disp)

IID MSE Dmin(mm) 1.1 (0.14) 4.9(45.0) 0.93(0.08) 0(21.8) 0.90(0.05) 0(17.9) 0.91(0.04) 0(9.1) 0.92(0.02) 0(5.4)

COH MSE Dmin(mm) 1.1(0.16) 0(44.8) 0.91(0.12) 0(19.5) 0.86(0.11) 0(14.0) 0.82(0.07) 0(6.9) 0.83(0.05) 0(5.1)

MEM-s s = 3 MSE Dmin(mm) 0.94(0.08) 9.2(28.7) 0.91(0.08) 0(20.3) 0.90(0.07) 0(13.3) 0.91(0.05) 0(5.4) 0.93(0.03) 0(3.6)

s = 4 MSE Dmin(mm) 0.94(0.07) 11.7(29.1) 0.92(0.07) 2.6(16.1) 0.91(0.06) 0(13.6) 0.92(0.05) 0(5.5) 0.93(0.03) 0(4.8)

s = 5 MSE Dmin(mm) 0.96(0.06) 12.3(28.7) 0.92(0.07) 4.2(18.1) 0.92(0.06) 0(14.0) 0.93(0.04) 0(6.7) 0.93(0.03) 0(3.5)

s = 6 MSE Dmin(mm) 0.96(0.05) 17.9(31.7) 0.93(0.06) 4.7(22.1) 0.92(0.05) 0(14.3) 0.93(0.04) 0(7.7) 0.93(0.03) 0(4.5)

CMEM-s s = 3 MSE Dmin(mm) 0.94(0.08) 10.7(34.2) 0.90(0.08) 0(18.7) 0.89(0.07) 0(8.9) 0.90(0.06) 0(5.7) 0.90(0.04) 0(3.9)

s = 4 MSE Dmin(mm) 0.95(0.07) 12.9(31.7) 0.91(0.09) 0(19.5) 0.89(0.07) 0(9.9) 0.90(0.06) 0(6.7) 0.90(0.04) 0(3.2)

s = 5 MSE Dmin(mm) 0.96(0.06) 12.0(26.7) 0.90(0.08) 3.5(20.7) 0.89(0.07) 0(11.0) 0.91(0.06) 0(6.8) 0.91(0.04) 0(4.1)

s = 6 MSE Dmin(mm) 0.96(0.06) 14.3(35.6) 0.91(0.07) 0(21.1) 0.90(0.07) 0(12.0) 0.91(0.06) 0(5.4) 0.90(0.04) 0(3.1)

COH-s s = 3 MSE Dmin(mm) 6.67(44.4) 59.5(50.9) 4.04(13.0) 28.7(35.7) 3.26(15.5) 25.4(34.5) 3.05(17.1) 25.6(29.3) 2.86(10.1) 29.5(31.5)

s = 4 MSE Dmin(mm) 2.87(19.1) 41.6(56.7) 1.26(6.4) 4.6(41.9) 1.06(119) 0(29.0) 1.13(2.50) 0(17.8) 1.27(2.02) 0(13.9)

s = 5 MSE Dmin(mm) 2.28(5.2) 27.2(55.7) 0.81(0.93) 0(28.4) 0.77(0.53) 0(19.0) 0.79(2.07) 0(21.1) 0.83(0.36) 0(14.6)

s = 6 MSE Dmin(mm) 2.09(3.4) 22.7(55.4) 0.84(13361) 0(27.1) 0.70(1.5) 0(18.7) 0.77(0.44) 0(12.0) 0.78(0.31) 0(7.3)

MSE = Mean Squared Error, Dmin = Minimum geodesic distance between the local extrema of the reconstructed source and the simulated source, L1 Dispersion = the
average of the absolute deviations from the median.
doi:10.1371/journal.pone.0055969.t002
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COH-s when s,se and se = 2), suggesting that the maximum of the

activity was accurately localized in most cases. More importantly,

only AUC metric was able to characterize better the ability of

some methods to recover accurately the spatial extent of the

sources, suggesting AUC to be a more appropriate metric in this

context [16].

