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Abstract

Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-
EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic
discharges can be detectable from background brain activity, provided they are associated with spatially extended
generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization
methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators
when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain
activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A
Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and
diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented
within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We
proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of
realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was
quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that
methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm? to
30 cm?, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the
HB framework, a model using parcels larger than the size of the sources should be considered.

Citation: Chowdhury RA, Lina JM, Kobayashi E, Grova C (2013) MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing
Entropic and Hierarchical Bayesian Approaches. PLoS ONE 8(2): €55969. doi:10.1371/journal.pone.0055969

Editor: Gareth Robert Barnes, University College of London - Institute of Neurology, United Kingdom
Received July 6, 2012; Accepted January 4, 2013; Published February 13, 2013

Copyright: © 2013 Chowdhury et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant Program (CG and JML), the Canadian
Institutes of Health Research MOP 93614 (EK) and the Montreal Neurological Institute-CECR (EK). RC was partially supported by a Savoy Foundation scholarship
(http://www.savoy-foundation.ca/index.htm). CG was also supported by a salary award from the Fonds de Recherche en Santé du Québec (FRSQ). EK was also
supported by the American Epilepsy Society Early Career Physician-Scientist award and by the FRSQ. The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

* E-mail: rasheda.chowdhury@mail.mcgill.ca

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Epilepsy is a neurological disorder characterized by the
recurrence of clinical seizures. The state during which the seizure
takes place is called the ictal state. In between the seizures,
abnormal neuronal discharges, the so-called inter-ictal spikes may
take place and usually occur more frequently than the seizures.
They are generated by the brain without any clinical manifesta-
tions and originate partially from brain regions similar to the ones
involved during the seizures, i.e., from the epileptogenic focus.
Thus analysis of inter-ictal spikes is widely used as a marker of
epilepsy [1-3]. The context of the present study is the
identification and localization of the epileptogenic focus using
these markers, which is crucial during pre-surgical evaluation of
epilepsy surgery [4,5].

Epileptic activity originates from abnormal excitability and
synchronization of neurons. The large pyramidal neurons of the
cortical layer V, which are oriented perpendicularly to the cortical
surface of the brain, are the main generators of brain electro-
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magnetic activity. Magneto-Encephalography (MEG) measures
the magnetic fields generated by the neuronal currents, using a
helmet of few hundred sensors uniformly distributed around the
head [6,7]. This non-invasive modality is used to localize brain
regions involved during the generation of epileptic discharges
[3,6-10].

The amplitude of MEG signals for physiological brain activity is
expected to range from femto-Teslas to pico-Teslas. As mentioned
by Huiskamp et al. [11], inter-ictal spikes are spontanecous signals
that can have relatively large amplitude (~3 pT in MEG). This
mmplies that epileptic MEG signals are likely to arise from large
spatially extended regions of active cortex [12]. A study by Mikuni
et al. [13] suggested that MEG can detect epileptiform activity
when a cortical area greater than 4 cm? is synchronously involved.
Comparing MEG spikes with Electro-CorticoGraphy (ECoG)
spikes, studies performed by Oishi et al. [14] and Huiskamp et al.
[11] showed that MEG sensitivity varies for different regions in the
brain. As a result, not only the size of the generators matters, but
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their location and orientation affect the detection of the MEG
epileptic activity [1,13].

The MEG inverse problem of source localization consists in
inferring the location of the generators of brain activity from
signals detected outside the head [15]. Following a previous study
in which we proposed source localization techniques that are
sensitive to the spatial extent of the generators of epileptic activity
in EEG [16], the present study aims at evaluating the performance
of similar methods when applied on MEG data in this context.
MEG source localization did show excellent spatial accuracy when
validated using invasive studies such as ECoG [14,17], depth
electrode recordings [18,19] and post-operative follow-up [20].
While, MEG offers an excellent temporal resolution (few
milliseconds), our main objective is to propose a source localization
technique that is sensitive to the spatial extent of the underlying
generators.

MEG source localization is an ill-posed problem, as it admits no
unique solution unless additional information is used to regularize
the problem. Such regularizations consist in adding some a prior:
knowledge or constraints to the problem. For instance, Dale and
Sereno [21] introduced anatomical constraints that provided prior
information about the sources by fixing the position of the sources
along the cortical surface in a distributed source model. This type
of constraint makes the inverse problem linear. However, the
problem is still under-determined due to the use of few sensors
(around 300) to estimate brain activity over a large number of
sources (around 4000).

In order to obtain a unique solution, additional constraints in
the form of a regularization scheme are required. Minimum Norm
Estimate (MNE), which chooses the minimum energy solution
[22], and Low Resolution Electromagnetic Tomography (LOR-
ETA) [23], which chooses the solution with maximum spatial
smoothness are among the first and still very popular regulariza-
tion techniques proposed to solve this issue. In the present study,
we compared two regularization schemes based on the following
statistical frameworks: (1) the Maximum Entropy on the Mean
(MEM) [16,24,25] and (2) the Hierarchical Bayesian (HB)
framework [26,27], because of their flexibility in including prior
information or constraint models of different natures.

