Polyploid cancer cells reveal signatures of chemotherapy resistance

- 3
- 4 Michael J. Schmidt¹, Amin Naghdloo¹, Rishvanth K. Prabakar^{1,2},
- 5 Mohamed Kamal^{1,3}, Radu Cadaneanu⁴, Isla P. Garraway⁴,
- 6 Michael Lewis⁵⁻⁷, Ana Aparicio⁸, Amado Zurita-Saavedra⁸, Paul
- Corn⁸, Peter Kuhn¹, Kenneth J. Pienta⁹, Sarah R. Amend^{9*}, James
 Hicks^{1*}
- Convergent Science Institute in Cancer, Michelson Center
 for Convergent Bioscience, University of Southern
 California, Los Angeles, California, USA.
 Currently at: Simons Center for Quantitative Biology, Cold
- 14 Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Department of Zoology, Faculty of Science, Benha
 University, Benha, Egypt.
- Department of Urology, Jonsson Comprehensive Cancer
 Center, David Geffen School of Medicine at UCLA and VA
 Greater Los Angeles, University of California, Los Angeles,
 Los Angeles, California, USA.
- 5. VA Greater Los Angeles Medical Center, Los Angeles, CA,
 USA.
- Departments of Medicine and Pathology, Cedars-Sinai
 Medical Center, Los Angeles, CA, USA.
 - 7. Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA.
 - 8. Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
 - Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- 34 *Corresponding Authors: <u>samend2@jhmi.edu</u>; <u>jameshic@usc.edu</u>35
- 36 Competing interests: The HDSCA technology described here is
- 37 licensed to Epic Sciences. PK has ownership in Epic Sciences.
- 38 J.H discloses he is a member of the Clinical Advisory Board of
- 39 Epic Sciences. K.J.P is a consultant for CUE Biopharma, Inc., and
- 40 holds equity interest in CUE Biopharma, Inc., Keystone
- 41 Biopharma, Inc., PEEL Therapeutics, Inc and Kreftect, Inc. S.R.A
- 42 holds equity interest in Keystone Biopharma, Inc.
- 43
- 44

25

26

27

28

29

30

31

32

45 Abstract

46	Therapeutic resistance in cancer significantly contributes to
47	mortality, with many patients eventually experiencing recurrence
48	after initial treatment responses. Recent studies have identified
49	therapy-resistant large polyploid cancer cells in patient tissues,
50	particularly in late-stage prostate cancer, linking them to advanced
51	disease and relapse. Here, we analyzed bone marrow aspirates
52	from 44 advanced prostate cancer patients and found the
53	presence of circulating tumor cells with increased genomic content
54	(CTC-IGC) was significantly associated with poorer progression-
55	free survival. Single cell copy number profiling of CTC-IGC
56	displayed clonal origins with typical CTCs, suggesting complete
57	polyploidization. Induced polyploid cancer cells from PC3 and
58	MDA-MB-231 cell lines treated with docetaxel or cisplatin were
59	examined through single cell DNA sequencing, RNA sequencing,
60	and protein immunofluorescence. Novel RNA and protein
61	markers, including HOMER1, TNFRSF9, and LRP1, were
62	identified as linked to chemotherapy resistance. These markers
63	were also present in a subset of patient CTCs and associated with
64	recurrence in public gene expression data. This study highlights
65	the prognostic significance of large polyploid tumor cells, their role
66	in chemotherapy resistance, and their expression of markers tied
67	to cancer relapse, offering new potential avenues for therapeutic
68	development.

69

70

71 Keywords

- 72 polyploid giant cancer cell; circulating tumor cell; progression-free
- 73 survival; liquid biopsy; polyaneuploid cancer cell state;
- 74 chemotherapy resistance; single cell
- 75

76 1. Introduction

- 77 While initial treatment efficacy is observed in most patients with
- 78 prostate or breast cancer, prostate cancers recur in 24-48% of
- 79 cases [1], and breast cancers relapse in about 30% of patients [2-
- 3]. In general, late-stage metastatic cancers are more difficult to
- 81 control, and patients are typically treated with chemotherapy;
- 82 unfortunately, complete response rates from chemotherapy
- treatments in patients with late stage disease are low [4-5].
- 84 Despite defining numerous detailed intrinsic and extrinsic
- 85 mechanisms that enable cancer cell survival under therapy,
- 86 therapy resistance remains responsible for over 90% of cancer
- 87 related deaths [6-8].

Large polyploid tumor cells are correlated with late disease stages, poor prognosis, and therapy resistance across virtually every tumor type [9-13]. Large polyploid tumor cells are induced through various stressors, including common chemotherapies such as docetaxel and cisplatin [14-17]. Evidence has shown that whole genome doubling (WGD) events and altered ploidy levels are poor prognostic indicators across cancer types and are

95 ultimately thought to provide cancer cells the ability to evolve and96 survive therapy [18-21].

97	Recent studies have shown that large polyploid tumor cells
98	can give rise to viable progeny that display more malignant and
99	stem cell characteristics than the parental population they
100	descended from [22]. Importantly, targeting identified pathways,
101	including AP-1, HIF2a, cholesterol-related, and embryogenic-
102	related pathways, reduced the number of surviving large polyploid
103	cancer cells, as well as surviving progeny cells following therapy
104	[22-26]. While significant, these studies lack single-cell molecular
105	resolution and note that not all cells are eliminated. What
106	ultimately matters is that some cancer cells are still capable of
107	survival and result in disease progression. Identification of novel
108	biomarkers that can predict patients' recurrence and resistance to
109	therapy may lead to better treatment outcomes.
110	We find that the presence of circulating tumor cells (CTCs)
111	with increased genomic content in the bone marrow aspirate of
112	late-stage prostate cancer patients is significantly associated with
113	worse progression free survival. We comprehensively evaluated
114	large polyploid tumor cells (prostate cancer PC3 and breast
115	cancer MDA-MB-231) that survive following treatment with two
116	
	chemotherapy classes (cisplatin and docetaxel), and functionally
117	chemotherapy classes (cisplatin and docetaxel), and functionally characterize the surviving cells through a multi-omic approach,
117 118	chemotherapy classes (cisplatin and docetaxel), and functionally characterize the surviving cells through a multi-omic approach, including morphometric, genomic, and transcriptomic profiling at
117 118 119	chemotherapy classes (cisplatin and docetaxel), and functionally characterize the surviving cells through a multi-omic approach, including morphometric, genomic, and transcriptomic profiling at the single cell level. We find that progeny cells differed

121	closely resembled the transcriptome of the large polyploid tumor
122	cells from which they were derived. We also find novel markers
123	associated with chemotherapy survival are upregulated in cells
124	that survive treatment, are retained in the progeny from surviving
125	cells, and are significantly associated with recurrence in prostate
126	and breast cancer at the RNA level. These novel survival
127	biomarkers are expressed at the protein level in the CTCs of
128	patients who also have recurrent disease. Taken together, our
129	results highlight novel biomarkers of survival and shed light on the
130	functionality of large polyploid tumor cells and their role in disease
131	recurrence.
132	
133	2. Methods

134 Patient sample collection and processing: Liquid biopsy 135 samples were collected from clinical sites and processed at the 136 University of Southern California as previously described [27-28]. 137 Briefly, peripheral blood (PB) and bone marrow aspirate (BM) 138 samples were collected from patients immediately starting 139 treatment on trial NCT01505868 that evaluated cabazitaxel with or 140 without carboplatin in patients with metastatic castration-resistant 141 prostate cancer. Samples were collected at MD Anderson Cancer 142 Center prior to therapy. 143 Patients 1 and 3 did not participate in NCT01505868. 144 Patient 1, a previous case study, was acquired from the Greater 145 Los Angeles Veterans' Affairs Healthcare System [29]. The bone

