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Abstract 

Background:  This study aims to construct a new prognostic gene signature in survival prediction and risk stratifica-
tion for patients with Head and neck squamous cell carcinoma (HNSCC).

Method:  The transcriptome profiling data and hallmark gene sets in the Molecular Signatures Database was used to 
explore the cancer hallmarks most relevant to the prognosis of HNSCC patients. Differential gene expression analy-
sis, weighted gene co-expression network analysis, univariate COX regression analysis, random forest algorithm and 
multiple combinatorial screening were used to construct the prognostic gene signature. The predictive ability of gene 
signature was verified in the TCGA HNSCC cohort as the training set and the GEO HNSCC cohorts (GSE41613 and 
GSE42743) as the validation sets, respectively. Moreover, the correlations between risk scores and immune infiltration 
patterns, as well as risk scores and genomic changes were explored.

Results:  A total of 3391 differentially expressed genes in HNSCC were screened. Glycolysis and hypoxia were 
screened as the main risk factors for OS in HNSCC. Using univariate Cox analysis, 97 prognostic candidates were 
identified (P < 0.05). Top 10 important genes were then screened out by random forest. Using multiple combinatorial 
screening, a combination with less genes and more significant P value was used to construct the prognostic gene 
signature (RNF144A, STC1, P4HA1, FMNL3, ANO1, BASP1, MME, PLEKHG2 and DKK1). Kaplan–Meier analysis showed 
that patients with higher risk scores had worse overall survival (p < 0.001). The ROC curve showed that the risk score 
had a good predictive efficiency (AUC > 0.66). Subsequently, the predictive ability of the risk score was verified in the 
validation sets. Moreover, the two-factor survival analysis combining the cancer hallmarks and risk scores suggested 
that HNSCC patients with the high hypoxia or glycolysis & high risk-score showed the worst prognosis. Besides, a 
nomogram based on the nine-gene signature was established for clinical practice. Furthermore, the risk score was 
significantly related to tumor immune infiltration profiles and genome changes.

Conclusion:  This nine-gene signature associated with glycolysis and hypoxia can not only be used for prognosis 
prediction and risk stratification, but also may be a potential therapeutic target for patients with HNSCC.
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Introduction
Head and neck squamous cell carcinoma (HNSCC), 
which includes a group of heterogeneous tumors from 
the squamous epithelium of the oral cavity, oropharynx, 
larynx and hypopharynx, is the seventh most common 
cancer in the world [1]. There are approximately 645,000 
new cases of HNSCC each year worldwide. After receiv-
ing aggressive therapy, the 5-year survival rate of patients 
with HNSCC is still less than 50%. Patients with recur-
rent or metastatic HNSCC usually have a poor progno-
sis, with a median overall survival (OS) of only about 
6  months. As far as we know, smoking, drinking, and 
human papilloma virus infection are risk factors for 
HNSCC. Moreover, the site of HPV infection is related 
to OS of HNSCC patients. For example, HPV positivity 
in the oropharynx, hypopharynx, oral cavity, and larynx 
is associated with improved OS, while HPV positivity 
in the nasopharynx and sinus passages is not associated 
with OS [2]. In the treatment of HNSCC, TNM staging 
is routinely used as the basis for selecting an appropri-
ate treatment plan including surgery, radiotherapy and/
or chemotherapy. Surgery is used for HNSCC patients 
whose tumors have not spread. Radiation therapy can 
be used for HNSCC patients with advanced pathologi-
cal stage. Recent studies have shown that simultaneous 
radiotherapy and chemotherapy can improve patient 
survival, but it is not tolerated by many patients. Thus, 
although there have been some improvements in the 
treatment of HNSCC in the past few decades, the OS 
rate has not been improved significantly, which is mainly 
related to advanced stage at the time of diagnosis and 
the high treatment failure rate of advanced stage. There-
fore, screening new prognostic biomarkers is essential 
to improve the clinical efficacy and OS of patients with 
HNSCC [3].

The hallmarks of cancer can show the basic character-
istics of tumor cells. Recent studies suggested that some 
cancer hallmarks such as glycolysis and hypoxia were 
significantly related to the prognosis of patients with 
HNSCC. Glycolysis as the preferred pathway of energy 
metabolism is a characteristic of cancer cells. There-
fore, cancer cells often exhibit increased glycolysis [4]. 
Previous studies have suggested that in HPV-negative 
HNSCC, the expression of genes related to glycolysis 
increased [5]. And glycolysis can be used as a biomarker 
to predict the prognosis of HNSCC patients [6]. In addi-
tion, pyruvate metabolism, a major glycolytic metabo-
lite, was considered a potential anti-cancer target [7]. In 
terms of intratumoral hypoxia, tumor hypoxia is related 

to chemotherapy resistance and radiotherapy response 
in HNSCC [8, 9]. Moreover, hypoxia-inducible factor-1α 
was involved in intratumoral hypoxia-mediated tumor 
metastasis in HNSCC [10]. As hypoxic cells were more 
resistant to treatment, intratumoral hypoxia was an indi-
cator of poor prognosis in HNSCC [11, 12]. Therefore, 
certain genes related to cancer hallmarks such as glyco-
lysis and hypoxia are expected to serve as prognostic bio-
markers for HNSCC.

Currently, treatment decisions for individual HNSCC 
patients are mainly based on the patient’s specific con-
dition. However, the predictive ability and accuracy of 
traditional pathological staging have shown some defi-
ciencies. Therefore, there is an urgent need to find new 
accurate and reliable predictors for HNSCC to guide 
risk stratification management and develop personalized 
treatment plans. In this study, we extracted an HNSCC 
cohort from the Cancer Genome Atlas (TCGA). Then, we 
explored the correlations between the cancer hallmarks 
and HNSCC. Next, we screened important prognostic 
genes related to glycolysis and hypoxia. A gene signa-
ture for survival prediction was then established. Subse-
quently, the prognostic value of the risk score based on 
gene signature was verified in the training set from TCGA 
and the validation set from the Gene Expression Omni-
bus (GEO). In addition, the correlations between risk 
scores and immune cell infiltration patterns, immune-
related molecules and genomic changes were explored, 
respectively. Time-dependent receiver operating charac-
teristic (t-ROC) curve was used to verify the prediction 
accuracy of the survival model. Taken together, this study 
comprehensively analyzed the prognostic value of a new 
gene signature related to cancer hallmarks including gly-
colysis and hypoxia in HNSCC. This gene signature can 
be used not only as a prognostic biomarker, but also as a 
potential therapeutic target for HNSCC.