Based on the rationale of obtaining realistic constraint models
describing the generators of epileptic activity, two types of spatial
models have been investigated. The first one is the idea that brain
activity may be modeled as organized among cortical parcels, that
can be active or not, when contributing to specific activity
[16,24,28]. The second model is an extension of the spatial
smoothness constraint originally proposed in LORETA [23] but
locally constrained within cortical parcels as proposed by Trujillo-
Barreto et al. [29]. Clustering of the brain activity into non-
overlapping cortical parcels is achieved using a Data Driven
Parcellization (DDP) technique similar to the ones described in
Amblard et al. (2004) [24], Lapalme ct al. (2006) [28], and Grova
et al. (2006) [16]. In this study we denoted P(s) the spatial
clustering of the whole cortical surface at a spatial scale s,
controlling the spatial extent and the total number of parcels.

In order to implement these above-mentioned spatial models,
we proposed two new source localization methods within the
MEM framework (MEM-s and CMEM-s) and one within the HB
framework (COH-s). MEM-s refers to the MEM approach
proposed in Grova et al. [16] at a specific clustering scale s, while
CMEM-s refers to “Coherent”-MEM-s, introducing local spatial
smoothness within each cortical parcel. On the other hand, within
the HB framework, we proposed the “Coherent at scale 5 (COH-
s) localization method, modeling the covariance of the sources as a
linear combination of source covariance components [27], where
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each component defines local spatial smoothness over a parcel of
P(s). COH-s uses the same spatial model as CMEM-s and has been
designed to compare MEM and HB frameworks in similar
conditions. In order to assess the ability of these three methods to
localize spatially extended epileptogenic generators, we evaluated
them within a fully controlled environment using realistic
simulations of MEG data. MEM-s, CMEM-s and COH-s were
evaluated together with two HB methods, proposed in Friston
et al. (2008) [27]: the independent and identically distributed
sources (IID) model and the spatially coherent sources (COH)
model, as implemented in the SPM8 software (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8). We assessed the detection accu-
racy of all the methods by simulating sources of several spatial
extents 5, ranging from ~3 cm? t0 30 cm?, and at different cortical
depths. Secondly, for the three methods (COH-s, MEM-s and
CMEM-s) using the spatial model P(s), we assessed the influence of
the spatial clustering scale s on their detection accuracy. We
quantified the performance of each method using the area under
the ROC curve (AUC) as an index of detection accuracy. We also
considered the Mean Square Error (MSE) and minimum geodesic
distance (Dmin) as localization error metrics [16].

After introducing the MEG inverse problem using a distributed
source model, the definition of the two general spatial models
considered in this study is provided: (i) the DDP and (ii) the local
spatial smoothness. Then, the MEM framework and the imple-
mentation of MEM-s and CMEM-s methods are described,
followed by the description of the HB framework and the
corresponding methods (COH-s, COH and IID). The evaluation
procedure of the source localization methods using realistic
simulations is then introduced. Finally the results and a detailed
discussion are presented.

Materials and Methods

MEG Inverse Solution Using Distributed Model

A distributed source model consists of a large number of dipolar
sources distributed along the cortical surface. We considered the
orientation of each dipole to be fixed perpendicular to the cortical
surface. Using this anatomical constraint, the relationship between
source amplitudes and MEG measurements is expressed by the
following linear model [21]:

M=GJ+E (1)

where M is a qxt matrix of the MEG signal measured at
q=275 MEG sensors and 7 time samples. £ models an additive
measurement noise (q X T matrix). 7 is a p X T unknown matrix of
the current density along the cortical surface (p~4000: unknown
dipolar moment amplitudes). G indicates the qxp lead field
matrix obtained by solving the forward problem, by estimating the
contribution of each dipolar source on the sensors.

However, the inverse problem is still an ill-posed problem as the
forward matrix G is under-determined (p>>q). There is no
unique solution unless a priori model or assumptions regarding the
distribution of the sources 7 are added to regularize the problem.
To solve the ill-posed inverse problem, we investigated the
relevance of two types of spatial models, DDP and local spatial
smoothness, within two regularization frameworks (MEM and
HB). In the next sections, we will describe these two spatial models
before introducing their implementation within the MEM and the
HB frameworks.
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Definition of Realistic Spatial Models for Spatially
Extended Generators

Data Driven Parcellization (DDP) of the cortical
surface. We first assume that brain activity can be organized
into functional cortical parcels. Characterizing brain activity,
assuming functional homogeneity within brain parcels has proved
to be an efficient approach to analyze neuroimaging data, either in
EEG/MEG [16,28-31], in fMRI [32-34] or in multimodal fusion
[35,36].

In the present study, we proposed a Data Driven Parcellization
(DDP) method performing full parceling of the tessellated cortical
surface into non-overlapping parcels (see Figure 1). Such a
partition at a specific spatial scale s is denoted by P(s). DDP
consists In using partial information from the available data in
order to guide this spatial clustering.