146	marrow sample was collected at the time of diagnostic biopsy,
147	prior to treatment. Patient 3, another previous case study [30],
148	was acquired from MD Anderson. All patients gave written
149	informed consent in accordance with approved institutional review
150	board and research development (VA) protocols.
151	Following isotonic erythrocyte lysis, the entire nucleated
152	fraction was plated onto custom cell adhesion glass slides
153	(Marienfield, Lauda, Germany) and stored at -80°C until use [28].
154	Cell culture and drug treatment: PC3 and MDA-MB-231 cell
155	lines were purchased from ATCC and grown in RPMI and DMEM,
156	respectively, with 10% FBS and 0.5% penicillin / streptavidin. Cells
157	were plated at a density of 625,000 cells per T-75 flask. PC3 cells
158	were treated with 5 nM docetaxel (PC3: 5nM, MDA-MB-221:
159	10nM) or cisplatin (10 $\mu M)$ for 72 hours. Cells were then allowed
160	to recover in normal medium for 1 or 10 days. When indicated,
161	PC3 cells were re-treated at day 10 post treatment removal. Cells
162	were lifted from culture and plated on Marienfield glass slides for
163	imaging or single cell isolation. All cell line experiments were
164	conducted in triplicate.
165	To isolate progeny cells, PC3 cells 10 days post treatment
166	were lifted with 1x versene. Biosorter (UnionBio, Holliston, MA)
167	was used to sort single cells based on size and the largest 15% of
168	cells were sorted into ten 96-well plates (n=960 individual wells)

169 containing RPMI medium and then placed in a 37°C incubator.

170 Media was changed every 2-3 days.

- 171 **Immunofluorescent staining:** Patient slides in Figure 1 were
- 172 fixed with paraformaldehyde and stained with a pan-cytokeratin
- 173 cocktail mixture (see supplementary methods), conjugated mouse
- 174 anti-human CD45 Alexa Fluor 647 (clone: F10-89-4, MCA87A647,
- 175 AbD Serotec, Raleigh, NC, USA), Vimentin (Alexa Fluor 488 rabbit
- 176 IgG monoclonal antibody (Cell Signaling Technology; Cat#
- 177 9854BC; Clone: D21H), and 4',6-diamidino-2-phenylindole (DAPI;
- 178 D1306, Thermo, Waltham, MA, USA) as previously described [28].
- 179 EpCAM (Thermo, 14-9326-82) was included in the pan-cytokeratin
- 180 cocktail mixture to make an "EPI-cocktail".

181 TNFRSF9 (Thermo, PA5-98296) and HOMER1 (Thermo,

- 182 PA5-21487) primary antibodies were incubated on slides overnight
- 183 at 4°C with the EPI-cocktail of antibodies. Slides were then

184 washed and incubated at room temperature for two hours with

185 Alexa Fluor 555 goat anti-mouse IgG1 antibody (Thermo,

186 A21127), Alexa Fluor 488 goat anti-rabbit (Thermo, A11034),

- 187 CD45, and DAPI.
- 188 LRP1 (Thermo, 377600) was generated in mice and was
- 189 therefore not compatible with the EPI-cocktail. Instead, LRP1 was
- 190 incubated overnight at 4°C. Slides were then washed and
- 191 incubated at room temperature for two hours with Alexa Fluor 555
- 192 goat anti-mouse IgG1 antibody. Next, pre-conjugated Alexa Fluor
- 193 488 pan-cytokeratin (53-9003-82, Thermo) recognizing CK 10, 14,
- 194 15, 16, and 19 was incubated with conjugated mouse anti-human

195 CD45, and DAPI.

- 196 **Slide imaging and analysis**: Slides were imaged with an
- automated high throughput microscope equipped with a 10x
- 198 optical lens, as previously described [27]. Immunofluorescent and
- 199 bright field images were collected. Image analysis tool, available
- 200 at https://github.com/aminnaghdloo/slide-image-utils, was
- 201 developed in python using the OpenCV and scikit-image
- 202 packages [31-32]. Briefly, each fluorescent channel was
- 203 segmented individually using adaptive thresholding and merged
- 204 into one cell mask. Cell mask and DAPI mask were used to
- 205 extract features and fluorescent intensity statistics of single cells
- and their nuclei, respectively. For nucleus size analysis, equivalent
- 207 diameter was calculated from nucleus area, assuming a circular
- 208 shape.
- 209 Fluorescence in situ Hybridization: Probes for centromeres of
- 210 chromosomes 1 (CHR01-10-GR) and 10 (CHR10-10-GR) were
- 211 purchased from Empire Genomics (Depew, New York) and the
- 212 hybridization was carried out on Marienfeld glass slides per the
- 213 manufacturer's instructions. Slides were then stained with DAPI
- and then imaged.
- 215 **Single cell copy number profiling**: Single cells were isolated as
- 216 previously described [28]. Copy number profiling from low pass
- 217 whole genome sequencing samples was conducted as previously
- 218 described (see supplementary methods) [33-34].
- 219 Single cell RNA sequencing: Single cells were isolated and
- 220 picked via micro-manipulation as previously described. RNA was
- 221 extracted via a modified Smart-Seq2 approach and library

222	prepped with Nextera XT (Illumina, San Diego, CA). Cells were
223	sequenced paired end by 150 base-pairs on an Illumina HiSeq
224	4000 (Fulgent). Read adapters were trimmed with TrimGalore
225	(version 0.6.7) and aligned with the HiSat2 (v2.2.1). Picard
226	(v3.0.0) was used to visualize RNA mapping quality control [35-
227	37]. HTSeq (v2.0.2) was used to generate a gene count matrix
228	[38].
229	The SingleCellExperiment package (v4.2.2) was utilized for
230	inputting count data into downstream analyses, such as
231	converting to Seurat (v4.3.0) and edgeR (v3.36.0) count matrices
232	[39]. Downstream analysis was performed with R (v4.1.2). Data
233	visualization was performed with Seurat and ggplot2 (v3.4.4), and
234	Pheatmap (v1.0.12) packages.
235	The edgeRQLFDetRate differential expression pipeline
236	was used to find common upregulated genes in polyploid cancer
237	cells [40]. Sequencing batches were controlled for. Shared genes
238	expressed in surviving large cells were intersected through R.
239	Gene datasets were downloaded directly from CHEA3 [41]
240	and MSigDB [42] for transcription factor and hallmark pathway
241	enrichment, respectively. Single cell enrichment was conducted
242	through JASMINE [43].
243	
244	Survival analysis: Survival analysis from patient bone marrow
245	and peripheral blood samples was performed with the Survival R
246	package (v3.5.5) and plotted with ggplot2 (v3.4.4). Public gene

247 expression survival analysis was analyzed via PanCancSurvPlot

248 [44] for prostate cancer (GSE116918) and breast cancer

249 (GSE10893) [45-46].

250

255

3. Results 251

252 CTCs with increased genomic content (CTC-IGC) are found in

253 the bone marrow of late-stage prostate cancer patients and

254 are correlated with worse progression free survival

Liquid biopsies from peripheral blood and bone marrow

256 aspirate were acquired from a late-stage prostate cancer cohort

257 (NCT01505868). Matched bone marrow and peripheral blood

258 samples from 31 patients were analyzed for CTCs. CTCs with

259 increased genomic content (CTC-IGC), identified as having a

260 nuclear diameter at least double the average of the CTC cell

261 population, were found in 9.7% of peripheral blood samples. CTC-

262 IGC were present in 80.6% of bone marrow samples from the

263 same patients (Fig. 1A-B, S1). Survival analysis with 44 bone

264 marrow samples (from the 31 patients with matched blood

265 samples and 13 patients without matched blood) showed that

266 presence of at least one CTC-IGC detected in the bone marrow

267 was associated with decreased progression-free survival (Fig. 1C,

268 Table S1). Previous treatment history was available for 33 of the

269 44 patients and primarily included anti-androgens and other

270 hormonal treatments (i.e., bicalutamide, nilutamide,

271 enzalutamide). The six patients who were previously treated with

272 docetaxel were all positive for CTCs-IGC in the bone marrow.

