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Multitwist Möbius Strips and 
Twisted Ribbons in the Polarization 
of Paraxial Light Beams
Enrique J. Galvez, Ishir Dutta, Kory Beach   , Jon J. Zeosky, Joshua A. Jones & Behzad Khajavi

The polarization of light can exhibit unusual features when singular optical beams are involved. In 
3-dimensional polarized random media the polarization orientation around singularities describe 1/2 
or 3/2 Möbius strips. It has been predicted that if singular beams intersect non-collinearly in free space, 
the polarization ellipse rotates forming many-turn Möbius strips or twisted ribbons along closed loops 
around a central singularity. These polarization features are important because polarization is an 
aspect of light that mediate strong interactions with matter, with potential for new applications. We 
examined the non-collinear superposition of two unfocused paraxial light beams when one of them 
carried an optical vortex and the other one a uniform phase front, both in orthogonal states of circular 
polarization. It is known that these superpositions in 2-dimensions produce space-variant patterns 
of polarization. Relying on the symmetry of the problem, we extracted the 3-dimensional patterns 
from projective measurements, and confirmed the formation of many-turn Möbius strips or twisted 
ribbons when the topological charge of one of the component beams was odd or even, respectively. 
The measurements agree well with the modelings and confirmed that these types of patterns occur at 
macroscopic length scales and in ordinary superposition situations.

Electromagnetic waves can produce in 3-dimensions (3-d) unusual patterns of fields that are not immediately 
obvious. Superpositions of optical beams carrying scalar phase singularities, optical vortices, have been shown 
to produce knots in the line that follows the phase singularity in 3-d1–4. Vector fields can also produce unusual 
patterns. They may, for example, involve a traveling wave that when focused produces an axial component of 
the field. This is the case at the waist of a radially- or azimutally-polarized beam5. Because of this, they have 
long been discussed for use in charged-particle accelerators6. Radial and azimuthal vector beams are already 
a rarity in themselves because in their paraxial form they carry a polarization singularity: its center has all 
linear-polarization orientations. It is not a contradiction because, like with optical vortices, the intensity decreases 
asymptotically to zero at the singular point. These beams belong to a class of beams known as singular optical 
beams. Likewise, Poincaré beams can carry various types of polarization singularities. Among them, C-points, 
which have all orientations of the polarization ellipse, reached asymptotically from the polarization orientation of 
the surrounding field. The singular point in this case may have non-zero intensity because it has circular polari-
zation, which is singular in orientation. The polarization field surrounding the C-point contains a disclination in 
the orientation of the polarization ellipse7–14, and recent studies have investigated the full range of disclinations 
that can be produced with designer singular optical beams15–17.

Evanescent fields are also situations that may give rise to unexpected arrangements of fields18,19. Freund pro-
posed that electromagnetic fields involving randomly-polarized fields contain unique features: the polarization 
ellipse describes Möbius strips of either 1/2 or 3/2 turns along closed paths surrounding a singular point20–22. 
These features have been confirmed analytically by independent analysis23. However, they appear on length scales 
of the order of the wavelength, which makes them hard to measure22. Recently, Bauer et al. verified experimentally 
3/2 and 5/2 Möbius strips appearing at the waist of a tightly-focused Poincaré beam24. They did so with the novel 
technique of Mie scattering nanointerferometry that they developed25. A more recent prediction claimed that 
singular optical beams would produce 3-d fields that describe many-turn Möbius strips at macroscopic length 
scales in the intersection of paraxial beams. These patterns would appear along a macroscopic closed path about 
the singular point26,27. Moreover, crossed paraxial beams with opposite circular polarization produce twists in the 
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polarization along any closed paths with any type of modes26,27. The twists may be half-integer, forming Möbius 
strips only when the paths surround a polarization singularity.

The previous measurements of these types of features used a novel scattering method of tightly focused 
beams25. We made this determination using polarimetry. A particular challenge posed by this approach was 
that polarization projections cannot be used to measure the z-component of the field independently of the other 
components. However, we were able to derive it from projective measurements by relying on the simplified for-
malism of a symmetric geometric configuration. Using this method we were able to successfully reconstruct the 
3-d orientations of the polarization ellipse, as shown below.

