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a b s t r a c t 

Measurements of morphometrical parameters on i.e., fish larvae are useful for assessing the quality and condition 

of the specimen in environmental research or optimal growth in the cultivation industry. Manually acquiring 

morphometrical parameters from microscopy images can be time consuming and tedious, this can be a limiting 

factor when acquiring samples for an experiment. Mask R-CNN, an instance segmentation neural network 

architecture, has been implemented for finding outlines on parts of interest on fish larvae (Atlantic cod, Gadus 

morhua). Using classical machine vision techniques on the outlines makes it is possible to acquire morphometrics 

such as area, diameter, length, and height. The combination of these techniques is providing accurate-, consistent- 

, and high-volume information on the morphometrics of small organisms, making it possible to sample more data 

for morphometric analysis. 

• Capabilities to automatically analyse a set of microscopy images in approximately 2-3 seconds per image, with 

results that have a high degree of accuracy when compared to morphometrics acquired manually by an expert. 
• Can be implemented on other species of ichthyoplankton or zooplankton and has successfully been tested on 

ballan wrasse, zebrafish, lumpsucker and calanoid copepods. 
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Specifications Table 

Subject Area: Computer Science 

More specific subject area: Biology; morphometrics 

Method name: AutoMOMI (Automated Morphometrics On Microscope Images) 

Name and reference of original method: n/a 

Resource availability: https://doi.org/10.5281/zenodo.5745209 

Method details 

AutoMOMI (Automated Morphometrics On Microscope Images) provides a framework for 

automated morphometrical analysis of microscopy images, using Mask R-CNN [9] , written in Python 

3.6. Mask R-CNN is an instance segmentation neural network architecture developed by Facebook AI 

Research (FAIR), which has been trained to identify and outline parts of interest on the microscopy

image. The morphometrical measurements, like area and length on Atlantic cod, are acquired from 

the Mask R-CNN outlines using classical machine vision techniques. This article will discuss the 

implementation of this method on larvae of Atlantic cod, but it can also be implemented on other

species of ichthyoplankton or zooplankton. 

Automated morphometrical analysis 

Figure 1 presents an overview of the automated data processing flow, from raw microscope images

to morphometric parameters represented in a human-readable data file. The four main modules, (i) 

input data, (ii) neural net, (iii) morphometrics and (iv) output data are explained in detail in this

section. 

Input data 

Executing the processing algorithm requires: (i) Model weights, a H5 binary file containing the 

weights that is applied to the neural net architecture to detect the correct features in the input image.

The weights file is derived from training the neural network and is explained in section 2. (ii) A

scaling parameter, in pixels per millimetre, this parameter can vary depending on the optics used on

the microscope or the resolution of the image sensor (usually acquired by imaging a scale bar). (iii)

The microscopy images to be processed in a JPG-, JPEG-, PNG- or BMP image format. A framework

has been developed that will automatically process microscope images from a folder, this way the

algorithm can process a batch of microscopy images completely unattended. 

Neural net / Mask R-CNN 

The neural network has a fixed input, meaning all microscopy images must have a specified size,

therefore the images need to be rescaled to a size of 1024 × 1024 pixels. To speed up training the

input image is normalized around pixel value 123.7 (Red), 116.8 (Green) and 103.9 (Blue), so that the

model weight parameters can converge closer to zero mean. Matterport’s implementation of Mask 

R-CNN [1] was used for AutoMOMI as it contains good documentation for implementing a custom

data set. The neural network output is a K x N x M matrix containing K binary masks with the same

dimension as the input image ( N x M ), along with a Region of Interest (ROI) for each mask. Each

binary mask ( K ) represents the segmented area of each detected object, where the pixel values can

be "1" (segmented area) or "0" (background), the ROI and binary masks are illustrated in Figure 2 . 

Morphometrics 

The morphometrics are based on the masks generated from the neural network output and the

scaling parameter. Extracting the morphometrics, i.e. length and area, is achieved with classical 

machine vision techniques using OpenCV v4.1 [2] and Scikit-Image v0.16.2 [14] in Python ( Table 1 ). 
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Fig. 1. A flow diagram of the automated process for morphometric analysis, with its four main modules: input data, neural network, morphometrics and output data. 
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Fig. 2. An illustration of the Mask R-CNN neural network output data (bottom) from an input image (top), where the body (blue), eye (red) and yolk sac (green) is outlined and marked 

with the confidence value from the neural network, in this case all detected parts of interest had a confidence value of 1.0 (100%). 
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Table 1 

Explanation of how each morphometric parameter is obtained from the binary masks 

Yolk & Eye Area 

The area (blue), is calculated by summing the 

binary pixel values in the binary mask and 

multiply with the square of the scaling 

parameter. The same technique is used for 

calculating body area (white). 