Figure 6. Effect of spatial clustering scale s. Distribution of AUC results using boxplot representations over 100 simulations of randomly placed
sources for all source localization methods (x-axis from left to right: MEM-s with s from 3 to 6 (purple), CMEM-s with s from 3 to 6 (red), COH-s with s
from 3 to 6 (blue), (y-axis: AUC values); (Horizontal line, AUC = 0.8). (a) Evaluation using simulated sources of spatial extent se = 2 (,3 cm2). (b)
Evaluation using simulated sources of spatial extent se = 4 (,11 cm2). (c) Evaluation using simulated sources of spatial extent se = 6 (,24 cm2).
doi:10.1371/journal.pone.0055969.g006

Figure 7. Effect of depth of the sources. Plot showing AUC values as a function of the eccentricity (in mm) of the 100 simulated sources (with
spatial extent se = 4). (a) IID (green), COH (black), (b) COH-s, (c) MEM-s, (d) CMEM-s. For the methods MEM-s, CMEM-s and COH-s, results for the
different spatial clustering scale s are color coded as s = 3 (green), s = 4 (cyan), s = 5 (purple), and s = 6 (red). The solid lines are the moving average of
the AUC values for the respective methods. Horizontal line, AUC = 0.8, Vertical lines: eccentricity = 40 mm and 60 mm.
doi:10.1371/journal.pone.0055969.g007
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Whereas it is generally accepted that the minimum norm model

(IID) is suitable for localizing the maximum of the activity [22],

our results showed that IID was not sensitive to the spatial extent

of the generators. Our findings are in agreement with the study of

Ding (2009) [62], which demonstrated that a minimum norm

model failed to recover the continuous cortical distribution of

extended sources. In COH, with two variance components

accounting for minimum norm and spatial smoothness models,

ReML infers the most relevant combination of these two priors to

fit the data. This method was able to localize accurately spatially

extended sources. We also noticed that for focal sources, COH was

able to choose the minimum energy solution over the spatial

smoothness solution using ReML, which indeed is a very

interesting property (see Figure 2d and 4d). COH-s seemed an

appropriate method for estimating spatially extended sources; the

full brain parcellization of the cortical surface into non-overlap-

ping parcels with local smoothness proved indeed to be useful.

This suggested that modeling source covariance as a linear

combination of covariance components and inference using

ReML is an interesting methodological approach, offering

sufficient flexibility in the definition of the a priori model.

However, COH-s showed some instabilities in the form of

spurious sources mainly in cases where the clustering scale s was

smaller than the spatial extent se, as well as when dealing with very

focal sources (se = 2). The method was able to find accurately the

sources in most conditions but the presence of some spurious

sources far from the main generators led to lower AUC and larger

MSE and Dmin values. From the three proposed methods using

the DDP spatial model (MEM-s, CMEM-s and COH-s), MEM-s

and CMEM-s were the most accurate and stable in localizing the

spatially extended sources, especially since they provided accurate

results whatever was the underlying clustering scale s.

All approaches, except COH, presented a loss of performance

when increasing the spatial extent of the source. Although, a slight

decrease in the localization accuracy of MEM-s and CMEM-s was

noticed for more extended sources (Figure 5c and 5d), their overall

accuracy remained better than for the other methods. This

decrease in the accuracy could be explained by the fact that most

of the spatially extended sources (se = 5 and 6) involved multiple

sulci and gyri including substantial radial and deep components

leading to more cancellation effect of the MEG signals [63]. This

resulted in low amplitude MEG signal for specific regions and high

amplitude for other regions (superficial and tangential compo-

nents). Indeed, a spatial extension of order 5 or 6 from a superficial

seed will have more chance of spreading along some mesial or

basal aspects of the cortical surface, thus involving generators that

are more difficult to localize. Moreover, the spatial extent se = 5

(,18 cm2) and se = 6 (,30 cm2) are less realistic (or more rare) for

an expected extended epileptiform activity, whereas the extent of 4

(,11 cm2) or less are the more realistically expected extents

according to Huiskamp et al. (2010) [11].