Material and methods
Data set preparation and data processing
The training dataset and validation dataset for con-
structing prognostic gene signature were download 
from the TCGA and GEO databases, respectively. The 
training dataset with HNSCC-mRNA expression pro-
file and clinical information obtained from the TCGA 
database (http://​cance​rgeno​me.​nih.​gov/) included 546 
HNSCC patients. The validation data sets (GSE41613 
and GSE42743) with HNSCC-mRNA expression profile 
and clinical information downloaded from the GEO data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) included 97 and 
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74 HNSCC patients, respectively. The above two data-
bases are publicly available. Therefore, this study did not 
require the approval of the local ethics committee.

In order to make the gene expression profiles of differ-
ent platforms comparable, we downloaded the data in 
FPKM format from the TCGA database and converted 
it into TPM format. Figure S1 showed the sample-nor-
malized boxplots of two HNSCC cohorts from the GEO 
database. Subsequently, we performed a log2 normali-
zation conversion on the above data. Meanwhile, using 
the limma package in R, the chip data downloaded from 
GEO was normalized [13]. Subsequently, 498 HNSCC 
samples with follow-up information and overall survival 
greater than zero from the TCGA RNAseq data were 
screened. The gene expression profile was obtained by 
removing the genes with zero expression levels in 50% 
of the samples. Meanwhile, the expression profile of the 
immune-related gene set was extracted. On the other 
hand, we performed the background correction on the 
gene chip data from GEO database. Then, 97 and 74 
HNSCC samples with follow-up information and overall 
survival greater than zero from GSE41613 and GSE42743 
were screened, respectively. Next, using the R package 
GEOquery, the chip probes were mapped to GeneSym-
bol. Finally, we get the gene expression profile by remov-
ing the probes mapped to multiple genes and taking the 
median of the multiple probes mapped to a single gene 
[13].

Selection of candidate genes and establishment of a gene 
signature
Based on the transcriptome profiling data and hall-
mark gene sets from the Molecular Signatures Data-
base (MSigDB), the single-sample gene set enrichment 
analysis (ssGSEA) algorithm (R package “gsva”) was used 
to quantify the performance of cancer hallmarks in the 
training set [14, 15]. The R package “survival” was used 
to perform univariate Cox proportional hazards regres-
sion analysis (Cox-PH) to assess the significance of vari-
ous cancer hallmarks in HNSCC. The R package “wgcna” 
(weighted gene co-expression network analysis) was used 
to construct a scale-free co-expression network. Subse-
quently, transcriptome profiling data and ssGSEA scores 
were used to screen the gene modules most related to gly-
colysis and hypoxia [16]. Gene significance (GS) is used 
to quantify the correlation between individual genes and 
ssGSEA scores of glycolysis and hypoxia. Module mem-
ber represented the correlations between module char-
acteristic genes and gene expression profiles. Using the 
p-value threshold of GS < 0.0001 and the p-value of uni-
variate Cox regression < 0.01, 97 prognostic genes most 
related to glycolysis and hypoxia were identified [17]. 
Next, random forest was used to rank the importance 

of genes, and the top ten important genes were selected. 
The gene signature with the smaller number of genes and 
the more significant P value was selected from multiple 
combinations of ten genes and used to construct a sur-
vival model.

Survival analysis based on the risk score
The Z-score method was used to standardize the ssGSEA 
scores and risk scores [18]. The Kaplan–Meier method 
was used to perform survival analysis. The Cox propor-
tional hazards regression model was used to evaluate the 
importance of each parameter to OS. Taking the median 
of risk scores as the cut-off value, HNSCC patients were 
divided into high- and low-risk groups, and the progno-
sis of the two groups were compared in the training set 
and validation set. The ROC curve was used to evalu-
ate the prediction accuracy of the risk score. The t-ROC 
was used to evaluate the predictive ability (R package 
“survival-ROC”) [19]. Furthermore, a two-factor sur-
vival analysis combining risk score and cancer hallmarks 
including glycolysis and hypoxia was conducted to evalu-
ate the impact of risk score, glycolysis and hypoxia on the 
prognosis of patients with HNSCC.

Comparing the survival prediction ability among various 
gene signatures in HNSCC
Previous studies had constructed some gene signatures 
that could be used to predict the survival of HNSCC 
patients. For example, an eight-gene signature con-
structed by Baoling Liu et  al. and a ten-gene signature 
constructed by Zhaoyi Lu et al. showed good predictive 
ability in HNSCC [20, 21]. Therefore, in order to further 
evaluate the prognostic value of the genetic features con-
structed in this study, we compared the predictive power 
of the three gene signatures in HNSCC.

Drug susceptibility analysis of potential inhibitors of nine 
hub genes
To explore potential inhibitors available for nine hub 
genes, we performed drug sensitivity analysis. Drug sen-
sitivity data for gene inhibitors were downloaded from 
the CellMiner™ database (version: 2020.3, database: 2.4.2, 
https://​disco​ver.​nci.​nih.​gov/​cellm​iner/​home.​do) [22]. 
The R packages “impute”, “limma”, “ggplot2” and “ggpubr” 
were used for data processing and visualization.

Establishment and evaluation of nomogram for survival 
prediction in HNSCC patients
Nomogram is an effective method for predicting the 
prognosis of cancer patients by simplifying complex 
statistical prediction models into contour maps that 
assess the probability of individual patients’ OS [23]. In 
this study, we constructed a nomogram based on the 
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nine-gene signature to assess the probability of OS for 
HNSCC patients at 1-, 3-, and 5-year. Meanwhile, the 
predicted probability of the nomogram was compared 
with the observed actual probability through the calibra-
tion curve to verify the accuracy of the nomogram. Over-
lap with the reference line indicates that the model is 
accurate. In addition, t-ROC analysis was used to evalu-
ate the survival prediction ability of this nomogram.