Materials and Methods
Theory.  The setup of the problem involves two paraxial beams of half-width w crossing in free space. The 
beams were in orthogonal states of circular polarization. One beam was a standard Gaussian beam and the other 
carried an optical vortex, which for ease of analysis was prepared in a singly-ringed Laguerre-Gauss mode. This is 
depicted in Fig. 1(a). We analyzed the pattern in a reference frame (x, y, z), with z-axis coplanar with the propa-
gation directions of the two beams, and bisecting them forming an angle θ with each direction, as shown in the 
figure. We label the z = 0 plane as the “observing plane”. We can write the equations for the field at t = 0 in this 
plane as28

Figure 1.  (a) Diagram of the situation that is studied: two beams in Laguerre-Gauss modes (LG) meet 
noncollinearly. One beam has right-circular polarization êR and spatial mode with topological charge , and the 
other has left-circular polarization êL and fundamental Gaussian mode ( = 0). (b) 2-dimensional polarimetry 
of the light on the observing plane shows the colour-coded orientation of the polarization ellipse, and drawn 
ellipses coloured red/blue for right/left handedness. (c) Simulation of the amplitude squared of the z-component 
of the field.
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with k being the wavenumber,  the topological charge, 


A  and A0 mode normalization constants, and δ0 the rel-
ative phase between the two beams. We neglect the curvature of the wavefront.

Because the field in Eq. (1) has all three components in a non-factorable form, the polarization-ellipse field is 
3-dimensional. To qualitatively visualize the pattern that the ellipses make, let us assume that θ is a small angle, so 
that the z-component of the field is small. We express the x- and y-components of the field in terms of the right 
and left circular components: = −−ˆ ˆ ˆe e e2 ( i )R x y

1/2  and = +−ˆ ˆ ˆe e e2 ( i )L x y
1/2 . Neglecting the z-component, the ori-

entation of the polarization ellipse is half the relative phase between the circular components, or approximately

ϕ φ θ≈ − k x/2 , (4)

where φ is the transverse angular coordinate. For θ above 10−4 rad the variation in the x-dependence of the phase 
is larger than the azimuthal phase variation and the polarization displays polarization fringes, as shown in the 
measurements of Fig. 1(b), for which θ = ⋅ −3 10 4 rad28. In these fringes the polarization ellipse rotates by half a 
turn from fringe to fringe. So, if we follow a closed path around the center of the intersection of the two beams 
(the origin), the polarization ellipse rotates by N half turns on the top side of the fringe pattern, and by + | |N  
half-turns in the opposite sense on the bottom side of the path. This leads to a net | |  half-turns for a completed 
closed path.

Note also that in Eq. (1) the absolute value of the y- and z-components of the field are proportional to each 
other. Figure 1(c) shows the calculated amplitude squared of the z-component of the field. Adjacent fringes are 
out of phase with each other. That is, at the nodes of the fringe pattern the instantaneous z-component of the 
field changes sign, implying that the polarization ellipse is changing its tilt relative to the plane of the picture. In 
following this z-component along the circular path we see that it undergoes an odd number of tilt flips. When we 
combine the two-dimensional rotations with the z-component switching, we get that the semi-major axis of the 
polarization ellipse describes either a Möbius strip or a twisted ribbon.

We can quantify the twists the following way: the number of twists depends on the radius of the circular path 
r relative to the fringe spacing λ θ/(2 sin )27, where λ is the wavelength of the light. The number of turns is then 
given by

θ
λ

+ .N r c4 sin
2 (5)

where =c 0 for | |  even, and =c 1 for | |  odd. Note that a twisted ribbon also appears for = 0, in the intersection 
of two plane waves. Indeed, the simple interference of non-collinear circularly polarized plane waves shows inter-
esting features in its transverse momentum29.

Projective Measurements.  The next problem we faced was the determination of the field of the light pat-
tern. One approach that works with tightly-focused beams is to scatter the light with a small metallic sphere, 
and infer the field from the scattered pattern24,25. In our case the optical beams are unfocused, a situation where 
scattering may be too weak to use as means of measurement. We opted for using projective measurements with a 
polarizer. The challenge is that such measurements do not measure the z-component of the field independently of 
the other components30. However, as with polarimetry, one can obtain polarization-ellipse parameters via projec-
tive measurements plus knowledge of the modes of the polarization of the incoming beams and their geometric 
configuration. One additional restriction that simplifies the algebra is the use of an observing plane with a normal 
that bisects the two propagation-vector directions, as presented above in the setup of the problem.