273	Clonal tumor lineage measured via copy number ratio
274	analysis was confirmed in both typical CTCs and CTCs-IGC. No
275	apparent differences in copy number ratios were identified
276	between the two CTC groups (Fig. 1D-F, S2, S3). These
277	observations show that CTC-IGC can be found in blood and bone
278	marrow aspirate, are tumor derived, and thus may contribute
279	towards relapse in late-stage prostate cancer. Despite the
280	apparent WGD of CTC-IGC, these cells retain the original tumor
281	copy number profile. To understand the importance and behavior
282	of this phenotype, we used an <i>in vitro</i> model of polyploid tumor
283	cells to investigate their relationship with therapeutic resistance.
284	
285	Large polyploid cancer cells form as a response to
286	chemotherapy in prostate and breast cancer models
286 287	chemotherapy in prostate and breast cancer models PC3 and MDA-MB-231 cells were treated with sublethal
286 287 288	chemotherapy in prostate and breast cancer models PC3 and MDA-MB-231 cells were treated with sublethal doses of docetaxel or cisplatin for 72 hours. Following
286 287 288 289	chemotherapy in prostate and breast cancer models PC3 and MDA-MB-231 cells were treated with sublethal doses of docetaxel or cisplatin for 72 hours. Following chemotherapy, cells were allowed to recover for 1 or 10 days in
286 287 288 289 290	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated on
286 287 288 289 290 291	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated onspecialized glass slides, stained with cell and nuclear markers,
286 287 288 289 290 291 292	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated onspecialized glass slides, stained with cell and nuclear markers,then imaged through high content scanning and evaluated for
286 287 288 289 290 291 292 293	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated onspecialized glass slides, stained with cell and nuclear markers,then imaged through high content scanning and evaluated fornuclear size and other morphometric comparisons (Fig. 2A). While
286 287 288 289 290 291 292 293 293	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated onspecialized glass slides, stained with cell and nuclear markers,then imaged through high content scanning and evaluated fornuclear size and other morphometric comparisons (Fig. 2A). Whilethere was significant cell death as expected (Fig. S4A), surviving
286 287 288 289 290 291 292 293 294 295	chemotherapy in prostate and breast cancer modelsPC3 and MDA-MB-231 cells were treated with sublethaldoses of docetaxel or cisplatin for 72 hours. Followingchemotherapy, cells were allowed to recover for 1 or 10 days intheir regular growth medium, lifted from culture, plated onspecialized glass slides, stained with cell and nuclear markers,then imaged through high content scanning and evaluated fornuclear size and other morphometric comparisons (Fig. 2A). Whilethere was significant cell death as expected (Fig. S4A), survivingcells increased in both nuclear diameter and cell size as a function
286 287 288 290 290 291 292 293 294 295 296	chemotherapy in prostate and breast cancer models PC3 and MDA-MB-231 cells were treated with sublethal doses of docetaxel or cisplatin for 72 hours. Following chemotherapy, cells were allowed to recover for 1 or 10 days in their regular growth medium, lifted from culture, plated on specialized glass slides, stained with cell and nuclear markers, then imaged through high content scanning and evaluated for nuclear size and other morphometric comparisons (Fig. 2A). While there was significant cell death as expected (Fig. S4A), surviving cells increased in both nuclear diameter and cell size as a function of time (Fig. 2B-E; Fig. S4B).
286 287 288 289 290 291 292 293 294 295 296 297	chemotherapy in prostate and breast cancer models PC3 and MDA-MB-231 cells were treated with sublethal doses of docetaxel or cisplatin for 72 hours. Following chemotherapy, cells were allowed to recover for 1 or 10 days in their regular growth medium, lifted from culture, plated on specialized glass slides, stained with cell and nuclear markers, then imaged through high content scanning and evaluated for nuclear size and other morphometric comparisons (Fig. 2A). While there was significant cell death as expected (Fig. S4A), surviving cells increased in both nuclear diameter and cell size as a function of time (Fig. 2B-E; Fig. S4B). To evaluate resistance, we treated cells that survived

299	or docetaxel. Compared to the control condition (initially cisplatin
300	treated and then re-treated with DMSO) cell counts and cell
301	viability were not significantly impacted, suggesting that these
302	cells are not sensitive to additional rounds of chemotherapy (Fig.
303	S4A, S4D, 2E).
304	To obtain progeny cells from a single chemotherapy-
305	induced surviving polyploid cell, we isolated and single-cell
306	seeded PC3 cells 10 days post-cisplatin release (n=480) and 10
307	days post-docetaxel release (n=960) and monitored for colony
308	formation. From these, only 2 polyploid docetaxel-treated PC3
309	cells gave rise to progeny after 2 months (progeny-1) and 2.5
310	months (progeny-2). Progeny-2 failed to proliferate following the
311	first passage. Over the course of the three-month experiment,
312	approximately 50% of the polyploid cells treated with either
313	cisplatin or docetaxel remained viable and adherent. The dividing
314	progeny-1 cells displayed a larger nuclear and cellular diameter
315	than the parental PC3 population from which it originated (Fig. 2F,
316	S4). We treated progeny-1 with docetaxel or cisplatin and found
317	that the population was sensitive to both chemotherapies. Further,
318	following 10 days of recovery, surviving progeny-1 cells had
319	increased nuclear and cell diameter, similar to what was observed
320	from the original parent population (Fig. 2F, S4B).
321	Surviving PC3 polyploid cancer cells show no additional copy
322	number ratio alterations compared to parental controls
323	To evaluate the presence of genomic alterations in the
324	surviving polyploid cells and their progeny, we assayed copy

349	cells
348	and pathways upregulated in PC3 and MDA-MB-231 polyploid
347	Single cell transcriptomic profiling reveals common genes
346	surviving cells.
345	results prompted investigation into the phenotype of these
344	any apparent scars of ploidy reduction were not present. These
343	parental control cells to progeny-1 cells (Fig. 3D), suggesting that
342	statistically significant differences when comparing DMSO
341	(ploidy = 3) and chromosome 10 (ploidy = 1) showed no
340	FISH probes for the centromeres of PC3 chromosome 1
339	the other PC3 cell conditions (Fig. 3A).
338	conditions (i.e., 6 gain and 4p gain) and clustered separately from
337	most aberrant copy number profile compared to the other
336	2, the clone that did not survive the first passage, displayed the
335	B), no substantial alterations were observed. Conversely, progeny-
334	compared to parental control (e.g., an increased 3p gain) (Fig. 3A-
333	copy number status did display minor differences in the progeny-1
332	rather than displaying specific copy number breakpoints. While
331	(Fig. 1D-F) and suggests that cells are undergoing complete WGD
330	between CTCs with normal nuclei and CTCs with larger nuclei
329	patient data in that copy number ratio status does not differ
328	compared to control cells (Fig. 3A-C, S5). This result confirms
327	treatments showed no apparent copy number ratio differences
326	PC3 and MDA-MB-231 cells from both docetaxel and cisplatin
325	number status and cell ploidy. Strikingly, surviving large polyploid

350	497 PC3 cells were	isolated and sec	uenced in 5 separate

- 351 batches (Fig. S6) and included: DMSO control (n=129), 1-day
- 352 post-cisplatin release (n=78), 10 days post-cisplatin release
- 353 (n=68), 1-day post-docetaxel release (n=45), 10 days post-
- docetaxel release (n=118), docetaxel progeny-1 (n=12), docetaxel
- 355 progeny-2 (n=13). Two batches of 203 MDA-MB-231 cells
- 356 included: DMSO control (n=43), 1-day post-cisplatin release
- 357 (n=22), 10 days post-cisplatin release (n=62), 1-day post-
- 358 docetaxel release (n=24), 10 days post-docetaxel release (n=62)
- 359 (Fig. S7).
- 360 Regardless of treatment, a general spatial separation that
- 361 was dependent on recovery duration was observed in PC3 and
- 362 MDA-MB-231 cells (Fig. 4A, S8). To identify convergent
- 363 phenotypes regardless of tumor type or therapy, we evaluated
- 364 genes that were upregulated in both PC3 and MDA-MB-231
- 365 following either cisplatin or docetaxel treatment. MDA-MB-231
- 366 cells 10 days post cisplatin or docetaxel release upregulated 1591
- 367 shared genes compared to DMSO control; PC3 cells 10 days post
- 368 cisplatin or docetaxel treatment upregulated 1178 shared genes
- 369 compared to DMSO control (LFC > 1.5, FDR < 0.01; Fig. 4B).
- 370 Intersection of the shared gene sets showed MDA-MB-231 and
- 371 PC3 cells that survive either cisplatin or docetaxel exposure
- 372 shared 309 upregulated genes (Fig. 4B; Table S2). The 309
- 373 shared genes were considered a survivor cell enrichment data set,
- 374 which was further evaluated.