The key aspect of DDP lies in the pre-localization of the sources
of brain activity using the Multivariate Source Pre-localization
(MSP) method [30] followed by a region growing algorithm. MSP
is a projection method that estimates a coefficient, which
characterizes the possible contribution of each dipolar source to
the data. A spatio-temporal extension of the MSP method is
described in Appendix S1. From this extension, seed points were
iteratively selected among the dipoles showing the highest MSP
coefficients. Region growing around ecach seed points was then
iterated until a given spatial neighborhood order s, resulting in a
partition of the whole brain into K parcels. This way of choosing
the seed points and parceling ensured dipoles contributing to the
same underlying generator to be gathered within the same parcel,
whereas dipoles contributing to distinct generators to be associated
within distinct parcels. A brief description of this DDP technique is
provided in Appendix S2.

Defining brain activity in terms of K parcels of functionally
homogenous activity (K<<p) aims at better conditioning the
under-determined inverse problem, while the inverse method will
infer the local source intensity inside each parcel.

Evaluation of MEG Source Localization Methods

Local spatial smoothness model. Spatial smoothness
model assumes that nearby dipoles are more likely to have similar
intensities. In this context, LORETA - originally proposed by
Pascual-Marqui et al. [23] - used a discrete Laplacian operator to
find the solution with maximum spatial smoothness over a 3D
grid.

In order to introduce local spatial smoothness over a geodesic
surface, we used the diffusion-based spatial prior proposed by
Harrison et al. [37]. Diffusion-based spatial priors are actually
constructed using the Green’s function of the adjacency matrix
defined over the geodesic cortical surface [37,38]. Let us denote 4
as the (pxp) adjacency matrix of the cortical surface, where
A;jy=A;;=1, if the dipoles ¢ and ¢’ are distinct and directly
connected on the mesh, 0 otherwise. The non-zero elements of A
define a connection between dipolar sources in the immediate
spatial neighborhood.

Let us define A4, the discrete Laplacian over the geodesic surface
at the first spatial neighborhood order as:

YA, 0 0
-,

A=A4—| 0 0 )
0 0 Y4,

7 P

1

Note that the non-null entries of A* represent spatial
connections between dipolar sources within the k™ order spatial
neighborhood. We used the spatial smoothness model W
mtroduced in Friston et al. (2008) [27], which is defined by:

8 ke
W(o)=exp(cd)~ Z%A" (3)
k=0 """

Data Driven Parcelling of the whole cortical surface

Clustering scales =3
(K=174 parcels)

Clustering scales =5
(K=74 parcels)

Clustering scales =6
(K=58 parcels)

Figure 1. Parcellization. Examples of clustering of the cortical surface at different spatial scales s obtained using the DDP technique (each color

represents one parcel).
doi:10.1371/journal.pone.0055969.g001
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where ¢ is a parameter that tunes the strength of spatial
smoothness, varying between 0 and 1. In equation (3), the upper
bound of summation was set to 8 as in Friston et al. (2008) [27].
Note that from equation (3), the spatial smoothness matrix I/ can
be interpreted as a generalization of a discrete Laplacian over a
large neighborhood order.

Regularization Techniques

Maximum Entropy on the Mean (MEM) framework. In
the MEM framework, we consider the amplitude of the sources f
to be estimated as a multivariate random variable of dimension p,
with a probability distribution dp(j). The MEM principle aims at
estimating the distribution dp(j) that provides “maximum
uncertainty about missing information carried by the data” [39],
with respect to some reference model assumed on 7 [24].
Regularization in this framework is introduced by writing the
solution in the form of dp(j)=f(j) dv(j), where the reference
distribution dv expresses some assumptions on 7 and f(j) is a v-
density to be found such that it explains the data in average:

M= jij(j)dvm (4)

Among all the distributions dp satisfying the above constraint,
the MEM solution dp=fdv is the one with maximum v-entropy
[16,24]. An interesting property of the MEM approach relies in its
inherent flexibility for introducing constraints through the
definition of the reference distribution dv. In this study, dv was
defined using the parcellization model P(s) assuming brain activity
to be described by K cortical parcels showing homogencous
activation state.

Each cortical parcel k is characterized by an activation state Sk,
describing if the parcel is active (S =1) or not (Sx =0). Assuming
a collection of mutually independent parcels, the global dv was
defined as a factorization of the joint probability distribution of the
K parcels:

dv(j)=dv1(]'1)dvz(1'2)...dvk(jk)...de(jK) (5)

with the following mixture model for each parcel:

dvic (i) = [(1 = 0u) 0 (i) + 0N (1> Zic) (i)l (6)

where oy = Prob(Sj = 1) is the probability of the k™ parcel to be
active. Multivariate ji denotes the intensities of the pi sources in
the k™ parcel. § refers to the Dirac distribution allowing to “shut
down” inactive parcels when Si=0. N(y,2;) is a Gaussian
distribution describing the intensities of the k" parcel when active
(Sk = 1); where g, and X represents respectively the mean and the
covariance of the p; sources within the k" parcel. These
parameters will be described in the next section.