Localization of Deep Sources
Detection of deep sources is a difficult issue since deep

generators will generate very low amplitude MEG data on the

scalp, almost undetectable except under specific conditions. This

usually requires lots of averaging to increase the SNR [64]. Within

our simulation framework, we considered both deep and

superficial sources, mimicking realistic SNR conditions in both

cases. All the evaluated methods (except IID) accurately localized

superficial sources (Figure 7), whereas they all demonstrated poor

performance when localizing sub-cortical sources (eccentrici-

ty,40 mm) and some variability in accurate localization of

mesio-temporal sources (40 cm,eccentricity,60 cm). Note that

for eccentricity between 40 mm and 60 mm, ‘‘mesio-temporal

sources’’ referred mainly to sources located on the mesial aspects

of the temporal pole, rather than in the hippocampus per se.

COH-s showed low accuracy when using small parcels (s,se), even

for superficial sources. On the other hand, when using larger

parcels (s.se) COH-s provided accurate results for superficial

sources and most mesio-temporal sources. Overall, COH-s at s = 6

performed better than other methods when localizing sub-cortical

Figure 8. Comparison of detection accuracy AUC. Plot showing the (a) effect of background activity versus data of interest for the
parcellization: MEM-s (purple), CMEM-s (red) and COH-s (blue) (x-axis: AUC value for Baseline, y-axis: AUC value for data), and (b) effect of single spike
localization versus average spike localization: IID (green), COH (black), MEM-s (purple), CMEM-s (red) and COH-s (blue) (x-axis: AUC value for single
spike localization, y-axis: AUC value for averaged spike localization).
doi:10.1371/journal.pone.0055969.g008
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sources in most cases of se. It was not surprising that IID would

give poor detection for deep sources because superficial dipolar

sources with smaller magnitudes are favored by the minimum

norm constraint. Similar trends towards most superficial sources

were observed on all the evaluated methods. This bias towards the

superficial sources has not been addressed in our study but few

studies have been carried out to compensate such a bias

[23,29,65]. We did not use depth weighting in any of the methods

studied in this paper, in order to evaluate all the methods in the

same context. However, it should be noted that even if no depth

weighting was used, COH-s (for s.se), MEM-s and CMEM-s and

were able to localize some deeper sources (Figure 7b, 7c and 7d),

more likely because the underlying model was putting forward the

involvement of these parcels in the solution, similar to the Bayesian

Model Averaging (BMA) approach [29].

Spatial Models: Data Driven Parcellization and Local
Smoothness Prior

The two realistic spatial models considered in this study, i.e.

data driven parcellization P(s) and local spatial smoothness W,

have been implemented within both the MEM and HB

frameworks to model the activity of the underlying generators of

epileptic discharges.

The first model assumed brain activity to be organized into

several spatial clusters P(s) using DDP of the brain activity along

the tessellated cortical surface. Few studies demonstrated how

introducing parceling of the brain (obtained from some anatomical

atlases) was quite useful to better condition the inverse problem

[29,31,36,66]. Similarly, Lapalme et al. [28] used a data driven

parceling technique to partition the whole cortical surface into

functionally homogenous parcels. This approach is similar to the

one used in the present study. The performance of MEM-s,

CMEM-s and COH-s confirms the usefulness of DDP of the whole

cortical surface in detecting extended sources. Although DDP was

crucial to regularize the inverse problem, the accuracy of the

underlying DDP was not required to obtain an accurate MEM-s

or CMEM-s localizations (Figure 6). In case of COH-s, while the

size of the underlying DDP was crucial in the Hierarchical

Bayesian approach, the type of data used for the parcellization did

not alter the COH-s solutions. This was also confirmed with the

assessment of the performance of MEM-s, CMEM-s and COH-s

when the parcellization was obtained from MEG physiological

background activity, instead of using the data of interest. We did

not see any difference in their localization accuracy with the type

of data used. We applied one method of parcellization here, but

other methods could have been considered [29,31,36,66], with

probably similar level of localization accuracy.