Correlation analysis between risk score and tumor immune 
microenvironment (TIME)
TIME is the immune-related complex environment 
in which tumor cells grow. Therefore, we conducted a 
correlation analysis between the risk score and TIME. 
Firstly, multiple analysis methods including TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-
COUNTER, XCELL and EPIC were used to analyze 
the correlations between risk scores and immune cell 
infiltration status [24]. The immune cells involved in 
the analysis included CD4 T cells, CD8 T cells, B cells, 
neutrophils, and so on. Subsequently, the correlations 
between the risk score and immune cells, and the corre-
lations between the risk score and the expression levels 
of immune-related molecules were explored respectively. 
Furthermore, the correlations between the risk score 
and genomic changes including gene mutation rate, gene 
mutation load, gene microsatellite instability and TP53 
mutation were analyzed respectively.

Bioinformatics and statistical analysis
The hallmark gene sets of glycolysis and hypoxia from the 
MSigDB were used for GSEA analysis to verify the glyco-
lysis and hypoxia status in the high-risk score group [25]. 
IBM SPSS Statistics 20 (IBM Corp., Armonk, NY, USA) 
and R software (version 3.5.2, http://​www.r-​proje​ct.​org) 
were used to analyze data and draw figures. Z-scores 
were used to standardize ssGSEA scores and risk scores. 
The Kaplan–Meier method was used to draw the survival 
curve, and the log-rank test was used to assess the differ-
ence. The “wilcox.test” function was used to compare the 
risk scores between groups. The Cox proportional haz-
ards regression model was used to evaluate the impor-
tance of each parameter to OS.

Results
Schematic diagram of research design
Figure 1 is a flowchart of the entire work of this research. 
The detailed process of constructing the OS prediction 
model for HNSCC patients is as follows. Firstly, glyco-
lysis and hypoxia were identified as the main risk factors 
for the OS of patients with HNSCC among virous can-
cer hallmarks. Then, ssGSEA algorithm, WGCNA and 
univariate Cox regression analysis were used to screen 

promising candidates. Next, random forest algorithm 
and multiple combined screening methods were used to 
establish prognostic gene signature related to glycolysis 
and hypoxia. Finally, the prognostic value of the risk score 
based on the gene signature was evaluated in the training 
set and two independent validation sets (GSEGSE41613 
and GSE42743). The patients’ information in the TCGA 
and GEO cohorts is shown in Table 1.

Glycolysis and hypoxia were identified as the main risk 
factors for the OS of patients with HNSCC
According to the ssGSEA scores and OS information of 
cancer hallmarks in the training set, the Cox coefficient 
of each marker was calculated and sorted. The results of 
univariate analysis suggested that glycolysis and hypoxia 
have the greatest impact on the survival of patients with 
HNSCC compared with other cancer hallmarks includ-
ing oxidative phosphorylation, MYC_targets, angiogen-
esis, adipogenesis, protein secretion and DNA repair 
(Fig.  2A). As shown in Fig.  2B-C, the ssGSEA Z-scores 
of glycolysis and hypoxic were higher in the patients 
who died during the follow-up period compared with 
that of alive patients. Subsequently, using the median 
of Z-scores as the cut-off value, 498 HNSCC patients 
in the training set were divided into high- and low-risk 
groups. The OS rate of the high glycolytic Z-scores group 
was lower than that of the low glycolytic Z-scores group 
(HR = 1.60, P = 0.001; Fig.  2D). Meanwhile, the OS rate 
of the high-hypoxic Z-score group was lower than that 
of the low-hypoxic Z-score group (HR = 1.46, P = 0.005; 
Fig. 2E).

Establishment of prognostic gene signature related 
to glycolysis and hypoxia
Using |log2FC|> 1 and FDR < 0.05, a total of 3391 DEGs 
in HNSCC were identified (Fig. 3A). WGCNA was con-
ducted using transcriptome profiling data of 3391 genes 
and ssGSEAZ scores of the two cancer hallmarks (includ-
ing glycolysis and hypoxia) in the training set. Taking 
β = 3 as the optimal soft threshold to ensure the scale-
free co-expression of the network, the non-gray modules 
were generated (Fig.  3B). Then co-expression modules 
related to key cancer hallmarks were constructed. And 
the blue module was identified as the module with 
higher correlation with glycolysis and hypoxia (r > 0.3, 
P < 0.0001; Fig.  3C). Using < 0.01 as the threshold of the 
P value for univariate Cox regression, 97 genes from 
the blue module were identified as promising candi-
dates related to the prognosis of patients with HNSCC 
(Fig.  3D). Next, random forest was used to rank the 
importance of genes, and the top 10 relatively impor-
tant genes were screened out (Fig.  3E). Subsequently, 
the gene combination with a smaller number of genes 
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and a more significant P value was selected from mul-
tiple combinations of 10 genes to construct a survival 
risk model (Fig. 3F). Finally, nine hub genes were used to 
construct a prognostic model for patients with HNSCC: 
risk score = (-0.055) * RNF144A + 0.011 * STC1 + 0.016 
* P4HA1 + (-0.042) * FMNL3 + 0.002 * ANO1 + 0.002 
* BASP1 + 0.004MME + (-0.106) * PLEKHG2 + 0.003 * 
DKK1.