The purpose of the present study was to evaluate different
initialization of @v in the MEM framework, considering spatial
modeling introduced using P(s) and local spatial smoothness within
parcels. Once dv is initialized, the MEM solution dp is obtained
through the optimization of a convex function in a g-dimensional
space (see Appendix S3 for details). Note that whereas MEM
estimation was done iteratively at each time sample, the same
clustering model P(s) was used over the whole time window of
signal to localize.

Source localization methods within the MEM
framework. When incorporating the parcels P(s) through dv
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in the MEM framework, the first step consists in the definition of
the parameters (o, fy, 2i) of dvy for each parcel (equation 6).

® A spatio-temporal Activation Probability Map (stAPM) was
generated (see Appendix S4), by mapping the MSP coefficients
of py sources in the k" parcel (Py) along time. Therefore, the
probability of activation of the parcel Py was initialized at each
time sample ¢ as o (¢) = Medianep, (stAPM(i,1)).

® In the reference model (equation 6), we assumed the Gaussian
distribution of the active state to be a zero mean distribution;
therefore, p; of each parcel was initialized to zero.

® The covariance matrix for each parcel is a time varying matrix
2, (/) defined as follows:

Zi(t)=n() Wi(a) Wi(o) (7)

where n(l)=0.051i Y Jun(i0)? is a scaling factor for the
i€Py,

covariance of each parcel Py, estimated using the average of
the square of the mean activity provided by the Minimum
Norm solution Jyzy [22] within the k" parcel. This scaling
factor was arbitrarily initialized as 5% of the energy within
each parcel. In equation 7, Wy (o) is defined as the py X pk
matrix controlling local spatial coherence within the parcel,
obtained by selecting the rows and columns of W(o)
corresponding to the py sources of the k™ parcel..

Accordingly, under these assumptions, we propose the two
following methods:

(a)  Maximum Entropy on the Mean at a specific cluster scale s (MEM-s)
consists in setting 6 =0 leading to Xy (1) =1(¢)1,,, where I,
is a P X pi identity matrix.

(b)  Coherent—MEM-s at a specific cluster scale s (CMEM-s) consists in
setting ¢ #0 leading to (1) = 7(t) Wi(0)T Wi(s). We have
used 0=0.6, as suggested in Friston et al. (2008) [27], to
mtroduce local spatial smoothness in each parcel.

For MEM-s and CMEM-s, we defined the reference distribu-
tion with mean y;, =0 with the hypothesis that we do not add
much information a priori, since MEM provides inference on the
mean of the distribution. On the other hand, we hypothesized that
the initialization of the covariance matrix 2 (/) for each parcel as
5% of the averaged energy of the Minimum Norm solution Jun
will ensure a proper scale for the intensity of the reference
distribution.

Hierarchical Bayesian (HB) framework. Solving the
MEG inverse problem within the HB framework offers the
advantage of accommodating multiple priors and proposes
inference techniques to select the most likely combination of
priors using model selection approaches [26,27,40-44]. We thus
chose HB as a key framework in which we could consider similar
priors as the ones proposed for MEM thereby allowing an ideal
comparison of the two approaches.

HB model allows integrating uncertainties at different levels,
modeling the covariance in each level as linear combination of
covariance components. The different levels are the sensor noise
level and the source noise level.

At the sensor level (1* level), the relationship between the MEG
measurements (M) and the source amplitudes (j) is given by:
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M=GJ+E; (8)

At the source level (2 level), the prior distribution of the source
amplitudes () is given by:

J=E, )

where Ej and E) represents additive random fluctuations in the
sensor and source space respectively. The a priori distribution of
these additive random noises is a zero mean Gaussian distribution
with spatial covariances Xgpsor and e and temporal
covariance 0, such as:

EINN(O>61®ernsor) and E2~N(0’0t®zmurce) (10)

Here 6, was modeled as the identity matrix. The sensor spatial
covariance X5 Was modeled as:

2 sensor = eXp ()"(1))Q(1) (11)

Where Q(l) refers to a spatial covariance component, i.e., the
identity matrix here, and A0 represents the corresponding hyper-
parameter.

The source spatial covariance X, was modeled as a linear
combination of the form:

S source = exp ()01 P + exp (117) 0,?

12
+ ...+ exp (}Nﬁ))Qm(z) (12

where Q(z)z{le,Qz(z),...,Qm(z)} describes the spatial co-

variance components of the source level and /'Li(z) denotes the
corresponding hyper-parameters, i€[1,m]. The exponential term
on A ensures the covariance model to be positive [27]. The hyper-
parameters were estimated using Restricted Maximum Likelihood
(ReML) algorithm, selecting the most relevant linear combination
of covariance components (see details in Friston et al. (2002) [42]).
localization methods  within the HB
framework. In addition to two standard source reconstruction
methods (IID and COH) implemented in SPM8 software package
[27], we proposed a new method within this HB framework
(COH-s).