To analyze the result of projective measurements we specify the field components of the two beams:

ˆ ˆ ˆθ θ= − +
�
� �E E e i e e(cos sin ) (6)x y z

ˆ ˆ ˆθ θ= + −


E E e i e e(cos sin ) (7)x y z0 0

with respective propagation unit vectors:

θ θ= −


ˆ ˆ ˆk e esin cos (8)x z

θ θ= − − .ˆ ˆ ˆk e esin cos (9)x z0

The intensity of the transmitted light past a polarizer with transmission axis along unit vector p̂ is
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is the unit vector orthogonal to the propagation direction along the plane that contains p̂. We consider four polar-
ization projections: =ˆ ˆp eV y, =ˆ ˆp eH x, = +ˆ ˆ ˆp e e( )/ 2D x y  and = −ˆ ˆ ˆp e e( )/ 2A x y , which correspond to vertical 
(V), horizontal (H), diagonal (+45 degrees; D), and anti-diagonal (−45 degrees; A) directions, respectively. The 
field component along the y-direction can be extracted directly from the projective measurement along V: 
| | =E Iy V

1/2. However, we cannot separate the x- and z- components from the projections: = +I E EH x z
2 2. The 

field of Eq. (1) can be written as

θ θ= + + − + −δ δ π δ−+ − −
��

� � �ˆ ˆ ˆE E E e e E E e e E E e ecos sin , (12)
i

x
i

y
i

z0 0
( /2)

0

which can be expressed to within an overall phase as
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where δ δ δ= −+ −. With the above equations we can establish relations between the amplitudes of the z- and 
x-components of the field, and extract them from the V and H projective measurements: θ θ| | = | | =E E Isin sinz y V

1/2  
and θ= −E I I( sin )x H V

2 1/2. The phase δ is obtained from the D and A projections:

δ θ=
−

| || |
I I
E E
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where θ θ θ θ= + − +f ( ) (1 cos ) /(2 cos cos 1)2 2 4 2 . Thus, our measurement constitutes only a partial measure-
ment of the fields because it uses a priori knowledge of the component beams to obtain the amplitudes of the x- 
and z-components of the field. We also used the fringe spacing from the data to obtain an accurate value of θ. 
With this information we can reconstruct the field of Eq. (13). However, the expression only gives us an instanta-
neous value of the field. Our goal is to obtain the polarization ellipse. If we express the electric field in terms of the 
ellipse semi-axes, then it is given by

γ= − −
��

ˆ ˆE E e E eexp( i )( i ), (15)a a b b

where êa and êb are unit vectors along the semi-major and semi-minor axes of the ellipse, respectively, as shown in 
Fig. 2, and Ea and Eb are real coefficients. The phase γ is related to the “rectification phase” β γ= − E Etan [( / )tan ]b a

1 , 
which is the angle that the instantaneous field vector makes with the semi-major axis of the ellipse9,32, as shown in 
Fig. 2. The phase γ can be obtained directly from the field via the relation33

γ =
⋅

| ⋅ |
.

�� ��

�� ��
E E

E E
exp(i )

(16)

Thus, per Eq. (15), the semi-major and semi-minor axis vectors are respectively the real and imaginary com-
ponents of the product of Eqs (13) and (16) 27,33.

Figure 2.  Polarization ellipse showing the relevant parameters: orientation α, rectification phase β, and field 
amplitudes Ea and Eb along the semi-major and semi-minor axis directions êa and êb, respectively.
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Apparatus.  A schematic of the apparatus is shown in Fig. 3. Light from a Helium-Neon laser was spatially 
filtered, expanded and sent through a Mach-Zehnder type interferometer where a spatial light modulator (SLM) 
was used as a folding mirror for both beams. Two panes of the SLM encoded spatial modes onto the light in 
first-order diffraction, as shown in the insert to Fig. 3. A polarizer insured that the polarization after the SLM was 
in a vertical plane. A half-wave plate in the path of one of the beams flipped the polarization to horizontal. The 
beams were recombined forming an angle 2θ by a mirror and polarizing beam splitter. A quarter-wave plate con-
verted the polarization states to the circular states. The beams overlapped at a digital camera closely preceded by 
neutral density filters and a film or wire-grid polarizer. The angle θ was obtained by measuring the fringe density 
of the interference pattern when both modes were fundamental Gaussian. We also did full polarimetric analysis 
of the light.

We took data for various angles, with the largest limited only by the camera resolution. We also took 
data for various topological charges of one of the beams. Images taken after the above mentioned 4 polarizer 
orientations were used to extract the semi-major axis of the polarization ellipse of every point in the image 
plane.

We have become aware or recent work measuring ½ Möbius strip in a focused Poincaré beam in Bauer, T. et al.34.

Results and Discussion
Figure 4(a) and (b) show the modeled and measured fringe patterns for = 1 at a shallow angle of ±40 1 arc sec. 
We also show in pane (c) the modeled 2-d view of the semi-major axis of the ellipse along a closed circle shown in 
pane (a), respectively, which describe a half-turn Möbius strip. Because we graph the semi-major axis vector 
( ˆE ea a), the evolution of the vector after a closed path yields the initial and final vectors parallel to each other but 
pointing in opposite directions. In pane (d) of the same figure we show the same quantity as extracted from the 
data. The colour-coding is labeled at the bottom of the figure. It helps in visualizing the 3-d orientation of the 
semi-major axis: red-magenta and blue/green are used when the vector describing the axis is above and below the 
observation plane, respectively. The red-green and magenta-blue are when the vector has a component that points 
toward or away the center of the circle, respectively.