375	Of the 309 shared genes, 77% were protein coding and
376	17% were IncRNAs, while the remaining ~6% were pseudogenes
377	or yet to be experimentally confirmed (TEC, not yet tested; Fig.
378	4C). Log-fold change values were plotted for PC3-Doc-DPT10 vs
379	MDA-Doc-DPT10 (Fig. 4D) and PC3-Cis-DPT10 vs MDA-Cis-
380	DPT10 (Fig. 4E). Within each treatment class, shared differentially
381	expressed genes (DEGs) were positively correlated between
382	MDA-MB-231 and PC3 cells, indicating the DEGs are upregulated
383	to a similar magnitude.
384	Common transcription factors (TFs) and hallmark
385	pathways upregulated in the survivors were delineated (Fig. 4F-
386	G). Two significantly enriched TFs, ZNF697 and NPAS2, were
387	previously reported in cells that transition out of senescence and
388	into a proliferative state [47]. Top enriched hallmark pathways in
389	the 309 gene survivor data set were: epithelial-to-mesenchymal
390	transition (EMT), upregulation of KRAS signaling, coagulation,
391	TNFa signaling via NFkB, and hypoxia (Fig. 4F). Single cell gene
392	enrichment confirmed the top upregulated hallmark pathways in
393	the shared survivor data set (Fig. 4H, S8-9). Additional pathways
394	identified to be significantly upregulated in the surviving cells
395	were: PI3K-AKT-mTOR Signaling, Inflammatory Response, and
396	Cholesterol Homeostasis (Fig. 4H, S8-9).
397	
398	Identification of HOMER1, TNFRSF9, and LRP1 as putative
399	chemotherapy RNA survival markers

400	Utilizing the shared cell survivor gene set data, markers
401	were independently evaluated to understand their putative role in
402	chemotherapy survival and polyploid state. All 309 genes were
403	investigated via literature review and queried for terms in
404	September 2023, including: large tumor cell, polyploid giant
405	cancer cell, poly-aneuploid cancer cell, survival pathways, drug
406	resistance, chemotherapy, and apoptosis. With prior knowledge
407	that top upregulated genes (MMP-3, SAA1, and C3) functioned in
408	the execution of apoptosis and clearance of apoptotic bodies (Fig.
409	4D-E), and that SAA1 and C3 were correlated with better PFS
410	(Fig. S10), they were not considered novel survival markers. The
411	309 gene survivor cell enrichment data set was also intersected
412	with genes in the top enriched pathways that modulate survival:
413	TNFa via NFkB, PI3K-AKT, and mTOR signaling (Fig. 4G-H). We
414	identified TNFRSF9 and LRP1 as survival biomarkers; these are
415	known to function as cell surface receptors that enhance PI3K
416	activity. This activity, in turn, stimulates AKT, thereby promoting
417	cell survival (Fig. 4D-E, Fig. 5, S11A) [48-50]. Further, we
418	identified HOMER1 as a PC3-specific survival marker (Fig. 5);
419	HOMER1 plays a role in mTOR signaling and protection against
420	apoptosis [51-54].
421	
422	HOMER1, TNFRSF9, and LRP1 are protein markers of
423	chemotherapy survival and are retained in docetaxel treated

424 PC3 progeny

425	At the protein level, w	e found surviving	g PC3 and MDA-MB-
-----	-------------------------	-------------------	-------------------

- 426 231 cells post-chemotherapy treatment stained positive for
- 427 HOMER1, TNFRSF9, and LRP1 (Fig. 5A, 5D). Image
- 428 quantification revealed all PC3 conditions (except for progeny-1
- 429 cisplatin day 10 post-treatment release) were significantly
- 430 upregulated compared to controls (Fig 5A, 5C). Day 10 survivors
- 431 showed the highest protein expression levels for each marker
- 432 tested. Importantly, untreated PC3 progeny-1 displayed
- 433 significantly higher expression in all three survival markers tested
- 434 compared to parental DMSO control cells, suggesting these
- 435 markers were retained following treatment (Fig. 5A, 5C). CD45 is
- 436 typically utilized as a tumor cell exclusion marker that stains for
- 437 white blood cells. At day 10 post-treatment release time points we
- 438 noted a gain in CD45 protein expression that was retained in
- 439 progeny cells in PC3 cells (Fig. 5A, S10). MDA-MB-231 cells also
- 440 showed a significant upregulation of expression for most markers
- 441 tested, except HOMER1 for docetaxel day 10 post-treatment
- 442 release and LRP1 for cisplatin day 10 post-treatment release (Fig.
- 443 5D, 5F).
- 444

445 HOMER1, TNFRSF9, and LRP1 are found at the protein level

- 446 patient BM samples, and their increased expression is
- 447 correlated with recurrence in public datasets
- A subset of bone marrow samples that displayed a high
 frequency of CTC-IGC from the prostate cancer patient cohort
 (Fig. 1) were stained with HOMER1, TNFRSF9, and LRP1 (Fig.

473	4. Discussion
472	aspirate of late-stage prostate cancer patients.
471	RNA level and are present on CTCs-IGC in the bone marrow
470	conclude the survival genes are associated with recurrence at the
469	survival in breast cancer (Fig. 6D). Taken together, we can
468	LRP1 were all significantly correlated with worse relapse free
467	(Fig. 6C). High gene expression of TNFRSF9, HOMER1, and
466	cancer; HOMER1 was not statistically significant (p-value = 0.183)
465	with a shorter progression free survival in patients with prostate
464	high expression of TNFRSF9 and LRP1 significantly correlated
463	In publicly available data for previously treated patients,
462	S13).
461	content but were negative for canonical epithelial markers (Fig.
460	cells in the bone marrow that displayed increased genomic
459	(Fig. 6B, Table 1). Additionally, these survival markers identified
458	HOMER1 and TNFRSF9, had the shortest PFS at 1.4 months
457	displayed the highest percentage of CTCs positive for markers
456	markers were not selective for CTC-IGC (Fig. S12). Patient-5, who
455	the marker genes in each patient sample (Fig. 6A), the tested
454	tested markers (Fig. 6B). While there were CTC-IGC positive for
453	methods). All patients profiled had CTCs that were positive for the
452	but also displayed a high frequency of CTC-IGC (Table 1; see
451	6A). Patient 1 and patient 3 did not participate in the clinical trial

474 Our analysis of bone marrow liquid biopsy samples from475 previously treated advanced prostate cancer patients reveals that

476 the presence of polyploid cancer cells correlates with poorer 477 progression-free survival. Although clinical reports have frequently 478 observed polyploid cancer cells in later disease stages, a direct 479 link with disease recurrence has not been firmly established. We 480 also found that CTC-IGC have copy number profiles identical to 481 typical CTCs and are predominantly present in the bone marrow 482 rather than in peripheral blood. 483 Through single cell copy number profiling and the isolation 484 of progeny from individual polyploid cells, we demonstrate that the

- 485 polyploid cancer cell phenomenon represents a change in cell
- 486 state.