Risk score was an independent risk factor for OS 
in the training set
Correlation analysis suggested the expression levels of 
nine hub genes were related with the Z-scores of key 
cancer hallmarks (including glycolysis and hypoxia) in 

the training set (Fig. 4A). The risk scores of the patients 
who died during the follow-up period were significantly 
higher than that of alive patients (Fig. 4B). Kaplan–Meier 
analysis showed that the high-risk score group exhibited 
worse overall survival (P < 0.001, Fig. 4C). Principal com-
ponent analysis suggested that risk score could be used 
as a new dimension to assess the prognosis of HNSCC 
patients (Fig. 4D). The ROC curve showed that the AUCs 
of risk scores for predicting 1-, 2-, 3-, 4-, and 5-year sur-
vival rates were 0.673, 0.691, 0.717, 0.710, and 0.661, 
respectively, suggesting that risk score was a good model 
for predicting the survival of HNSCC patients (Fig. 4E). 
Subsequent tROC analysis showed that the survival pre-
dictive power of the risk score was better than that of 

Fig. 1  Overall flowchart of this study. LASSO, least absolute shrinkage and selection operator; HNSCC, head and neck squamous cell carcinoma; 
ssGSEA, single-sample gene set enrichment analysis; ROC, receiver operating characteristic; WGCNA, weighted gene co-expression network analysis
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other clinicopathological characters (Fig.  4F). Further-
more, univariate and multivariate Cox regression analysis 
showed that the risk score (HR = 1.33, p < 0.001), N stage 
(HR = 1.24, p < 0.01), M stage (HR = 4.25, p < 0.01) and 
age (HR = 1.02, p < 0.001) were independent risk factors 
affecting OS of HNSCC patients (Fig. 4G).

Validating the prognostic values of the nine‑gene 
signature in independent HNSCC datasets
In order to confirm the robustness of the prognostic 
nine-gene signature related to glycolysis and hypoxia, two 
independent external cohorts (GSE41613 and GSE42743) 
from the GEO database were used as validation sets. The 
analysis results in the GSE41613 HNSCC cohort were 

shown in Fig.  5. Glycolysis and hypoxia pathways were 
significantly enriched in the high-risk group (Fig.  5A). 
Meanwhile, the risk score of patients who died during 
the follow-up period was significantly higher than that of 
alive patients (P < 0.0001; Fig.  5B). Kaplan–Meier analy-
sis showed that patients with high-risk scores had worse 
OS than those with low-risk scores (p < 0.001; Fig.  5C). 
Next, the principal component analysis suggested that 
risk score could be used as a new dimension to assess the 
prognosis of HNSCC patients (Fig. 5D). The ROC curve 
showed that AUCs of risk scores for predicting 1-, 2-, 
3-, 4-, and 5-year survival rates were 0.791, 0.778, 0.781, 
0.789, and 0.766, respectively, indicating that the risk 
score was a good predictive model for HNSCC patients 

Table 1  Clinical information of patients with HNSCC included in this study

Characteristic TCGA(n = 498) GSE41613(n = 97) GSE42743(n = 74)

Status Survival 281(56.4%) 46(47.5%) 51(68.9%)

Dead 217(43.5%) 51(52.5%) 23(31.1%)

Age  < 60 220(44.2%) 50(51.6%) 37(50%)

 >  = 60 278(55.8%) 47(48.4%) 37(50%)

Gender Female 133(26.7%) 31(31.9%) 16(21.6%)

Male 365(73.3%) 66(68.1%) 58(78.4%)

T T1 33(6.6%)

T2 141(28.3%)

T3 130(26.1%)

T4 179(36%)

TX 11(2.2%)

NA 4(0.8%)

M M0 468(94%)

M1 5(1%)

MX 20(4%)

NA 5(1%)

N N0 237(47.5%)

N1 80(16%)

N2 152(30.5%)

N3 7(1.4%)

NX 18(3.6%)

NA 4(1%)

Stage Stage I 19(3.8%) 41(42.3%) 3(4.1%)

Stage II 93(18.6%) 27(36.5%)

Stage III 102(20.4%) 56(57.7%) 28(37.8%)

Stage IV 270(57.2%) 16(21.6%)

NA 14(2.8%)

Grade G1 61(12.2%)

G2 298(59.9%)

G3 119(23.9%)

G4 2(0.4%)

GX 15(3%)

NA 3(0.6%)
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(Fig.  5E). The tROC analysis showed that the survival 
predictive ability of the risk score was significantly higher 
than other clinicopathological characteristics (Fig. 5F). In 
addition, multivariate Cox regression analysis suggested 
that risk score was an independent risk factor for PFS in 
HNSCC patients (HR = 2.71, p < 0.001; Fig. 5G).

Similarly, the analysis results in the GSE42743 HNSCC 
cohort were shown in Fig. 6. Glycolysis and hypoxia path-
ways were significantly enriched in the high-risk group 
(Fig. 6A). The risk score of patients who died during the 
follow-up period was significantly higher than that of 
alive patients (P < 0.0001; Fig.  6B). Kaplan–Meier analy-
sis showed that patients with high-risk scores had worse 
OS than those with low-risk scores (p < 0.001; Fig.  6C). 
Principal component analysis suggested that risk score 
could be used as a new dimension to assess the progno-
sis of HNSCC patients (Fig. 6D). The ROC curve showed 
that AUCs of risk scores for predicting 1-, 2-, 3-, 4-, and 
5-year survival rates were 0.834, 0.920, 0.755, 0.757, and 
0.853, respectively, indicating that the risk score was a 
good predictive model for HNSCC patients (Fig.  6E). 
The tROC analysis showed that the survival predictive 
ability of risk score was better than other clinicopatho-
logical characteristics (Fig.  6F). Moreover, multivari-
ate Cox regression analysis showed that risk score was 
an independent risk factor for PFS in HNSCC patients 
(HR = 1.66, p < 0.001; Fig. 6G).

Correlation between risk score and cancer hallmarks 
and corresponding two‑factor survival analysis
As shown in Fig.  7A, the proportion of patients with 
high hypoxia, high glycolysis and high risk scores among 
patients who died during follow-up was higher, while the 
proportion of patients with low hypoxia, low glycolysis, 
and low risk scores among alive patients was higher. As 
shown in Fig.  7B, the Z-socres of hypoxia and glyco-
lysis were both higher in patients with high-risk groups. 
Subsequently, a two-factor survival analysis combining 
risk score and cancer hallmarks suggested that HNSCC 
patients with low risk score & low glycolysis or hypoxia 
Z-socres showed the best OS, while HNSCC patients 
with high risk score & high glycolysis or hypoxia Z-socres 
showed the worst prognosis (Fig. 7C-D).