Diameter 

Min/max (green/red) diameter is derived using 

the Scikit-Image functions, "label" and 

"regionprops" to acquire the minor- and major 

axis of a least square fitted ellipse to the eye 

and yolk mask. Multiplying with the scaling 

parameter gives minimum and maximum 

diameter of the eye and yolk. 

Eye to front 

Minimum distance from eye to front end 

(orange) is used as an indicator of the degree 

of craniofacial deformation of the cod larvae. 

This metric is calculated by finding the 

shortest path from the frontal edge of the eye 

to the forehead. 

Body Myotome height 

The myotome height (yellow) is the myotome 

cross section measured, on the body mask, 

from right behind the anus multiplied with the 

scaling factor. Using the body mask, we can 

calculate an approximate body orientation by 

defining a 100 pixels long line on the body 

outline, centred above the myotome cross 

section. Calculating the angle of this line we 

can adjust the cross section according to the 

orientation of the larvae, as the cross section 

should be orthogonal to the body orientation. 

Standard length 

The standard length (red) is the length 

measured from forehead along the myotome to 

the end of the notochord, multiplied with the 

scaling factor. The tail is measured using Scikit 

function "skeletonize" [15] and the preanal 

body area is measured by finding the distance 

from the yellow line (myotome height) to the 

forehead via the neck. 

O

 

t  

i  

p  

s  
utput data 

The framework built around the automated morphometrics algorithms will automatically acquire

he microscopy images from a folder for analysis. The morphometrics acquired from AutoMOMI

s stored in a CSV file (Comma Separated Values) containing data for every microscopy image

rocessed from the folder, making it possible to import to Excel, MATLAB or other software for

tatistical analysis. To make the analysed data trustworthy, the algorithm will automatically render



6 B. Kvæstad, B.H. Hansen and E. Davies / MethodsX 9 (2022) 101598 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the calculated morphometrics on top of the microscopy image ( Figure 3 ) for verification by expert

eye. 

Training the neural network 

To avoid potential accuracy loss due to an imbalanced training set [ 10 , 12 ], the different species

are trained separately, this approach gives one set of model weights per species and will not be

compatible with each other. Species classification is not the main objective for AutoMOMI, and it is

expected that the user already has categorized the species beforehand, as a part of the procedure for

implementing support for a new species. Figure 4 illustrates the process flow for implementing a new

species to the AutoMOMI framework by training the Mask R-CNN neural network. 

Training set 

ImageJ [13] was used for manually acquiring measurements on microscope images before 

AutoMOMI was developed, meaning that 122 images of Atlantic cod with outlined yolk sacs was

already available from a previous experiment published in Hansen et al. [5] . The outline data are

stored in the metadata of a TIF (Tagged Image File Format) file along with the respective images, a

Python script was therefore developed to extract the metadata in the TIF file to a CSV file format along

with the images stored as JPGs. The CSV file has the same format as VIA (VGG Image Annotator), a

lightweight open-source software for annotation of JPG-, JPEG-, BMP- and PNG image file formats [3] .

Meaning that AutoMOMI can be trained on data annotated with ImageJ and VIA, however only ImageJ

was used due to the familiarity for the biologist annotating the data. 

From the 122 images, 48 of the images got the remaining body- and eye outline annotated, serving

as the initial training set for Atlantic Cod. Although 48 images in the initial training set is conserdered

as small, it turned out to give an average accuracy of more than 90% when testing on images from the

same batch. This was due to images in this batch were taken from the same microscope, containing

exactly one larva with roughly the same background. However, the dataset was not sufficient when

analysing a different batch of images, captured under circumstances like different optics, -lighting or 

-larvae age/size. Therefore, over a two-year period, the Atlantic Cod training set has grown to 213

images trough two additional training iterations, using the method described in Figure 4 . By assessing

the rendered output image ( Figure 3 ), the worst performing images per new batch of images was

annotated and appended to the existing training set, 58 and 109, respectively. Over time, building a

larger and more diverse training set that will increase the overall accuracy as the neural net starts to

generalize better, as the training set grows, it is expected that the accuracy will at some point plateau

and appending new training data will no longer be necessary [12] . 