487 Single-cell copy number profiling shows that the copy

488 number ratios in patient CTC-IGC as well as chemotherapy

489 induced polyploid MDA-MB-231 and PC3 cells that survive

490 treatment are identical to those in their paired non-polyploid

491 samples. This indicates that these cells, either identified as patient

492 CTCs or those that survive in the days following therapy release in

493 *vitro*, undergo multiple rounds of WGD without any additional copy

494 number alterations. These findings provide crucial insights into the

495 dynamics and genetic stability of the polyploid cancer cell state.

496 Obtaining proliferative progeny proved challenging; after
497 three months of culturing single isolated polyploid cells, we
498 successfully derived only one proliferative progeny clone

499 (1/1,440). This outcome is significant for two main reasons: first, it

500 demonstrates that polyploid cancer cells can give rise to progeny,

501 but second, the extremely low success rate underscores why

502	these cells have historically been understudied. To enhance our
503	understanding, future research should employ high-throughput
504	techniques to isolate larger numbers of single cells, such as tens
505	of thousands, which may prove critical in understanding the roles
506	of non-proliferative polyploid cancer cells and assessing their
507	capabilities at reinitiating cell division to give rise to progeny.
508	Additionally, slight variations in the copy number profiles, such as
509	a 3p gain observed in the progeny-1 clone, hint at genomic
510	evolution. Further studies should explore this genomic evolution in
511	different progeny clones once they are sufficiently collected to
512	understand the dynamics of genomic re-organization in these
513	cells.
514	Through in vitro single cell transcriptomics, we further
515	provide evidence that polyploid cancer cells display a convergent
516	phenotype between MDA-MB-231 (breast cancer) and PC3
517	(prostate cancer) model systems. Despite being induced with
518	chemotherapies with contrasting mechanisms of action (cisplatin
519	and docetaxel), the different tumor models displayed a shared
520	polyploid signature of upregulating 309 common genes. This
521	convergence reveals significant insights into the biological
522	features of polyploid cancer cells.
523	In our observations, approximately 50% of polyploid cancer
524	cells remained attached to the culture flask in a non-proliferative
525	state during single cell progeny outgrowth experiments. Polyploid
526	cancer cells have been identified to progress through the cell
527	cycle but do not proliferate (i.e., endocycling or cytokinesis failure

528	occur before mitosis) [55]. This is hypothesized to be a protective
529	state of the cells that affords protection from therapeutic stressors.
530	This phenomenon aligns with our identification of ZNF697 and
531	NPAS2 as two transcription factors significantly enriched in the
532	convergent polyploid gene set that were previously identified to be
533	upregulated in cells that were in a non-proliferative state and
534	began re-initiating cell division [47]. This suggests that some
535	polyploid cells profiled on day 10 post therapy release may be
536	attempting to re-initiate proliferation since the chemotherapy has
537	been removed. This finding is further supported by a higher
538	percentage of cells at 10-DPT expressing more markers at the M-
539	phase of the cell cycle (Fig. S8-9). Future research should explore
540	the roles of ZNF697 and NPAS2 in polyploid cancer cells and their
541	implications for disease recurrence in progeny cells.
541 542	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified
541 542 543	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as
541 542 543 544	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated
541 542 543 544 545	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in
541 542 543 544 545 546	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified
541 542 543 544 545 546 547	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at
541 542 543 544 545 546 547 548	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at the RNA and protein levels [48-54, 60-64]. Notably, these protein
541 542 543 544 545 546 547 548 549	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at the RNA and protein levels [48-54, 60-64]. Notably, these protein markers were retained in the PC3 progeny-1 clone, suggesting
541 542 543 544 545 546 547 548 549 550	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at the RNA and protein levels [48-54, 60-64]. Notably, these protein markers were retained in the PC3 progeny-1 clone, suggesting their upregulation in cells that survive chemotherapy. Additionally,
541 542 543 544 545 546 547 548 549 550 551	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at the RNA and protein levels [48-54, 60-64]. Notably, these protein markers were retained in the PC3 progeny-1 clone, suggesting their upregulation in cells that survive chemotherapy. Additionally, a subset of CTCs, including both polyploid and typical CTCs,
541 542 543 544 545 546 547 548 549 550 551 552	implications for disease recurrence in progeny cells. The convergent surviving cell gene set we identified indicated that pro-survival and anti-apoptotic pathways, such as TNFa via NFkB, PI3K-AKT, and mTOR signaling, are upregulated in polyploid cancer cells [57-59]. Among the genes identified in these pathways, TNFRSF9, HOMER1, and LRP1 were identified as putative survival genes and were found to be upregulated at the RNA and protein levels [48-54, 60-64]. Notably, these protein markers were retained in the PC3 progeny-1 clone, suggesting their upregulation in cells that survive chemotherapy. Additionally, a subset of CTCs, including both polyploid and typical CTCs, tested positive for TNFRSF9, HOMER1, and LRP1 at the protein

554	progression-f	ree survival a	at 1.4 months.	had the highest
	P			

- 555 percentage of CTCs positive for the TNFRSF9 marker, indicating
- that this gene may play a significant role in cancer cell survival.
- 557 Further, these markers identified a subset of cells with IGC that
- 558 were negative in the epithelial channel. These cells may be CTCs
- that lost epithelial expression (i.e., EMT) and, in combination with
- the upregulation of the proposed survival markers, could be adept
- at surviving in the bone marrow. Further studies are needed to

evaluate the roles of TNFRSF9, HOMER1, and LRP1 in

563 chemotherapy resistance and as a biomarker to evaluate the

564 emergence of therapeutic resistance.

565 Our investigation of polyploid cancer cells confirms the

566 significant upregulation of hypoxia and cholesterol homeostasis

567 pathways. Studies have shown that targeting these pathways in

cell line models, including PC3 and MDA-MB-231, reduces the

viability of progeny from polyploid cancer cells [23,26]. Further

570 evidence comes from a study indicating that polyploid cancer cells

571 accumulate lipid droplets in response to chemotherapy [56],

572 underscoring the critical role of lipid balance as cells significantly

573 increase in size. These findings suggest that these pathways are

574 integral to the polyploid cancer cell state and represent promising

575 targets for therapeutic intervention.

576 The *in vitro* environment of cell culture does not always 577 recapitulate the *in vivo* nature of cancer cell biology. This makes it 578 difficult to speculate how polyploid cancer cells interact with their 579 neighboring malignant cells and the surrounding stroma.

580	Translating the findings of TNFRSF9, HOMER1, and LRP1 as
581	resistance markers in an <i>in vivo</i> model is a critical next step.
582	Future studies should employ mouse models or patient derived
583	xenografts and stain for these biomarkers to understand their
584	prominence in vivo. Further studies should also isolate polyploid
585	cancer cells through nuclear density to further understand their
586	cellular phenotypes in tumor tissue.
587	While patient results are promising, they also have
588	limitations. This study focuses on late-stage patients with
589	disseminated CTCs in the bone marrow and blood. The evaluated
590	cohort comprised advanced-stage patients whose previous
591	treatment regimens had failed. To minimize biases associated with
592	late-stage disease and to better understand initial treatment
593	responses and their role in inducing polyploid cancer cells, future
594	cohorts should include patients undergoing their first rounds of
595	therapy. One concern is that CTCs in peripheral blood are typically
596	found in later disease stages, potentially biasing our patient
597	population towards later stages. Obtaining samples from tissue,
598	blood, and bone marrow could address these concerns and
599	provide valuable insights into the role of polyploid cancer cells in
600	dissemination, initial response to therapy, and disease evolution.
601	
602	Declarations

603 Acknowledgements: We would like to thank the patients and604 their caretakers, including those on active duty and veterans, for