However, MEM-s was unable to accurately recover the spatial

smoothness of the source along its extent. This led us to

incorporate the second model W, i.e., local spatial smoothness

within the parcels, giving rise to CMEM-s method. W models the

local spatial smoothness of the distribution of the source activity

along the cortical surface. The very first idea of spatial smoothness

prior was LORETA [23] that allows the smooth reconstruction of

cortical sources at a low spatial resolution but does not generally

reflect the focal nature of most cortical activations. W used in this

study introduces spatial smoothness following the geodesic surface

[37], thus creating local spatial smoothness within each parcel. As

a result, CMEM-s was able to accurately recover the spatial

smoothness of activity within the extended sources. Similarly,

COH-s, which also incorporated local spatial smoothness within

the parcels, was also able to recover the spatial smoothness along

the source extent as soon as the size of the clustering scale s was

larger than the extent of the source se.

Comparison between MEM and HB Frameworks
Two statistical regularization schemes, the MEM and the HB

frameworks, were compared in this study.

COH-s method, in which we incorporated the parcellization

model P(s) and the local spatial smoothness prior, was proposed to

be the equivalent of CMEM-s method. It incorporates the same

constraints as the CMEM-s method, but it uses the ReML

algorithm within the HB framework to estimate the solution. Our

findings show a good concordance between the MEM and HB

frameworks when comparing the CMEM-s and COH-s for their

detection accuracy, suggesting that both frameworks offer

sufficient flexibility to build efficient source localization methods,

especially in the context of MEG epileptic data.

In addition, we have tested the influence of the clustering scale s

on these methods. We showed that clustering scale had no impact

on detection accuracy for both MEM-s and CMEM-s, whereas

COH-s method was indeed very sensitive to the clustering scale.

The distribution of AUC values for COH-s shows a tendency of

increase in detection accuracy when increasing the clustering scale.

Indeed, we found that COH-s provided poor detection accuracy

when using parcels smaller than the source spatial extent (i.e.,

s,se), whereas for s.se it provided overall good detection accuracy

(see Figure 6 and 7). We could consider the highest clustering scale

s = 6 to accurately localize the range of sources’ extents simulated

in this study. However, our results still suggest that this scale

parameter should be tuned from the data when localizing clinical

data, as the underlying spatial extent of the generator could not be

predicted.

MEM-s and CMEM-s provided very accurate results for any

evaluated spatial clustering scale s. This is an important result,

suggesting that MEM regularization is able to adapt the number of

active parcels, whatever is the spatial scale of the clustering. In

order to localize a spatially extended source as accurately as

possible, MEM is able to ‘‘switch on’’ several parcels when using a

lower clustering scale (small parcels) or only few of them when

using a larger clustering scale (large parcels). Once the parcels

have been identified as active, our results demonstrated that MEM

inference is still able to create some local contrasts of dipole

intensities within the active parcels, leading to the ability of

localizing sources of different spatial extents. The regularization

process was a bit different when using COH-s with ReML, as the

hyper-parameters of the source covariance components (i.e., the

parcels for COH-s) are first estimated through an Automatic

Relevance Determination (ARD) scheme. Then, once the

covariance model and its ‘‘weights’’ are estimated, sources are

estimated using a regularized pseudo-inverse method. The

diffusion-weighted prior will then push forward a spatially smooth

solution over the selected parcels. When using smaller parcels with

COH-s (s,se) we observed that some covariance components often

associated with focal sources were then falsely enhanced, leading

to the occurrence of spurious sources, while the main source was

still found. In addition, it is possible that when using local spatial

smoothness prior within the parcels COH-s was less efficient than

CMEM-s in creating contrast of dipole intensities within the

parcel. However, this was out of the scope of this study and will

require further investigations. Since Litvak and Friston (2008)

suggested that using a Greedy Search scheme instead of ARD

scheme improved the performance of Multiple Sparse Prior

method [67], we can expect that using a Greedy Search for COH-

s model could have similar impact on localization accuracy and

stability. However, such implementation was out of the scope of

the present study and will be considered for future publications.