The risk score was an indicator of poor prognosis in various 
subgroup cohorts
As shown in Fig. 8A-H, the risk score based on the nine-
gene signature could distinguish high-risk patients with 
poor prognosis in various subgroups divided by clin-
icopathological characteristics including age, gender, 
grades and pathological stages (p < 0.001). Meanwhile, 
we divided HNSCC patients into four subgroups based 
on TP53 and TTN mutational status, and then analyzed 
the effect of risk score on the survival of HNSCC patients 
within each subgroup. As shown in Figure S2, the risk 

Fig. 2  Glycolysis and hypoxia are the main risk factors for the overall survival of patients with HNSCC. A Univariate Cox regression analysis showed 
that glycolysis and hypoxia were the main risk factors in various cancer hallmarks. B-C The Z Score values of patients who died during the follow-up 
period were significantly higher than those of alive patients during the follow-up period in glycolysis and hypoxia. D-E Kaplan–Meier analysis 
suggested that patients with higher Z scores exhibited poorer OS in glycolysis and hypoxia. OS, overall survival; Pl3-Akt-mTOR, phosphatidylinosit
ol-3-kinase-Akt-mammalian target of rapamycin; TGF, transforming growth factor



Page 8 of 19Liu et al. BMC Cancer          (2022) 22:352 

score based on the nine-gene signature could distinguish 
patients with poor prognosis in four subgroups divided 
by TP53 and TTN gene mutations (p < 0.001).

This nine‑gene signature was a good model for predicting 
the survival of HNSCC patients
Comparing the predictive power of the nine-gene signa-
ture built in this work with that of gene signatures built by 
other previous studies could help to further evaluate the 
prognostic value of the nine-gene signature. Therefore, 
we included two previously established gene signatures 
into the analysis. Included three gene signatures were as 
follows: the nine-gene signature was built in this work; 
the eight-gene signature (CBX3, GNA12, P4HA1, PLAU, 
PPL, RAB25, EPHX3, and HLF) was built by Baoling Liu 
et  al.; the ten-gene signature (IL2RA, CCL5, SLC2A6, 
PTX3, PDGFA, INHBA, HS3ST1, TGFB1, GAS7, and 
RA114) was built by Zhaoyi Lu et al. As shown in Fig. 9, 
the predictive ability of the nine-gene signature was bet-
ter than that of the other two gene signatures within eight 
years. Moreover, the predicted results of the nine-gene 

signature were basically consistent with the survival 
results actually observed. These results indicated that 
the nine-gene signature was a good prognostic model for 
HNSCC patients.

Drug susceptibility analysis of related inhibitors of nine 
hub genes
To explore potential inhibitors of nine hub genes, we 
performed a drug sensitivity analysis using the CellM-
iner™ database. The results showed that RNF144A 
expression was positively correlated with the drug 
sensitivity of Vemurafenib, Dabrafenib, Encorafenib 
and ABT-199; BASP1 expression was negatively cor-
related with drug sensitivity of Tamoxifen, Vemu-
rafenib, Nilotinib and Selumetinib; BASP1 expression 
was positively correlated with drug sensitivity of 
Dasatinib. STC1 expression was positively correlated 
with the drug sensitivity of Olaparib, Simvastatin and 
Rapamycin; PLEKHG2 was negatively correlated with 
drug sensitivity of Palbociclib, P4HA1 was negatively 
correlated with drug sensitivity of 6-THIOGUANINE. 

Fig. 3  Establishment of a gene signature related to glycolysis and hypoxia. A Identification of DEGs in HNSCC. Using |log2FC|> 1 and FDR < 0.05, 
a total of 3391 DEGs in HNSCC were identified. B 3391 DEGs were used to construct the WGCNA network to identify non-grey modules. C 
Construction of co-expression modules related to key cancer hallmarks. The blue module was identified as the module with higher correlation 
with glycolysis and hypoxia (r > 0.3, P < 0.0001). D Using univariate Cox analysis, 97 candidates related to the prognosis of patients with HNSCC 
were identified from the genes of the blue module (P < 0.05). E Using random forest, the top 10 genes with the highest gene importance were 
screened out. F The gene combination with a relatively small number of genes and a relatively significant P value was selected from the multiple 
combinations of 10 genes to construct a survival prediction model. DEGs, differentially expressed genes. FDR, false discovery rate. WGCNA, 
weighted gene co-expression network analysis
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DKK1 was negatively correlated with drug sensitivity 
of Sunitinib (Figure S3) 。

Building a nomogram to predict OS in HNSCC patients
Combining the nine-gene signature, patient age 
and pathological stage, a comprehensive nomogram 
that can be used in clinical practice was constructed 
(Fig.  10A). Subsequently, the predictive power of 
this nomogram was verified by the calibration curve 
(Fig.  10B). Moreover, the tROC curve confirmed the 
good survival prediction ability of this nomogram 
(AUC > 0.68, Fig. 10C).

Correlation analysis between risk score and tumor immune 
infiltration
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, 
MCPCOUNTER, XCELL, EPIC and other methods 
were used to measure the proportion of immune cells in 
HNSCC. The heat map was used to explore the correla-
tion between risk score and immune cell infiltration. The 

results showed that the degree of immune cell infiltration 
in the low-risk score group was higher than that in the 
high-risk score group (Fig. 11A). In addition, the expres-
sion patterns of immune cells and immune-related mole-
cules in the high- and low-risk groups were explored. The 
results showed that the risk score was correlated with 
the immune infiltrations of B cells, CD8 + T cells, DCs, 
Mast cells, neutrophils, pDCs, T helper cells, Tfh, Th2 
cells, TIL and Treg (Fig. 11B). Meanwhile, the risk score 
was significantly correlated with the expression levels of 
immune-related molecules such as APC co inhibition, 
CCR, check-point, cytolytic activity, HLA, inflammation 
promoting, T cell co-inhibition, T cell co-stimulation and 
type II IFN response (Fig. 11C). In addition, we explored 
the impact of TP53 and TTN mutations on immune 
infiltration status. As shown in Figure S4A, in the TP53 
group, the mutant group exhibited a lower degree of 
immune infiltration compared with the wild group. 
Meanwhile, as shown in Figure S4B, in the TTN group, 
the immune infiltration status of the mutant group and 
the wild group was not significantly different.