- 605 participating in this study, without whom this research would not
- 606 have been possible. We thank the clinical and research consent
- 607 teams MDAnderson and the VA clinics for supporting the
- 608 enrollment of patients and sample collections. Components of
- 609 figure 2 was created using Biorender.com.
- 610 **Funding**: This work was funded in whole or in part by Epic
- 611 Sciences (PK, JH), NCI P01CA093900 (PK, JH), and the NCI's
- 612 USC Norris Comprehensive Cancer Center (CORE) Support
- 613 5P30CA014089-40 (PK, JH). S.R.A is supported by the US
- 614 Department of Defense CDMRP/PCRP (W81XWH-20-10353,
- 615 W81XWH-22–1-0680), the Patrick C. Walsh Prostate Cancer
- 616 Research Fund and the Prostate Cancer Foundation. K.J.P is
- 617 supported by NCI grants PO1CA093900, U54CA210173,
- 618 U01CA196390, and P50CA058236, and the Prostate Cancer
- 619 Foundation. PC receives funding from Janssen.
- 620 Ethics Approval and Consent to Participate: The study was
- 621 conducted according to the guidelines of the Declaration of
- 622 Helsinki and approved by the Institutional Review Board of the
- 623 University of Southern California Keck School of Medicine, MD
- 624 Anderson (NCT01505868), and the VA of Los Angeles (PCC
- 625 2015-090980). Informed consent was obtained from all subjects
- 626 involved in the study.
- 627 Data Availability: Cell line scDNA-seq (GSE270567) and scRNA-
- 628 seq (GSE270568) are available through GEO. Patient scDNA-seq
- 629 is available upon reasonable request. Image data is available
- 630 upon reasonable request for cell lines and patients.

- 631 **Materials Availability**: If interested in using the High Definition
- 632 Single Cell Assay please contact CSI-Cancer.
- 633 **Code Availability**: Image analysis code is freely available at
- 634 <u>https://github.com/aminnaghdloo/slide-image-utils</u>. Downstream
- analysis scripts (DNA-seq, RNA-seq, image quantification) are
- 636 available upon request.
- 637 Author Contribution: Conceptualization: M.J.S., R.K.P., K.J.P.,
- 638 S.R.A., and J.H.; Methodology: M.J.S., A.N., R.K.P.; Software:
- 639 M.J.S., A.N.; Formal analysis: M.J.S.; Investigation: M.J.S. and
- 640 M.K.; Resources: P.K. and J.H.; Writing Original Draft: M.J.S.,
- 541 J.H, and S.R.A.; Writing Review & Editing: M.J.S., S.R.A.,
- 642 R.K.P., M.L., M.K., A.N., K.J.P, P.K., A.A, A.Z-W, P.C.;
- 643 Visualization: M.J.S.; Supervision: K.J.P., S.R.A., J.H.; Project
- 644 Administration: K.J.P., S.R.A., J.H.; Funding Acquisition: P.K.,
- 645 K.J.P., S.R.A., J.H., M.L.; Patient Accrual: M.L, R.C, I.P.G., A.A,
- 646 A.Z-W, P.C.
- 647 **Consent for Publication**: All the authors agree to publish this
- 648 paper.
- 649

650		
651	Refe	rences
652		
653	1.	Kurbegovic, S., Berg, K.D., Thomsen, F.B., Gruschy, L.,
654		Iversen, P., Brasso, K., al.: The risk of biochemical
655		recurrence for intermediate-risk prostate cancer after
656		radical prostatectomy Scand J Urol 51 450-6 (2017)
657	2.	Goss, P.E., Ingle, J.N., Pritchard, K.L., Robert, N.J., Muss,
658		H., Gralow, J., al.: Extending aromatase-inhibitor adjuvant
659		therapy to 10 years. N Engl J Med 375 , 209-19 (2016)
660	3.	Colleoni, M., Sun, Z., Price, K.N., Karlsson, P., Forbes,
661		J.F., Thurlimann, B. al.: Annual hazard rates of recurrence
662		for breast cancer during 24 years of followup: Results from
663		the international breast cancer study group trials i to v. J
664		Clin Oncol 34 , 927-35 (2016)
665	4.	Bukowski, K., Kciuk, M., Kontek, R.: Mechanisms of
666		multidrug resistance in cancer chemotherapy. Int J Mol Sci
667		21 (2020)
668	5.	Ashdown, M.L., Robinson, A.P., Yatomi-Clarke, S.L.,
669		Ashdown, M.L., Allison, A., Abbott, D., al.: Chemotherapy
670		for late-stage cancer patients: Meta-analysis of complete
671		response rates. F1000Res 4 , 232 (2015)
672	6.	Wang, X., Zhang, H., Chen, X.: Drug resistance and
673		combating drug resistance in cancer. Cancer Drug Resist
674		2 , 141-60 (2019)
675	7.	Cree, I.A., Charlton, P.: Molecular chess? hallmarks of anti-
676		cancer drug resistance. BMC Cancer 17 , 10 (2017)
677	8.	Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.: Cancer
678		statistics, 2023. CA Cancer J Clin 73 , 17-48 (2023)
679	9.	Trabzonlu, L., Pienta, K.J., Trock, B.J., De Marzo, A.M.,
680		Amend, S.R.: Presence of cells in the polyaneuploid
681		cancer cell (pacc) state predicts the risk of recurrence in
682		prostate cancer. Prostate 83 , 277-85 (2023)
683	10	. Fei, F., Zhang, D., Yang, Z., Wang, S., Wang, X., Wu, Z.,
684		al.: The number of polyploid giant cancer cells and
685		epithelial-mesenchymal transition-related proteins are
686		associated with invasion and metastasis in human breast
687		cancer. J Exp Clin Cancer Res 34 , 158 (2015)
688	11	. Amend, S.R., Iorga, G., Lin, KC., Kostecka, L.G., Marzo,
689		A., Austin, R.H., al.: Polypiold giant cancer cells:
690		Unrecognized actuators of tumorigenesis, metastasis, and
691	10	Tesisiance. Prostate 79, 1489-97 (2019)
69Z	12	Lopez-Sanchez, L.M., Jimenez, C., Valverde, A.,
604		mimic of hypoxia, induces formation of polyplaid gigst calls
6054 605		with stem characteristics in colon cancer. PLoS One Q
6050		001/3 (201/1)
697	12	Was H Borkowska A Olszewska A Klemba A
698	10	Marciniak M. Synowiec A al Polynloidy formation in
000		Marcinian, M., Cynowico, A., al. r orypiolog formation in