(a) COH-s: Coherent at a specific cluster scale s: COH-s incorporates
spatially smooth extended parcels within the HB framework, thus
accounting for the same spatial priors as the ones considered in
CMEM-s within the MEM framework. Three types of covariance
components were considered: 1) Minimum norm component
encoding independent sources Q(] )=Ip, 2) global spatial smooth-
ness Q(zz) =WT(c)W(5) and 3) Klocally spatially coherent parcels
of P(s) as independent covariance components denoted by
(C1,Cy...Ck). Ck is a (pxp) block matrix generated using the
clements of WT(a)W(s), the block being extracted from the py

row and column indices of the k" parcel, and zero elsewhere. Cy
th

Source

thus assumes local spatial smoothness over the whole k™ parcel.
To summarize, COH-s assumes the following spatial covariance
model:
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Q?={Q =1,.Q =W'(¢)W(0),
QP =c.QY=0,....Q0 , =k},

where K represents the total number of parcels at a specific spatial
clustering scale s.

(b) Independent and Identically Distributed model (IID): This model
uses a single source covariance component encoding identically
and independently distributed sources Q) = Q$2> =1, (I, beinga p
dimension identity matrix). This method provides a minimum
energy solution, similar to the one originally proposed by
Hamalainen and IImoneimi (1994) [22].

(c) Spatially Coherent Sources (COH): This method provides a
solution that is spatially smooth, similar to LORETA [23]. It
consists in a model with two spatial components modeling
respectively independent and spatially coherent sources:

0 ={07 =1,,0 =W () W(a)}

Note that COH-s is an extension of COH method using the
concept of multiple parcels introduced in the Multiple Sparse Prior
method proposed by Friston et al. (2008) [27]. Both COH-s and
Multiple Sparse Prior methods are using several regional spatial
covariance components. Whereas Multiple Sparse Prior models
brain activity as small patches of coherent activity sparsely placed
in the left and right hemispheres with a priori maximum variance
at the center of the patch, COH-s incorporates spatially smooth
extended parcels. In COH-s model, the non-zero terms of the
diagonal of Cj have a priori the same energy. Multiple Sparse
Prior method was designed to localize focal “sparse” sources, and
was proved to be efficient in cognitive studies [45]. As our
objective was to localize spatially extended sources of epileptic
activity, we proposed COH-s as a method in the HB framework to
be compared with MEM-s and CMEM-s.

Evaluation Using Realistic Simulations

We evaluated the performance of the five above-mentioned
source localization methods in their ability to localize spatial
extended sources. To perform this validation, we proposed a fully
controlled environment to generate realistic simulations of MEG
data mimicking the generators of epileptic spikes with different
spatial extents, similarly to the evaluation proposed for EEG
source localization in Grova et al. (2006) [16]. This section
describes the validation dataset and validation metric used for the
evaluation.

Ethics statement. Realistic simulations were generated using
MEG data obtained from a patient with focal epilepsy showing
normal tracing with no epileptic activity. This patient participated
as a research subject of the project entitled: “Application of
magnetoencephalography in the assessment of the epileptic focus”
(Dr. E. Kobayashi being the principal investigator for this project).
Written informed consent for this study was obtained from the
subject as approved by the Research Ethics Committee of the
Montreal Neurological Institute and Hospital (MNI/H). At its full
board meeting of June 14, 2011, the Research Ethics Board (REB)
of the MNI/H has endorsed the review of this project and found
this research to be acceptable for continuation at the McGill
University Healthcare Centers. The REB of the MNI/H acts in
conformity with standards set forth in the (US) Code of Federal
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Regulations governing human subjects’ research and functioning
in a manner consistent with internationally accepted principles of
good clinical practice.

Validation dataset. The subject we selected to generate our
realistic simulations had normal cortical surface segmented from
his anatomical Magnetic Resonance Imaging data. This acquisi-
tion was done at the MEG center of Université de Montréal on a
275 channels CTF whole-head MEG system. The detection coils
used in the system were first order radial gradiometers. The C'TF
system is equipped with reference sensors using a 3™ order
gradient correction to subtract background interferences. During
the acquisition, the head position of the subject was tracked using
localization coils placed on three fiducial points (nasion, left and
right peri-auricular points).

A high resolution T1 weighted MRI was acquired on the same
subject at the MRI center of the Montreal Neurological Institute.
Co-registration between MEG sensors position and the anatomical
T1-weighted MRI of the subject was obtained in three steps: (i)
manual identification of the three fiducial points on the MRI, (ii)
digitalization of the position of the fiducials on the head of the
subject using a 3D Polhemus localizer and (iii) the rigid
geometrical transformation between the MRI’s space and the
subject’s space was obtained by fitting these points using
Procrustes method [46].

A realistic head model was obtained by segmenting the surface
of the brain from the subject’s anatomical T'1-weighted MRI [47].
The distributed source model was obtained by segmenting the
white/gray matter interface from the MRI using Brainvisa
software (BrainVISA: http://www.brainvisa.info). The source
model consisted in a realistic 3D mesh of the cortical surface
(4203 vertices, 7 mm mesh). The forward matrix G (in equation 1)
was computed using the Boundary Element Method (BEM)
proposed by Kybic et al. (2006) [48]. A 1-layer BEM model
consisting of only the inner skull surface was considered and
estimated using OpenMEEG software (OpenMEEG: http://
www-sop.inria.fr/odyssee/software/ OpenMEEG/).