Data preparation 

Of the total dataset, 90% is used for training, and the remaining 10% is used for validation,

both is normalized and resized in preparation of training. To expand the training set further image

augmentation is applied using imgaug [11] , an open source Python based platform for augmenting

training set for machine learning. Using the imgaug function “SomeOf”, a random selection between 

1 and 5 from the list augmenters below was used on the training set for each training step. 

1. 50% probability of flipping image horizontally (“Fliplr”) 

2. Image channel multiplication of a random value between 0.7 and 1.3 (“Multiply”) 

a. 75% probability of per channel multiplication 

b. 25% probability of image wise multiplication 

3. One of the following (“OneOf”) 

a. Gaussian blur with a random kernel sigma value between 0.0 and 5.0 (“GaussianBlur”) 

b. Simplex noise alpha with Gaussian blur with a kernel sigma of 10.0 (“SimplexNoiseAlpha”) 

4. Rotate image by a random value between -45.0 and 45.0 degrees (“Affine”) 

5. Shear image by a random value between -25 and 25 degrees (“Affine”) 



B
.
 K

v
æ

sta
d

,
 B

.H
.
 H

a
n

sen
 a

n
d
 E

.
 D

a
v

ies
 /
 M

eth
o

d
sX
 9
 (2

0
2

2
)
 10

15
9

8
 

7
 

Fig. 3. An automatically rendered microscopy image of an Atlantic cod larvae (3 days post fertilization) with the morphometrics for manual verification of body area (white line), yolk 

sac area (green line) and eye area (blue line), as well as standard length (red line), forehead to eye distance (blue line) and myotome height (yellow line). The morphometric parameters 

is automatically added to the top left corner. 
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Fig. 4. A flow diagram of the procedure for training the neural network for predicting outlines for a new species. The procedure is spilt in to four modules: training set, data preparation, 

training, and verification. This process is repeated until the end results are satisfactory. 
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6. Warp the image by a random scale between 0.01 and 0.05 (“PiecewiseAffine”) 

7. Crop and pad the image by a random value between 0 and 300 pixels on the horizontal axis

and 0 and 100 pixels on the vertical axis (“CropAndPad”) 

Choosing the right augmentors with its parameters was determined by selecting realistic

arameters that make the image look similar to the original data, but with a slight variation. E.g.,

he larvae direction can vary, parts of- or the whole image can be slightly out of focus, background

olour and brightness can vary and so on. However, the larvae will never be imaged upside-down, or

e so out of focus that not even an expert could classify it, hence flipping the image upside-down or

pplying Gaussian blur with a too high kernel sigma would be unrealistic. 

raining 

Using the existing framework in the Matterport source code, the neural network was trained on

 desktop computer (Ubuntu 18.04, Nvidia RTX 2080Ti, Intel i9-9900k, 32Gb RAM). During training,

oss metrics were logged to Tensorboard and a snapshot of the model weights was saved to disk

fter every epoch, approximately every 7 th minute of training. The training was stopped when the

alidation loss started to increase relative to the training loss (overfitting), after 1028 epochs. By

raining the neural net until it starts to overfit, we are sure that the neural net accuracy will not

mprove with more training. Using loss metrics from Tensorflow the model weights from epoch 679

as selected as it had the lowest validation loss. 

erification 

A total of 1372 unannotated microscopy images of Atlantic cod larvae were analysed using the

eural network, the results were manually verified by an expert by inspecting the automatically

endered images ( Figure 3 ), any misclassified image were annotated and appended to the existing

raining set for further training of the neural network. This process was repeated until the number of

ejected images due to misclassification was less than 10%, and after an additional 58 images of cod

as appended to the training set. 