699		cancer cells: How a trojan horse is born. Semin Cancer
700		Biol 81 , 24-36 (2022)
701	14.	Saleh, T., Carpenter, V.J., Bloukh, S., Gewirtz, D.A.:
702		Targeting tumor cell senescence and polyploidy as
703		potential therapeutic strategies. Semin Cancer Biol 81, 37-
704		47 (2022)
705	15.	Ogden, A., Rida, P.C.G., Knudsen, B.S., Kucuk, O., Aneja,
706		R.: Docetaxel-induced polyploidization may underlie
707		chemoresistance and disease relapse. Cancer Lett 367 .
708		89-92 (2015)
709	16	Puig P-F Guilly M-N Bouchot A Droin N Cathelin
710		D Bouver F al Tumor cells can escape dna-damaging
711		cisplatin through dna endoreduplication and reversible
712		polyploidy Cell Biol Int 32 103-{43 (2008)
712	17	Adibi R Moein S Gheisari V: Zoledronic acid targets
713	17.	chemo resistant polyploid giant cancer cells. Sci Pen 13
714		
715	40	419 (2023) Bioleti C.M. Zahin A. Danaan A.V. Danashua M.T.A.
/16	18.	Bielski, C.M., Zenir, A., Penson, A.V., Donognue, M. I.A.,
717		Chatila, W., Armenia, J., al.: Genome doubling snapes the
/18		evolution and prognosis of advanced cancers. Nat Genet
/19		50 , 1189-95 (2018)
/20	19.	Lopez, S., Lim, E.L., Horswell, S., Haase, K., Huebner, A.,
721		Dietzen, M., al.: Interplay between whole-genome doubling
722		and the accumulation of deleterious alterations in cancer
723		evolution. Nat Genet 52 , 283-93 (2020)
724	20.	Pienta, K.J., Hammarlund, E.U., Austin, R.H., Axelrod, R.,
725		Brown, J.S., Amend, S.R.: Cancer cells employ an
726		evolutionarily conserved polyploidization program to resist
727		therapy. Semin Cancer Biol 81 , 145-59 (2022)
728	21.	Pienta, K.J., Hammarlund, E.U., Axelrod, R., Brown, J.S.,
729		Amend, S.R.: Polyaneuploid cancer cells promote
730		evolvability, generating lethal cancer. Evol Appl 13, 1626-
731		34 (2020)
732	22	Zhou X Zhou M Zheng M Tian S Yang X Ning Y
733		al · Polyploid giant cancer cells and cancer progression
734		Front Cell Dev Biol 10 1017588 (2022)
735	23	White-Gilbertson S Lu P Esohi L Echesabal-Chen L
736	20.	Mulholland P L Gooz M al : Polyploid giant cancer cells
730		are dependent on cholesteral for progeny formation
737		through amitatic division. Sai Dan 12 , 9071 (2022)
730	24	They M. Ma Y. Chieng C. C. Back F.C. Butter S.C.
739	24.	Zhou, M., Ma, Y., Chiang, CC., Rock, E.C., Duiler, S.C.,
740		Anne, R., al.: Single cell morphological and transcriptome
741		analysis unveil inhibitors of polypiold giant breast cancer
742		cells in vitro. Commun Biol 6 , 1301 (2023)
743	25.	Zhang, X., Yao, J., Li, X., Niu, N., Liu, Y., Hajek, R.A., al.:
/44		largeting polyploid giant cancer cells potentiates a
745		therapeutic response and overcomes resistance to parp
746		inhibitors in ovarian cancer. Sci Adv 9 , 7195 (2023)
747	26.	Carroll, C., Manaprasertsak, A., Bo elli Castro, A., Bos, H.,
748		Spierings, D.C., Wardenaar, R., Bukkuri, A., Engstr om,
749		N., Baratchart, E., Yang, M., et al.: Drug resilient cancer

750	cell phenotype is acquired via polyploidization associated
751	with early stress response coupled to hif2 transcriptional
752	regulation. Cancer research communications 4 (3), 691-705
753	(2024)
754	27. Marrinucci, D., Bethel, K., Kolatkar, A., Luttgen, M.S.,
755	Malchiodi, M., Baehring, F., al.: Fluid biopsy in patients with
756	metastatic prostate, pancreatic and breast cancers. Phys
757	Biol 9 , 016003 (2012)
758	28. Chai, S., Matsumoto, N., Storgard, R., Peng, CC.,
759	Aparicio, A., Ormseth, B., al.: Platelet-coated circulating
760	tumor cells are a predictive biomarker in patients with
761	metastatic castrate-resistant prostate cancer. Mol Cancer
762	Res 19 , 2036-45 (2021)
763	29. Malihi, P.D., Morikado, M., Welter, L., Liu, S.T., Miller, E.T.,
764	Cadaneanu, R.M., Knudsen, B.S., Lewis, M.S., Carlsson,
765	A., Velasco, C.R., Kolatkar, A., Rodriguez-Lee, M.,
766	Garraway, I.P., Hicks, J., Kuhn, P.: Clonal diversity
767	revealed by morphoproteomic and copy number pro les of
768	single prostate cancer cells at diagnosis. Converg Sci Phys
769	Oncol 4(1), 015003 (2018) https://doi.org/10.1088/2057-
770	<u>1739/aaa00b</u> 2018 Jan 16
771	30. Chai, S., Ruiz-Velasco, C., Naghdloo, A., Pore, M., Singh,
772	M., Matsumoto, N., al.: Identification of epithelial and
773	mesenchymal circulating tumor cells in clonal lineage of an
774	aggressive prostate cancer case. NPJ Precis Oncol 6, 41
775	(2022)
776	31. Itseez: Open Source Computer Vision Library.
777	https://github.com/itseez/opencv (2015)
778	32. Walt, S., Schonberger, J.L., Nunez-Iglesias, J., Boulogne,
779	F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.,
780	contributors: scikit-image: image processing in python.
781	PeerJ 2, 453 (2014) https://doi.org/10.7717/peerj.453
782	33. Baslan, T., Kendall, J., Ward, B., Cox, H., Leotta, A.,
783	Rodgers, L., al.: Optimizing sparse sequencing of single
784	cells for highly multiplex copy number profling. Genome
785	Res 25, 714-24 (2015)
786	34. Schmidt, M.J., Prabakar, R.K., Pike, S., Yellapantula, V.,
787	Peng, CC., Kuhn, P., al.: Simultaneous copy number
788	alteration and single-nucleotide variation analysis in
789	matched aqueous humor and tumor samples in children
790	with retinoblastoma. Int J Mol Sci 24 (2023)
791	35. Krueger, F., James, F., Ewels, P., Afyounian, E., Weinstein,
792	M., Schuster-Boeckler, B., Hulselmans, G., sclamons:
793	FelixKrueger/TrimGalore: v0.6.10 (0.6.10). Zenodo (2023)
794	36. Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, F.P.:
795	Graph-based genome alignment and genotyping with
796	hisat2 and hisat-genotype. Nature Biotechnology 37 , 907-
797	915 (2019) <u>https://doi.org/10.1038/s41587-019-0201-4</u>
798	37. Institute, B.: Picard. <u>https://broadinstitute.github.io/picard/</u>

799	38.	Anders, S., Pyl, P.T., Huber, W.: Htseq – a python
800		framework to work with high throughput sequencing data.
801		bioinformatics 31 (2), 166-169 (2015)
802	39.	Amezquita, R.A., Lun, A.T.L., Becht, E., Carey, V.J., Carpp,
803		L.N., Geistlinger, L., al.: Orchestrating single-cell analysis
804		with bioconductor. Nat Methods 17, 137-45 (2020)
805	40.	Soneson, C., Robinson, M.D.: Bias, robustness and
806		scalability in single-cell differential expression analysis. Nat
807		Methods 15 , 255-61 (2018)
808	41.	Keenan, A.B., Torre, D., Lachmann, A., Leong, A.K.,
809		Wojciechowicz, M.L., Utti, V., al.: Chea3: transcription
810		factor enrichment analysis by orthogonal omics integration.
811		Nucleic Acids Res 47 , 212-24 (2019)
812	42.	Liberzon, A., Birger, C., Thorvaldsd ottir, H., Ghandi, M.,
813		Mesirov, J.P., Tamayo, P.: The molecular signatures
814		database (msigdb) hallmark gene set collection. Cell Syst
815		1 , 417-25 (2015)
816	43.	Noureen, N., Ye, Z., Chen, Y., Wang, X., Zheng, S.:
817		Signature-scoring methods developed for bulk samples are
818		not adequate for cancer single-cell rna sequencing data.
819		Elife 11 (2022)
820	44.	Lin, A., Yang, H., Shi, Y., Cheng, Q., Liu, Z., Zhang, J., al.:
821		Pancansurvplot: A large-scale pan-cancer survival analysis
822	. –	web application. bioRxiv (2022)
823	45.	Jain, S., Lyons, C.A., Walker, S.M., McQuaid, S., Hynes,
824		S.O., Mitchell, D.M., al.: Validation of a metastatic assay
825		using biopsies to improve risk stratification in patients with
826		prostate cancer treated with radical radiation therapy. Ann
827		Oncol 29 , 215-22 (2018)
828	46.	Weigman, V.J., Chao, HH., Shabalin, A.A., He, X., Parker,
829		J.S., Nordgard, S.H., al.: Basal-like breast cancer dna copy
830		number losses identify genes involved in genomic
831		instability, response to therapy, and patient survival. Breast
832	47	Cancer Res Treat 133, 865-80 (2012)
833	47.	Martinez-Zamudio, R.I., Stefa, A., Nabuco Leva Ferreira
834		Freitas, J.A., Vasilopoulos, I., Simpson, M., Dor e, G., al.:
835		Escape from oncogene-induced senescence is controlled
836		
837	40	3, 100293 (2023)
838	48.	So, I., Croit, M.: Regulation of pi-3-kinase and akt
839		signaling in Liymphocytes and other cells by thir family
840	40	molecules. Front Immunol 4, 139 (2013)
841	49.	Luo, L., Wall, A.A., Tong, S.J., Hung, Y., Xiao, Z., Tanque,
842		A.A., al.: The clossial activates inplied recruit rabba and
843		pisky for suppression of inflammatory responses. Cell Rep
044 015	۶O	24 , $303-44$ (2010) He 7 Wang C Wu I Tang 7 Lue M. The melecular
040 046	50.	mochanism of Irp1 in physiological vessular homeostasis
040 917		and signal transduction pathways. Riomodicing 8
047 070		anu siynai itansuuciion painways. Diomeuicine & Dharmacatharany 130 , 111667 (2021)
040		Fnannacounerapy 133, 111007 (2021)