Simulation parameters. 100 simulation configurations in-
volving one extended source were generated. The position of each
source was selected by choosing a seed point randomly on the
cortical surface mesh. The spatial extent of each source was
obtained by region growing around the seed following the cortical
surface using different spatial neighborhood orders ranging from a
source spatial extent 5,=2 (~3 cm? to 5,=6 (~30 cm?). The
amplitude of each vertex of the simulated source was set to
9.5 nA.m, generating an overall maximum signal of 1.5 pT for
MEG when all the sources of the cortex were set active. This value
has been chosen to mimic realistic amplitude of a typical epileptic
spike.

The time course of the simulated sources was the time course of
an epileptic spike modeled with three Gamma functions, although
only signal around the main peak of the spike was analyzed (about
21 samples around the peak with a sampling rate of 600 Hz). Let
us refer to Jtheo as the simulated theoretical current distribution
obtained from the spatial distribution of the simulated sources
together with the corresponding time course. Noise-free MEG
data were then simulated by applying the forward model G to the
simulated current density (GJtheo). Realistic physiological noise
was extracted from a three minutes segment of MEG background
activity acquired on a patient with focal epilepsy showing normal
traces without any epileptic discharge. MEG data acquired at
600 Hz were filtered between 0.3 Hz and 70 Hz. Periods with
motion and eye blinks were excluded. Each noise-free simulated
MEG signals were then corrupted by adding some real MEG
background activity. In order to mimic MEG spikes averaging,
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128 trials of 700 ms of MEG background activity were manually
identified. For each simulation, 20 trials were randomly selected
among the 128 trials, averaged and added to the simulated signal.
The amplitude of all 128 trials was scaled to ensure a signal-to-
background ratio of 1 (0 dB) for most superficial sources when
using reference source amplitude of 9.5 nA.m along a patch of 6
em?®. Consequently, the simulation of deep sources resulted in
simulated signals with lower amplitude than the superficial
sources. Therefore, the Signal-to-Noise Ratio (SNR, defined as
the ratio of maximum activity at the peak to the standard deviation
of the background activity) of the realistic simulated data varied
depending upon the location and extent of the underlying sources.

In order to investigate the influence of the spatial clustering
scale s of P(s) for MEM-s, CMEM-s and COH-s, we tested the
performance of the methods when varying the spatial clustering
scale s from s = 3 (K~200 parcels) to s = 6 (K~40 parcels), for each
source spatial extent varying from 5,=2 (~3 cm? to 5=6
(~30 cm?), and for each of the 100 random source positions,
leading to a total of 4(s)x5(s,)x100(configurations)x5 meth-
ods = 10,000 source localizations.

We also performed the following investigations: 1) to compare
the performance of the methods that uses DDP model (MEM-s,
CMEM-s and COH-s) when initializing parcels P(s) either with the
data of interest or with some background MEG activity and 2) to
compare the ability of the methods to localize single spike versus
averaged spike data (average of 20 spikes). For these two tests we
considered 50 source configurations of spatial extent s5,=3
(~7 ecm?® and the methods involving P(s) were localized using a
spatial clustering scale of s=25.

All the simulations were performed with Matlab (R2010a) using
the simulation environment Pipeline System for Octave and
Matlab (PSOM) [49].

Validation metric. In this section we describe the validation
metrics used to evaluate the detection accuracy of the source
localization methods presented in section: Regularization
techniques. Note that the solution of the inverse problems was
estimated and evaluated at one single time sample, at the peak of
the spike.

(a) Area Under the ROC Curve (AUC): To assess the detection
ability of the different localization methods, we used the Area
Under the Receiver Operating Characteristic (ROC) curve [50],
denoted by AUC, as a detection accuracy index assessing the
sensitivity to the spatial extent of the sources. This metric was
adapted by Grova et al. [16] to fit the context of a distributed
source model. We chose the AUC index as the validation metric
mainly because of the difficulty of providing a valid statistical
threshold for all the proposed methods. The AUC index was
estimated at the main peak 7¢ of the simulated spike. We estimated
the energy E of the current density distribution at 79, for each
localization. To compare E with E,.r(energy of the simulated
current density distribution), E and E,.s were first normalized
between 0 and 1 for each dipole ¢ EG)= H](i)Hz/maX,,(H](n)Hz)
and  Eyor (i) = | Jror (i) |* /max, (| Jrer (m) ). We  quantified the
specificity and sensitivity of the localization method by varying a
threshold f§ between 0 and 1 and considering a dipole i to be active
if E(i;tg)>p. ROC curves were then obtained by plotting
sensitivity (f) against (1— specificity(f)). AUC was finally estimated
to assess detection accuracy. In our study, a value of AUC>0.8
was considered to be good detection accuracy, suggesting 80% of
detections were accurate.