Overall, MEM framework and HB framework using ReML are

two very efficient and sufficiently flexible regularization approach-
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es that can be adapted to localize spatially extended sources. An

important aspect of ReML-based approaches is that quantitative

model comparison using free energy [26] is possible and may be

quite useful when testing the relevance of several models, as

demonstrated in Henson et al. (2009) [45].

Note that, in this work, we compared the performances of the

five methods using the same forward model for both source

simulation and source localization. This is a standard approach

when assessing the performances of source localization methods

[16,27,29,31,58,68]. This is a best-case scenario and a decrease in

performance should be expected when applied on real data.

However, we investigated the detection accuracy of all the

methods when using either the same forward model for both

simulation and localization (1 layer BEM model) or a BEM model

for simulation and an analytical spherical model for localization

(results not shown). All the inverse solvers then outperformed in

the same proportion when different models were used, without

modifying the overall relative performances. We can conclude that

our evaluation did not bias the results of any particular method,

allowing appropriate comparison between methods, which was the

purpose of this study.

Practical Application and Future Work
In distributed source modeling, the cortical surface constraint is

defined from large cortical assemblies of pyramidal cells organized

orthogonally to the grey-white matter interface. Most distributed

methods adopt this constraint with either restricting the orienta-

tion to be perpendicular [21] or allowing some deviation from the

surface normal [69]. Lin et al. (2006) [69] and Henson et al.

(2009) [45] showed that the use of loose orientation dipolar sources

increased the localization accuracy of minimum norm methods. In

our distributed model, although we fixed the orientation normal to

the surface, the loose orientation constraint could be easily

adapted and would impact all the methods similarly; but this falls

out of scope of the present study.

When dealing with real data, it is important to study the impact

of the quality of segmentation and resolution of the cortical surface

on the source reconstruction, and especially in pathological

conditions. On the other hand, Henson et al. (2009) [45] showed

that the nature of the cortical surface (obtained from individual

MRI or warping the individual’s MRI to a template MRI) had

only minimal impact on MEG source reconstruction, as soon as

the overall head model was transformed to take into account the

actual head shape of the subject. They also showed that the

resolution of the cortical surface (3000 sources or 7000 sources)

had no reliable effect on the Minimum norm solution; whereas the

7000 sources surface resulted in better accuracy for their proposed

Multiple Sparse Prior model. Whereas these are important issues

to cope with, they will have similar influence on all the methods

involved in the present evaluation study.

Our simulation paradigm was a spatial validation, studying

detection accuracy only at the main peak of the simulated spike. In

our future work, we plan to assess the spatio-temporal features of

the sources by simulating different propagation patterns of

epileptic discharges using models such as the extended source

model developed by Cosandier-Rimélé et al. [53,70], which

describes both the spatial distribution and the temporal dynamics

of neuronal population. The code for MEM-s and CMEM-s

methods has been recently implemented as a toolbox in

Brainstorm Package [71] (http://neuroimage.usc.edu/

brainstorm/), to be released soon.

Conclusion
We have proposed three new methods (MEM-s, CMEM-s and

COH-s) and evaluated their performance when localizing spatially

extended generators of epileptic discharges using MEG data. We

demonstrated that modeling brain activity using Data Driven

Parcellization of the cortical surface and applying local smoothness

within each parcel is particularly relevant to localize sources

together with their spatial extent. Both MEM and HB frameworks

are sufficiently flexible to allow the implementation of such spatial

models. The present study is in agreement with the good

performance of MEM we previously demonstrated on EEG data,

although we added the evaluation of several other parameters such

as a larger range of spatial extents and depths of the sources, as

well as the scale of the spatial clustering.
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