Fig. 4  The risk score predicts poor survival in the training set. A Correlation analysis between expression levels of nine hub genes and Z-scores 
of key cancer hallmarks (including glycolysis and hypoxia) in the training set. B Patients who died during follow-up had a higher risk score than 
those who were alive. C Kaplan–Meier analysis showed that the high-risk score group exhibited worse overall survival. D Principal component 
analysis suggested that risk score could be used as a new dimension to evaluate the prognosis of HNSCC patients. E The ROC curve showed the 
prediction efficiency of the risk score for the survival rate in the training set (AUC > 0.66). F The tROC analysis showed that the predictive power of 
risk score was significantly higher than that of other clinical characteristics. G Univariate and multivariate Cox regression analysis showed that risk 
score was an independent risk factor for OS in patients with HNSCC. HR, hazard ratio; OS, overall survival; tROC, time-dependent receiver operating 
characteristics
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Comprehensive analysis of genomic changes 
between high‑ and low‑risk groups
Using genetic mutation data from HNSCC patients in 
TCGA, genomic changes between high- and low-risk 
groups were compared. The results suggested that the 
high-risk group had a higher rate of gene mutations 
(Fig. 12A-B). At the same time, the risk score of the TP53 
mutant group was higher than that of the TP53 wild 
group (P < 0.01, Fig. 12C). And the high-risk group had a 
higher gene mutation load than that of the low-risk group 
(P < 0.05, Fig.  12D). In addition, the MSI of the high-
risk group was higher than that of the low-risk group 
(P < 0.01, Fig. 12E).

Discussion
HNSCC is an aggressive malignant tumor with high 
incidence and poor prognosis. About 60% of HNSCC 
patients are already in advanced stages of local tumor 
when they are first diagnosed. After the failure of first-
line treatment, the survival of patients dropped rapidly 
to about 3 months. Therefore, early diagnosis and treat-
ment are of great significance to improve the clinical 

efficacy and survival of HNSCC patients. The insufficient 
predictive power of TNM staging shows the importance 
of screening new prognostic biomarkers for HNSCC. 
Therefore, this study aims to construct prognostic gene 
signature based on cancer hallmarks most relevant to 
the prognosis of HNSCC by comprehensive bioinfor-
matics methods. Firstly, using ssGSEA and Cox-PH 
regression models, glycolysis and hypoxia were identi-
fied as cancer hallmarks most related to OS in HNSCC 
patients. All genes of the gene modules most related to 
glycolysis and hypoxia were extracted for further analy-
sis. Then, WGCNA, COX univariate regression analy-
sis, random forest algorithm and multiple combinations 
were used to construct this nine-gene signature (includ-
ing RNF144A, STC1, P4HA1, FMNL3, ANO1, BASP1, 
MME, PLEKHG2 and DKK1) with prognostic value for 
HNSCC patients. Next, the prognostic value of the risk 
score based on the nine-gene signature was validated in 
the training set and the validation set. In addition, the 
correlations between the nine-gene signature and tumor 
immune infiltration profiles and genome changes were 
explored, respectively. Therefore, this nine-gene signature 

Fig. 5  Validation of the risk model in the GSE41613 dataset. A GSEA analysis showed that glycolysis and hypoxia pathways were significantly 
enriched in the high-risk group. B The risk score of patients who died during follow-up was higher than that of alive patients. C Kaplan–Meier 
analysis showed that patients with higher risk scores had worse overall survival. D Principal component analysis suggested that risk score could be 
used as a new dimension to evaluate the prognosis of HNSCC patients. E The ROC curve showed the prediction efficiency of the risk score in the 
validation dataset for the survival rate of patients with HNSCC (AUC > 0.76). F The tROC analysis showed that the survival predictive ability of risk 
score was significantly higher than that of other clinical features. G Univariate and multivariate Cox regression analysis showed that risk score was 
an independent risk factor for PFS in patients with HNSCC. HR, hazard ratio; PFS, progression-free survival; tROC, time-dependent receiver operating 
characteristics
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is an independent prognostic predictor of patients with 
HNSCC.

Previous studies revealed that biomarkers including 
mRNA, microRNA, lncRNA, DNA methylation and pro-
tein can contribute to the early diagnosis of HNSCC, the 
prediction of treatment response and the early monitor-
ing of tumor recurrence [26]. For example, SERPINE1, 
PLAU and ACTA1 can be used as prognostic biomark-
ers of HNSCC [27]. PLA, CLDN8 and CDKN2A are also 
prognostic biomarkers for patients with HNSCC [28]. 
EGFR, CDK6 or CDK4 are associated with poor prog-
nosis in HNSCC [29]. The overexpression of TMEM16A 
is related to the occurrence, proliferation and migration 
of tumor cells, and can be used as a potential biomarker 
of HNSCC [30, 31]. HILPDA, CD24, TCF3, SERPINE1, 
INHBA, P4HA2 and ACTN1 can be used to predict the 
response of locally advanced HPV-negative HNSCC 
patients receiving postoperative chemoradiation [32]. 
Moreover, miR-6508-5p, miR-210-5p, miR-4306 and 
miR-7161-3p are independent prognostic factors for 
HPV-negative HNSCC [33]. And miR-99a, miR-31, miR-
410, miR-424 and miR-495 help predict the radiotherapy 

response of HNSCC patients [34]. FAM135B methylation 
is also an independent prognostic biomarker of HNSCC 
[35]. In addition, long non-coding RNAs such as 
AC024592.9, LINC00941, LINC01615 and MIR9-3HG, 
are associated with the prognosis of HNSCC [36]. IDO1 
methylation can be used to predict the response of 
HNSCC patients to immune checkpoint inhibitors [37]. 
CDKN2A methylation is involved in the occurrence, pro-
gression and metastasis of HNSCC, and it is a potential 
diagnostic and prognostic biomarker for patients with 
HNSCC [38]. In addition, increased neutrophil-to-lym-
phocyte ratio is significantly associated with poor OS and 
DSS in HNSCC [39]. Besides, a previous study reported 
that Wang J. et  al. explored the prognostic impacts of 
mutated genes in HNSCC and constructed a 6-gene risk 
model based on the hub genes [40]. The method used in 
our study to construct the prognostic model was differ-
ent from that used by Wang J. et al. In our study, firstly, 
we explored the cancer hallmarks most associated with 
the prognosis of HNSCC patients using transcriptome 
profiling data and hallmark gene sets in the Molecular 
Signatures Database. The results showed that glycolysis 