The comparison of the two is in excellent qualitative agreement. This agreement is remarkable given the 
imperfections of the measured optical beams, which suffer aberrations, mode deformations due to the lack of 
mode purity and unwanted contributions from light for other diffraction orders. The adjustable parameters in the 
modelings were the relative phase between the two beams δ0, angle θ, and the center of the pattern. The shortcom-
ing is, of course, that we do not make independent measurement of the x- and z-components of the field and have 
to rely on knowledge of the geometry of the problem. The method could become more widely applicable to situ-
ations where the exact geometry is not known if a method to do independent measurements of the x- and 
z-components of the field is devised.

Note in Fig. 4(a) and (b) that the circle along which we do our calculation of the polarization ellipse barely 
goes over 1-2 fringes. In doing so, the Möbius strip carries only a half twist. As the circle covers more fringes, the 
polarization ellipse describes more twists27. We verified this as well, as shown below. The largest angle θ that we 
investigated was of about one degree, which involved about 7 camera pixels from fringe to fringe, yielding a 
Möbius strip with about 161.5 turns for a circular path with r w.

We experimented with other values of the topological charge, as shown in Fig. 5 for a few cases. It can be seen 
that for the same value of θ = . ± .1 63 0 03 arc min, the cases for = 1 and = 3 [(a), (b) and (e), (f), respec-
tively] produced Möbius strips of 5/2 and 11/2 twists, respectively, whereas the = 2 case [(c) and (d)] involves a 
ribbon of 3 twists. The 3-d views have different perspectives to better visualize the general character of the pat-
terns. We added the vertical polarization projections to show the fringes that give rise to the modeled and meas-
ured reconstructions. We note that because the angle is shallow, the in-plane (x, y) coordinates are not in the same 
scale as the out-of-plane z-coordinate.

Conclusions
In summary, we have confirmed the predicted patterns of twists in three dimensions that the polarization of the 
light describes when it is formed by the non-collinear interference of singular-optical beams. We confirmed that 

Figure 3.  Schematic of the apparatus. Optical components include beam expander, spatial filter, non-polarizing 
beam splitter (BS), spatial light modulator (SLM), polarizer (P), half-wave plate (H), quarter-wave plate (Q), 
polarizing beam splitter (PBS) and digital camera (DC). Inserts show: a low resolution example of the patterns 
programmed onto the SLM, and image recorded by DC for a given polarizer orientation.
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Figure 4.  Modeled (a) and measured (b) projections of the light with a vertical polarizer. The circle denotes 
points along which we compute the semi-major axis of the ellipse of the modeled (c) and measured (d) data. 
Colour coding for the ellipse axis denotes the orientation in 3 dimensions: red-magenta and blue-green for 
above and below plane, respectively; red-green and magenta-blue with in-plane component pointing radially 
out or radially in, respectively. The coordinate r lies within the x-y plane with origin at the center of the circular 
path.
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the polarization ellipse describes Möbius strips for  odd and twisted ribbons for  even27. Should both beams 
carry optical vortices of charge 1 and 2 the number of twists would be determined by the parity of = −  1 2 
in Eq. (5).

We did these demonstrations at shallow angles to allow measurements to be done with a digital camera. The 
variations in the polarization are scalable via the angle formed by the propagation vectors of the two beams 
(2θ). Patterns formed at larger angles, where all components are of comparable magnitude could not be imaged 

Figure 5.  Modeled [(a,c,e)] and measured [(b,d,f)] 3-d orientations for θ = .1 63 arc min but for distinct values 
of topological charge: (a,b) for = 1, (c,d) for = 2, and (e,f) for = 3. Inserts show the projective patterns in 
the vertical direction and the circular path corresponding to the reconstructions.
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because the polarization fringe density was smaller than current camera pixel sizes. This work shows that 
non-collinear paraxial beams can be used to produce 3-d patterns that can be manipulated by adjusting the 
beam modes and their relative angle. If the medium were composed of molecules that interact strongly with 
polarization, these patterns could be used to manipulate them35,36. Beyond the fundamental interest, studies of 
3-d polarization may have potential for adding polarization encoding to the storage of 3-d information. In this 
work we investigated the most basic situation: two paraxial beams with one of them bearing an optical vortex. 
The addition of more beams and modes is likely to show new interesting effects, opening a new dimension of 
complex light.
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