849	51.	Fei, F., Li, J., Rao, W., Liu, W., Chen, X., Su, N., al.:
850		Upregulation of homer1a promoted retinal ganglion cell
851		survival after retinal ischemia and reperfusion via
852		interacting with erk pathway. Cell Mol Neurobiol 35 , 1039-
853		48 (2015)
854	52.	Luo, P., Zhao, Y., Li, D., Chen, T., Li, S., Chao, X., al.:
855		Protective effect of homer 1a on tumor necrosis factor-
856		alpha with cycloheximide-induced apoptosis is mediated by
857		mitogen-activated protein kinase pathways. Apoptosis 17,
858		975-88 (2012)
859	53.	Lv, W., Zhang, Q., Li, Y., Liu, D., Wu, X., He, X., al.:
860		Homer1 ameliorates ischemic stroke by inhibiting
861		necroptosis-induced neuronal damage and
862		neuroinflammation. Inflamm Res 73 , 131-44 (2024)
863	54.	Reshetnikov, V.V., Bondar, N.P.: The role of stress-induced
864	•	changes of homer1 expression in stress susceptibility
865		Biochemistry 86 , 613-26 (2021)
866	55	Kim CI. Gonve A.I. Truskowski K. Lee CF. Cho.Y-
867	00.	K Austin R H al : Nuclear morphology predicts cell
868		survival to cisplatin chemotherany. Neoplasia 42 , 100906
869		
870	56	Kostecka I.G. Pienta K.I. Amend S.R.: Linid dronlet
871	50.	evolution gives insight into polyaneuploid cancer cell lipid
071		droplet functions. Med Opeol 29 , 133 (2021)
072	57	Phonker DT Hay N: The two teres and akt Day Cell 12
073	57.	Diaskai, г. і., пау, ім. тіе імо іогоз ани акі. Dev Celi 12, 497 502 (2007)
074	E0	$\frac{407-302}{2007}$
6/5 070	<u>э</u> о.	Sharma, S., 180, HP., Zhou, TQ., Zhou, J., Zhang, K.,
876		wang, MH.: Prevention of pms-777607-induced
8//		polypiology/senescence by mior inhibitor azo8055
8/8		
879		chemotherapeutics. Mol Oncol 8, 469-82 (2014)
880	59.	You, B., Xia, I., Gu, M., Zhang, Z., Zhang, Q., Shen, J., al.:
881		Ampk-mtor-mediated activation of autophagy promotes
882		formation of dormant polyploid giant cancer cells. Cancer
883		$\square = - \square $
884		Res 82 , 846-58 (2022)
~ ~ -	60.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and
885	60.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020)
885 886	60. 61.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes
885 886 887	60. 61.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha.
885 886 887 888	60. 61.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016)
885 886 887 888 888	60. 61. 62.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation,
885 886 887 888 889 890	60. 61. 62.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily.
885 886 887 888 889 890 891	60. 61. 62.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003)
885 886 887 888 889 890 891 892	60.61.62.63.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein-
885 886 887 888 889 890 891 892 893	60. 61. 62. 63.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein- 1: a regulator of inflammation in atherosclerosis, cancer,
885 886 887 888 889 890 891 892 893 894	60. 61. 62. 63.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein- 1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184 , 18-27
885 886 887 888 889 890 891 892 893 893 894 895	60. 61. 62. 63.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein- 1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184 , 18-27 (2014)
885 886 887 888 890 890 891 892 893 894 895 896	60.61.62.63.64.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein- 1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184 , 18-27 (2014) Terrand, J., Bruban, V., Zhou, L., Gong, W., El Asmar, Z.,
885 886 887 888 890 890 891 892 893 894 895 896 897	60.61.62.63.64.	 Res 82, 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7, 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66, 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184, 18-27 (2014) Terrand, J., Bruban, V., Zhou, L., Gong, W., El Asmar, Z., May, P., al.: Lrp1 controls intracellular cholesterol storage
885 886 887 888 889 890 891 892 893 894 895 896 897 898	60.61.62.63.64.	Res 82 , 846-58 (2022) Smith, S.F., Collins, S.E., Charest, P.G.: Ras, pi3k and mtorc2 - three's a crowd? J Cell Sci 133 (2020) Dan, H.C., Antonia, R.J., Baldwin, A.S.: Pi3k/akt promotes feedforward mtorc2 activation through ikk-alpha. Oncotarget 7 , 21064-75 (2016) Gaur, U., Aggarwal, B.B.: Regulation of proliferation, survival and apoptosis by members of the tnf superfamily. Biochem Pharmacol 66 , 1403{8 (2003) Gonias, S.L., Campana, W.M.: Ldl receptor-related protein- 1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. Am J Pathol 184 , 18-27 (2014) Terrand, J., Bruban, V., Zhou, L., Gong, W., El Asmar, Z., May, P., al.: Lrp1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of wnt

920 921 polyploid cells. (B) Representative bright field (left) and DAPI 922 (right) 40x images of MDA-MB-231 cells and PC3 cells treated 923 with docetaxel and cisplatin (right) 10 days post treatment 924 recovery. (C) Nuclear diameter for all treated conditions for MDA-925 MB-231 cells. (D) Nuclear diameter for all treated conditions for 926 PC3 cells. Arrow indicates the condition where single cell progeny 927 originated from. (E) Nuclear diameter of PC3 control parental and 928 progeny-1 cells, and progeny-1 10 days post-treatment cells.

929

917 918

957	Figure 5: HOMER1, TNFRSF9, and LRP1 are putative markers of
958	chemotherapy resistance. (A) Representative PC3 images of
959	putative marker genes stain in the VAR (4th) channel. DMSO
960	control cells were stained with HOMER1 and were negative. (B)
961	RNA expression for each marker for all PC3 cells. (C)
962	Immunofluorescence quantification for PC3 cells stained with
963	tested markers. (D) Representative MDA-MB-231 images of
964	putative marker genes stained in the VAR (4th) channel. DMSO
965	control cells were stained with HOMER1 and were negative. (E)
966	RNA expression for each marker for all MDA-MB-231 cells. (F)
967	Immunofluorescence quantification for MDA-MB-231 cells stained
968	with tested markers.
000	

969

971 972 the BM aspirate of late-stage prostate cancer and are correlated 973 with recurrence in prostate and breast cancers. (A) 974 Representative CTCs from BM of advanced prostate cancer 975 patients that were stained with survival markers HOMER1 (left), 976 TNFRSF9 (TNF; middle), and LRP1 (right). Tested markers 977 appear as white in the merged image. Scale bars are 15μ M. (B) 978 Percentages of CTCs with EPI positivity and cells that were 979 stained with survival markers HOMER1 (left), TNFRSF9 (middle), 980 and LRP1 (right). Cells that are positive for the marker alone 981 (middle bar) cannot be conclusively labeled a tumor derived cell. 982 LRP1 (right) is also a marker of T-cells, so only cells that were EPI 983 positive were included. (C-D) Kaplan-Meyer survival plots for RNA 984 expression of tested markers in prostate (C) and (D) breast cancer 985 patients.