Fig. 6  Validation of the risk model in the GSE42743 dataset. A GSEA analysis showed that glycolysis and hypoxia pathways were significantly 
enriched in the high-risk group. B The risk score of patients who died during follow-up was higher than that of alive patients. C Kaplan–Meier 
analysis showed that patients with higher risk scores had worse overall survival. D Principal component analysis suggested that risk score could be 
used as a new dimension to evaluate the prognosis of HNSCC patients. E The ROC curve showed the prediction efficiency of the risk score in the 
validation dataset for the survival rate of patients with HNSCC (AUC > 0.75). F The tROC analysis showed that the survival predictive ability of risk 
score was significantly higher than that of other clinical features. G Univariate and multivariate Cox regression analysis showed that risk score was 
an independent risk factor for PFS in patients with HNSCC. HR, hazard ratio; PFS, progression-free survival; tROC, time-dependent receiver operating 
characteristics
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and hypoxia were screened as major risk factors for the 
survival of HNSCC patients. Next, we used WGCNA to 
identify co-expression modules related to glycolysis and 
hypoxia. This method of screening cancer hallmarks-
related genes based on network interaction is more in 
line with the actual situation of network regulation in the 
human body. Subsequently, we constructed a prognos-
tic model based on univariate Cox analysis, random for-
est and multiple combinatorial screening. Therefore, this 
nine-gene signature which is significantly related to gly-
colysis and hypoxia adds new contents to the prognostic 
biomarkers of HNSCC.

The prognostic nine-gene signature established in 
this study included RNF144A, STC1, P4HA1, FMNL3, 

ANO1, BASP1, MME, PLEKHG2 and DKK1. As far as 
we know, DKK1 is involved in GPCR signal transduc-
tion and WNT ligand antagonist negative regulation of 
TCF-dependent signal transduction. PLEKHG2 partici-
pates in GPCR signal transduction. MME is related to 
peptidase activity and endopeptidase activity. BASP1 
is related to the specific binding of protein domains. 
ANO1 is related to the activity of calcium-activated 
chloride channels in cells. FMNL3 is related to malig-
nant melanoma and is involved in pathways including 
GPCR signal transduction and mitotic pre-metaphase. 
P4HA1 is related to oxidoreductase activity. STC1 is 
related to diseases such as fibrosarcoma and participates 
in ectodermal differentiation. RNF144A participates 

Fig. 7  Two-factor survival analysis combining cancer hallmarks and risk scores. A Correlation analysis of cancer hallmarks (including hypoxia and 
glycolysis), risk scores and survival status of patients with HNSCC. B The Z-Scores of high-risk patients were significantly higher than those of low-risk 
patients both in hypoxia and glycolysis. C A two-factor survival analysis combining hypoxia and risk score suggested that high-hypoxia & high-risk 
score predicted a worse prognosis. D A two-factor survival analysis combining glycolysis and risk scores suggested that high-glycolysis & high-risk 
scores predicted a worse prognosis
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Fig. 8  The risk score based on the nine-gene signature is a valuable marker for poor prognosis in various subgroups divided by clinicopathological 
characteristics. A-H The nine-gene signature could distinguish high-risk patients in a variety of subgroups divided by clinicopathological 
characteristics including age, gender, grades, and pathological stages. HR, risk ratio

Fig. 9  Comparison of survival prediction ability among various prognostic gene signatures in HNSCC. The tROC and C-index analyses were used to 
compare the predictive power of various gene signatures. Three gene signatures included were defined as follows: the nine-gene signature were 
constructed in our study; the eight-gene signature (CBX3, GNA12, P4HA1, PLAU, PPL, RAB25, EPHX3, and HLF) was constructed by Baoling Liu et al.; 
the ten-gene signature (IL2RA, CCL5, SLC2A6, PTX3, PDGFA, INHBA, HS3ST1, TGFBI, GAS7, and RAl14) was constructed by Zhaoyi Lu et al. A The tROC 
analysis showed that the predictive ability of the nine-gene signature was better than that of the other two gene signatures within eight years. B 
C-index analysis indicated that the prediction results of the nine-gene signature were basically consistent with the survival results actually observed 
in HNSCC
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in pathways including protein metabolism and protein 
ubiquitination.

Previous studies suggest that increased DKK1 expres-
sion is associated with poor prognosis in HNSCC 
patients [41–44]. DKK1 methylation has prognostic value 
in HNSCC [45]. Increased expression of ANO1 could be 
used as a biomarker for distant metastasis and progno-
sis in HNSCC [46–49]. Increased expression of P4HA1 
is associated with poor prognosis and increased risk 
of recurrence in HNSCC patients [21, 50–52]. P4HA1 
plays a role in promoting tumor progression [53]. As one 
of the glycolysis-related genes, STC1 is also associated 
with the prognosis of HNSCC [54]. On the other hand, 
the impacts of the five hub genes (including RNF144A, 
FMNL3, BASP1, MME and PLEKHG2) on the prognosis 
of HNSCC patients have not yet been reported. There-
fore, these results suggest that the mechanism of action 
of these nine hub genes in HNSCC deserves to be further 
explored.