However, to interpret the area under the ROC curve as a
detection accuracy index, one should provide the same number of
active and inactive sources to the ROC analysis [16]. Indeed, in
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the context of distributed source evaluation, the estimation of
AUC is biased by the fact that among the p=4203 dipoles of the
source model, only few dipoles (p,) were actually active compared
to the large number of inactive dipoles (p —p,). A more accurate
estimation of AUC was obtained by using as many inactive sources
as active sources during the evaluation. This was done by
randomly selecting p, inactive or fictive sources among the
(p—pa) available either within the immediate spatial neighbor-
hood of the simulated sources (AUC.) or within far local
maxima of the source localization results (AUCy,,). The final AUC
index was computed as the mean of AUC,,,, and AUCy,, thus
providing a metric assessing both the ability of the method to
focalize the reconstructed activity and the eventual generation of
spurious sources far from the simulated one (see [16] for more
details).

(b) Mean Square Error (MSE): To assess the ability of the methods
to accurately recover the amplitude of the simulated current
density (Jftheo), we estimated the mean square error (MSE) [16]
between the simulated current amplitude and the reconstructed
one over the whole brain at the peak of the spike. Lower MSE
values indicate that the method is able to recover the current
amplitude with high accuracy.

(¢) Minimal geodesic distance to the source (Dmin): To quantify source
localization accuracy, we estimated the minimum geodesic
distance between the dipolar source showing the global maximum
of reconstructed activity source and the closest dipole belonging to
the simulated source. This geodesic distance following the
circumvolutions of the cortical surface was denoted by Dmin
[16]. Solutions for which this global maximum was localized on
the wrong hemisphere, Dmin could not be estimated since the
surfaces of the two hemispheres were not connected geodesically.
Therefore, Dmin was finally set at the largest Dmin value obtained
over all source configurations in such cases. A value of Dmin close
to 0 indicated that the maximum of reconstructed activity source
was found within the simulated source.

In addition, AUC was measured as a function of eccentricity to
check for the influence of the depth of the source on detection
accuracy. The eccentricity of a simulated source was defined as the
distance between the seed point of the spatially extended source to
the center of the head, whereby the deepest source have a lower
eccentricity value (10 mm) and the most superficial ones have a
higher eccentricity value (90 mm). Sources with eccentricity
ranging between 40 mm and 60 mm corresponded mainly to
mesio-temporal sources and the ones with eccentricity less than
40 mm corresponded to the sub-cortical sources.

Results

Qualitative Assessment

The purpose of this first section is to evaluate qualitatively the
performance of three simulations together with the corresponding
validation metrics AUC, MSE and Dmin. To visualize the results,
we showed the absolute value of the reconstructed activity at the
peak of the simulated spike, thresholded upon the level of
background activity [51].

Figure 2 illustrates the ability of the five evaluated methods to
localize a right occipito-parietal source with an extent of
5,=2(~3 cm?) and an eccentricity of 79 mm (superficial source).
Note the AUC values were in agreement with visual inspection.
We observed that methods MEM-s and CMEM-s were the most
accurate in detecting the spatial extent of the source (AUC>0.90,
MSE = 0.70 and Dmin =0 mm for MEM-s and CMEM-s at s=3
and 5). IID and COH showed slightly less accurate localization
(AUC =0.88, MSE = 0.98, Dmin = 28.7 mm), probably due to the
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presence of low amplitude frontal spurious sources. Note that both
IID and COH underestimated the spatial extent of the source
equally and exhibited very similar solutions. For COH method,
ReML model selection actually pushed forward the minimum
energy prior over the spatial smoothness prior (cf. ReML estimates
for COH, Ziz) = 0.057 and /l(22> = 0 in equation (12)). This makes
COH interesting when localizing focal sources, as it is able to
choose between the minimum energy solution for more focal
sources and the spatial smoothness solution for spatially extended
sources. Finally, in this specific case, COH-s failed to find the
simulated occipito-parietal source (Figure 2b, 2c), as it exhibited a
spurious source (Dmin=120.3 mm at s=3 and at s=5 the
maximum activity was found on wrong hemisphere) in the deep
fronto-mesial region, resulting in poor localization accuracy
(AUC=0.49 and MSE=891 at s=3 and AUC=0.75 and
MSE =6.8 at s=5).

We also illustrated the impact of the clustering scale s in P(s) (see
Figure 2b and Figure 2c). MEM-s and CMEM-s provided similar
AUC values at s=3 and s=5. CMEM-s reproduced accurately
the extent of the source following a smooth diffusion along the

cortical surface (AUC=0.96 and MSE=0.74 at s=3,
AUC=0.95 and MSE=0.78 at s=J5), whereas MEM-s
(AUC=0.96 and MSE=0.70 at s=3, AUC=0.97 and

MSE =0.79 at s=5) recovered a similar spatial extent with less
local smoothness. The profile of reconstructed intensities using
MEM-s is actually similar to typical profiles observed in a
minimum norm solution; however, it exhibits a larger contrast
over the actual extent of the source. We also noticed a slight over-
estimation of the extent of the source when using MEM-s and
CMEM-s at s=5. On the other hand, increasing the clustering
scale s from 3 to 5 had very little impact on the accuracy of COH-s
localization in this example, probably because of the presence of
spurious sources. Whereas COH-s did show a larger AUC value of
0.75 for s=5 when compared to AUC =0.49 at s= 3, an accurate
low intensity source was found at s=5, but did not pass Otsu’s
threshold [51], as the intensity of the spurious source was larger.