ethod validation 

AutoMOMI was validated with a dataset from an experiment where Atlantic cod embryos were

xposed to crude oil resulting in morphological and developmental deformations [5] . The dataset

ontained 77 images of larvae of which 18 larvae were negative controls (treated with filtered sea

ater), 11 larvae exposed to water-soluble fractions (WSF) of crude oil degraded for 10 days diluted

o 10% (T10-10%), 14 larvae exposed to WSF degraded for 21 days diluted to 50% (T21-50%) and 18

arvae exposed to WSF biodegraded for 14 days undiluted (T14-100%), all images were taken of larvae

 days post hatch. Morphometrical data (standard length, body area, myotome height, eye diameter

nd yolk sac area) from the experiment had manually been acquired by an expert in the field. These

easurements were compared with the data acquired using AutoMOMI, with model weights trained

n a different dataset containing 213 images of Atlantic cod. By manually analysing the rendered

mages ( Figure 3 ), 44 measurements (out of 770) were removed due to misclassifications, this includes

idth, height and area of 6 yolk sacs, 9 bodies and 4 eyes. In order to compare the results from

utoMOMI and the expert, the average and standard deviation of each endpoint was calculated for

ach experiment group and plotted side-by-side ( Figure 5 ). 

When inspecting Figure 5 , the data from both methods are comparable as both are sharing

he same trend, e.g., higher concentration of WFS affects the larva’s ability to consume its yolk

ac ( Figure 5 C) or does not have an effect on yolk sac length ( Figure 5 E). However, in the short

easurements ( < 0.4mm) like myotome height- and eye diameter measurements ( Figure 5 B and -

), there is a larger deviation in trend between the results from manual acquisition and AutoMOMI

hen compared to the longer measurements ( Figure 5 A, -C, -D and -E). This highlights a possible

imitation of AutoMOMI when it comes to smaller measurements on an image, this becomes more
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Fig. 5. A side-by-side comparison plot for morphometrics acquired automatically with AutoMOMI (blue) and manually from an expert (red) for each exposure group (x-axis) and end 

point (sub plots). 
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Fig. 6. A scatter plot with linear regression, where measurements from a human expert (y axis) are compared with measurements from AutoMOMI (x axis) with a best fit regression line 

(red) and a linear line with a slope number of 1 (dotted black). 
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apparent when plotting the results as a scatter plot with regression line ( Figure 6 ), the measurements

for subplots B and F are more scattered and the regression line is less linear than subplots A, C, D,

and E. 

Another factor to consider when doing the analysis manually with ImageJ is finding the 

morphometric end points for 77 microscopy images is approximately a day’s work, the results might

also vary from person to person, time of day or mood. AutoMOMI can processes one microscopy

image in approximately 2-3 seconds and the entire dataset of 77 images in less than four minutes,

completely unattended. 

Because of AutoMOMI we are now able to sample even more data for morphometric analysis, as

we are only required to validate the automatically rendered images instead of doing the morphometric

analysis manually. It is also faster to implement a new species for larger data sets than to perform

the morphometric analysis of the whole data set manually, as the training set can consist of a fraction

of the total data set in one experiment. So far, AutoMOMI has successfully been tested on yolk-sac

larvae of Atlantic cod ( Gadus morhua ), Atlantic haddock (Melanogrammus aeglefinus), ballan wrasse 

( Labrus bergylta ), zebrafish ( Danio rerio ), lumpsucker ( Cyclopterus lumpus ) and on different copepodite

stages of the copepods Calanus finmarchicus and Calanus glacialis (Appendix A), as well as used in

ecotoxicology research [7] . 

Background 

Morphometrical parameters in developing fish larvae can be used to assess larvae quality and

condition. Morphometrics can provide valuable information regarding optimal rearing conditions for 

the cultivation industry (Fotedar, 2017) [4] . It is also extensively used, as a complementary tool

to traditional time-consuming staining methodologies for assessing the presence of developmental 

malformations in ecotoxicological studies (Hansen et al., 2019) [8] . Morphometrics have also proven

very useful in studies investigating developmental effects of pollutants on zooplankton development 

(Hansen et al., 2016) [6] . High-quality and standardized images of fish larvae are regularly used to

measure different features, like standard length, body area, yolk sac size and eye diameter, using

ImageJ, an open-source image processing program. Unfortunately, using ImageJ (or other tools) for 

this task (especially microscopy images with a complicated background, varying light, and random 

blurriness) is a time consuming and laborious manual task and can be a limiting factor when

acquiring samples for an experiment. 
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