In this study, we constructed a new nine-gene signa-
ture related to cancer hallmarks (including glycolysis 
and hypoxia). Survival analysis results confirmed that 

this nine-gene signature including RNF144A, STC1, 
P4HA1, FMNL3, ANO1, BASP1, MME, PLEKHG2 and 
DKK1 had good prognostic value for HNSCC patients. It 
is worth mentioning that recent studies had established 
some prognostic gene signatures for HNSCC patients 
as a supplement to traditional pathological staging. 
Comparing the survival prediction ability of previously 
reported gene signatures with the nine-gene signature 
will contribute to further assessing the prognostic val-
ues of these gene signatures. Therefore, we compared 
the survival prediction ability between the nine-gene 
signature constructed in this study and the previously 
reported two gene signatures. The results showed that 
the predictive ability of the nine-gene signature was bet-
ter than the other two gene signatures within eight years, 
suggesting that this nine-gene signature was a good prog-
nostic model in HNSCC.

The results of this study suggest that the risk score 
based on nine-gene signature is related to the immune 
cells infiltration status, the expression profiles of 
immune-related molecules and genome changes in 
HNSCC. Previous studies have shown that the immune 

Fig. 10  Building a nomogram based on the nine-gene signature for HNSCC patients. A A nomogram combining the nine-gene signature, M stage, 
N stage and age was constructed. B The calibration chart showed that the predicted 1- 3-, and 5-year survival probabilities were basically consistent 
with actual observations. C The tROC analysis indicated that this comprehensive nomogram had good survival prediction ability
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microenvironment of HNSCC is characterized by 
changes in immune cells and immune checkpoints that 
make the balance of the immune environment beneficial 
to immune suppression, thereby allowing tumor cells to 
escape immune surveillance. Therefore, immunotherapy 

is expected to be a potentially beneficial supplement 
to the standard treatment of HNSCC [55–58]. Recent 
studies have shown that the immune infiltrating status 
is with prognostic value in HNSCC [59]. The prognosis 
of HPV-positive HNSCC patients is better than that of 

Fig. 11  Correlation analysis of risk score and tumor immune infiltration in HNSCC. A The heat map showed the correlation between the risk 
score and immune cell infiltration. B-C The ssGSEA was used to calculate the degrees of immune cell infiltration and the expression patterns of 
immune-related molecules in the high- and low-risk groups. The results suggested that the degrees of immune cell infiltration and the expression 
levels of immune-related molecules in the low-risk group were higher than those of the high-risk group
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HPV-negative HNSCC patients, possibly due in part to 
the enhanced immune activation of the tumor micro-
environment in HPV-positive HNSCC [60]. In addi-
tion, programmed death ligand 1 (PD-L1) is an immune 
checkpoint mainly located on the surface of tumor cells, 
and the positive expression of PD-L1 is associated with a 
better prognosis of HNSCC patients [61, 62]. Therefore, 
immunotherapies, especially those targeting the PD1 
receptor or its ligand PD-L1, have shown significant effi-
cacy in HNSCC [63]. In terms of genomic changes, tumor 
mutation burden (TMB) has been considered as a pre-
dictor of immune checkpoint inhibitors (ICIs) response. 
High TMB can identify HNSCC patients with poor prog-
nosis after concurrent radiotherapy and chemotherapy 
[64]. PD-1 overexpression is associated with a good 
prognosis [65]. Currently known biomarkers predict-
ing response to immune checkpoint inhibitors include 

PD-L1 expression, human papilloma virus infection, 
and microsatellite instability [66]. Therefore, the nine-
gene signature constructed in this study were related 
to the degree of immune cell infiltration, the expres-
sion levels of immune-related molecules, and genomic 
changes. Meanwhile, we believe that two aspects should 
be considered to understand the results of the immune 
infiltration analysis. On the one hand, the predominant 
immune cells exhibited a higher degree of immune infil-
tration in the low-risk group. This may make the low-
risk group have better prognosis. On the other hand, as 
shown in Fig. 11B, some immunosuppressive cells (such 
as T-reg cells) also had higher expression in the low-risk 
group. In addition, as shown in Fig. 11C, some immune-
related molecules with opposite functions (such as T-cell 
co-stimulatory and T-cell co-inhibitory) were over-
expressed at the same time in the low-risk group. We 

Fig. 12  Comprehensive comparison of genomic changes between high- and low-risk groups. A-B Comparison of gene mutation rates between 
the high- and low-risk groups. C Comparison of the risk scores between the TP53 mutation and the TP53 wild groups. D Comparison of the 
mutation load status between in the high- and low-risk groups. E Comparison of the MSI status between the high- and low-risk groups. MSI, 
microsatellite instability
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think that this is due to the complexity of the microenvi-
ronment. For example, Kubli, SP et al. proposed that the 
complexity of immune cell-cancer cell interaction is an 
important reason for the failure of tumor immunother-
apy [67]. Besides, Feng, C et al., Prokhnevska, N et al. and 
Wierz, M et  al. described the complexity of the tumor 
microenvironment in bladder cancer, prostate cancer, 
and chronic lymphocytic leukemia, respectively [68–70]. 
Taken together, we believe that the results of the immune 
infiltration analysis not only showed that the main 
immune cells exhibited a higher degree of immune infil-
tration in the low-risk group, but also provide some clues 
about the complexity of immune cell roles in HNSCC. 
These are the reasons why the immune infiltration status 
in HNSCC deserves to be further explored.

There are some limitations in this study. This study 
used a method of interactive verification among mul-
tiple independent datasets to verify the prognos-
tic significance of the nine-gene signature. However, 
experimental validation is still an important step to fur-
ther verify the prognostic value of this model. And the 
lack of experimental verification is the limitation of this 
study. In addition, this is a retrospective study, so the 
robustness and clinical usefulness of this nine-gene sig-
nature needs to be verified in prospective clinical trials.

In conclusion, this study identified a new prognostic 
gene signature related to glycolysis and hypoxia, includ-
ing RNF144A, STC1, P4HA1, FMNL3, ANO1, BASP1, 
MME, PLEKHG2 and DKK1. Besides, a nomogram 
based on the nine-gene signature was constructed for 
clinical practice. This nine-gene signature can not only 
be used as a prognostic biomarker to help clinicians 
develop more personalized treatments for HNSCC 
patients, but also is expected to become a potential 
therapeutic target for HNSCC.
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