Figure 3 illustrates the ability of the five methods to localize the
same right occipito-parietal source but more spatially extended
(extent 5,=5 (~15.7 cm?), eccentricity =79 mm). All methods
were able to localize this source, but the spatial extent of the source
has been slightly under-estimated. COH was the most accurate in
reproducing the source spatial extent with AUC=0.97,
MSE =0.78 and Dmin =0 mm. In this example, COH favored
the spatial smoothness solution (cf. ReML estimates for COH,

/152) = 0 and /1(22) = 0.28), hence, provided better localization than
for the previous example. IID showed less accurate localizations
(AUC =0.84, MSE =0.88) due to under-estimation of the spatial
extent of the simulated source, whereas the maximum of activity
was accurately localized (Dmin =0 mm, Figure 3d). MEM-s and
CMEM-s reproduced the source spatial extent with good accuracy
ats=3 and s=5 (AUC =0.88 and 0.85 for MEM-s, 0.90 and 0.83
for CMEM-s, with MSE~0.80 and Dmin =0 mm). CMEM-s was
able to detect the local maximum activity of the source following a
smooth diffusion along the cortical surface; however, the source
spatial extent was slightly under-estimated. MEM-s was able to
localize the source but lacked smooth diffusion along the cortical
surface. COH-s provided less accurate source localization for both
s=3 and 5 (AUC=0.78, and 0.71). At s=3 COH-s was able to
detect the source and its spatial extent but also presented a higher
intensity deep spurious source (cf. Dmin: maximum located in the
wrong hemisphere, MSE =0.91) (Figure 3b). At s=5, COH-s
detected the source with a low intensity and under-estimated its
spatial extent (AUC = 0.71), whereas the maximum was accurately
localized (MSE =0.67, Dmin =0 mm). Note that the size of the
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Figure 2. Qualitative assessment. Visual analysis of source localization results together with Area Under the ROC curve (AUC) values for a
simulated source of spatial extent s,=2 and eccentricity 79 mm. All source localization results are presented as the absolute value of the current
density at the peak of the spike, normalized to its maximum activity and thresholded upon the level of background activity [51]. (a) Theoretical
simulated source: spatial extent of the cortical source and associated simulated MEG signal for all MEG sensors (data being localized within a window
of 20 time samples around the first peak of the spike). (b) Source localization results obtained for MEM-s, CMEM-s and COH-s at s=3. (c) Source

localization results obtained for MEM-s, CMEM-s and COH-s at s=5. (d) Source localization results obtained for [ID and COH.

doi:10.1371/journal.pone.0055969.g002

parcels used in COH-s (s=3 and 5) are smaller than the source
spatial extent.

Figure 4 illustrates the ability of the five methods to localize a
deeper and less extended left orbito-frontal mesial source (spatial
extent 5,=3 (~9.8 cm?), eccentricity = 70 mm). Overall the
deeper aspects of the source were difficult to localize. MEM-s
and CMEM-s provided good localization of some superficial
aspects of the source (MEM-s with AUC =0.90, MSE =0.92 and
Dmin=0mm at s=4 and AUC=0.87, MSE=0.95 and
Dmin=25mm at s=6, CMEM-s with AUC=0.93,
MSE=0.90 and Dmin=0mm at s=4 and AUC=0.94,
MSE =0.94 and Dmin =0 mm at 5= 6). Increasing the clustering
scale s from 4 to 6 had no impact on the localization of MEM-s
and CMEM-s (Figure 4b and 4c). On the other hand, increasing
the clustering scale s from 4 to 6 had a great impact on the
accuracy of COH-s localization (AUC =0.72, MSE=0.99 and
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Dmin=44 mm for s=4 to AUC=0.95, MSE=0.68 and
Dmin=0 mm for s=6). COH-s at s=6 provided the most
accurate localization of this source. COH and IID provided the
least accurate localizations (AUC =0.70, MSE = 0.91 and Dmin =
2.5 mm, Figure 4d). In this last case, COH actually chooses
the minimum norm solution when localizing focal sources (cf.

ReML estimates for COH, 1(12> = 0.024 and ).gz) = 0).

Effect of the Spatial Extent of the Simulated Sources
Table 1 reports the medians of AUC values obtained over 100
source configurations for all the five methods and all the source
spatial extents s,= 2, 3, 4, 5, and 6. For this comparison, MEM-s,
CMEM-s and COH-s were considered using a clustering scale of
s=5. For all the spatial extents, COH, MEM-s and CMEM-s
exhibited median AUC values greater than 0.8, indicating overall
good detection accuracy with these methods. COH-s showed
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Figure 3. Qualitative assessment. Visual analysis of sour