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A B S T R A C T   

The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several 
reports have already described alterations of this structure in patients of schizophrenia that experience auditory 
hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are 
altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI 
images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by 
Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of 
schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age 
and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent 
auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we 
have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical 
scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 
thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the 
anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. 
We have also found some significant correlations between the volume of these nuclei in patients experiencing 
auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric 
alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic 
schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. 
Future studies should explore whether the structural alterations are cause or consequence of these positive 
symptoms and whether they are already present in first episodes of psychosis.   

1. Introduction 

One of the most common positive symptom of schizophrenia is the 
presence of auditory hallucinations (AH), which occur in 75% of 

patients of this disease (Waters and Fernyhough, 2017). Disturbingly, 
while some patients who experience AH may benefit from pharmaco-
logical treatment, in others these hallucinations are resistant to phar-
macological therapy and tend to become chronic (MacKay et al., 2018; 
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Nicolson et al., 2006). Several MRI studies performed on patients 
experiencing AH suggest that this psychosis might be due to an aberrant 
interaction between linguistic, auditory and mnemic/limbic networks 
(Allen et al., 2012; Ćurčić-Blake et al., 2017). In fact, different neocor-
tical regions related to auditory processing, such as the superior and 
middle temporal gyri, and the transverse temporal gyrus (Heschl’s 
gyrus), display morphological and functional alterations in patients with 
schizophrenia (Chen et al., 2015; Cui et al., 2018; Oertel-Knochel et al., 
2013; van Swam et al., 2012). However, to date, the study of the 
implication of subcortical structures in AH has remained more elusive. 
Among these structures, the thalamus has already gathered interest for 
its implication in sensory processing (Byne et al., 2009; Pergola et al., 
2015). 

The thalamus is a diencephalic structure composed of a heteroge-
neous group of nuclei that have distinct synaptic inputs and cortical 
connections (Giraldo-Chica and Woodward, 2017). Its main function 
consists in relaying sensory information, such as early visual or auditory 
stimuli, and help the integration of cognitive processes, which includes 
attention and executive functions, as well as memory and language 
(Halassa and Kastner, 2017; Wolff and Vann, 2019). Among these 
thalamic nuclei, several prove interesting to understand the positive 
symptoms in patients with schizophrenia, particularly those related to 
AH, because of their relationship with audition or language. The medial 
geniculate nucleus (MGN) is the most related to audition since it receives 
information from the brachium of the inferior colliculus and relays the 
auditory information to the primary auditory cortex (Vasquez-Lopez 
et al., 2017). Additionally, other thalamic nuclei, such as the pulvinar 
complex (Pu) and the mediodorsal complex (MD), are associated with 
language processing, because of their connections with cortical regions 
and neuronal networks involved in this task (Barbas et al., 2013; 
Crosson, 2013). 

Previous reports have shown decreases in the volume of the whole 
thalamus in first episode schizophrenia patients (FEP) (Gilbert et al., 
2001) and when comparing twins with and without the disorder 
(Ettinger et al., 2007). However, only one, analyzing FEP, has specif-
ically shown these reductions in patients experiencing AH (Huang et al., 
2015). Furthermore, there is scarce information on how the individual 
thalamic nuclei might be affected by this disease. Different neuro-
imaging reports have consistently indicated volumetric decreases in Pu 
and MD in patients with schizophrenia when compared to their healthy 
counterparts (Huang et al., 2020; Kemether et al., 2003; Shimizu et al., 
2008). In these nuclei, some postmortem studies have also found lower 
neuronal numbers and decreases in neuronal sizes (Byne et al., 2009). In 
addition, there are reductions of the MD connectivity in patients with 
schizophrenia (Parnaudeau et al., 2013). Similarly, a couple of studies 
found reductions in the volume of the MGN in 22q11.2 deletion syn-
drome patients, a genetic disorder, which confers high risk for schizo-
phrenia and frequently courses with AH (Cantonas et al., 2021; Mancini 
et al., 2020). 

Interestingly, previous reports from our laboratory have already 
established negative correlations between the Psychotic Symptom Rat-
ing Scale (PSYRATS) scale, a reliable tool to evaluate different traits of 
hallucinations and delusions (Haddock et al., 1999), and changes in grey 
matter concentration in patients suffering AH. Concretely, PSYRATS 
score is negatively correlated with the gray matter concentration in the 
superior and middle temporal gyri (García-Martí et al., 2012), and the 
left inferior frontal and right postcentral gyri (García-Martí et al., 2008). 
Moreover, using spectroscopic measures, we found that patients with 
schizophrenia had significantly lower bilateral NAA/Cho ratios in the 
thalamus when compared with healthy subjects. There was also a 
significantly lower NAA/Cho ratio in the right thalamus in patients with 
AH compared to patients without AH and control subjects, which could 
suggest increased membrane turnover or demyelinating processes 
(Martínez-Granados et al., 2008). However, as far as we know, there is 
no information yet on how the score on hallucination scales, as well as 
its total value, might be related to morphometric changes of different 

thalamic nuclei. 
Despite the cumulative research performed in the last few decades, 

the common neural mechanisms underlying hallucinations remain 
extensively unknown (Zhuo et al., 2020). Hence, in this study we aimed 
to understand how the volumes of the different thalamic nuclei are 
affected in patients experiencing persistent AH. To do so we have 
segmented two cohorts of patients of schizophrenia with and without 
AH, and matched healthy control subjects. We have used a novel 
probabilistic segmentation technique for thalamic nuclei parcellation 
(Iglesias et al., 2018). In addition, we have also studied whether the 
different alterations we reported in these nuclei could also explain the 
PSYRATS scored by patients with schizophrenia and AH. 

2. Material and methods 

2.1. Study participants 

All the samples from both healthy subjects and patients suffering 
from schizophrenia come from two centers of the network of biomedical 
research centers in mental health (CIBERSAM): the Institute of research 
of the Clinic Hospital from Valencia (INCLIVA) and the Sant Pau Hos-
pital from Barcelona. All the patients meet DSM-IV criteria for schizo-
phrenia and all of them were able to read, understand and give an 
informed consent. None of them was hospitalized at the moment of 
evaluation, and all of them were legally competent. All the procedures 
were approved by the local Ethics Committee. 

2.1.1. Patients with schizophrenia and persistent auditory hallucinations 
A group of 41 patients diagnosed with schizophrenia in a chronic 

stage experiencing persistent AH was included in the present study. 
These patients were diagnosed with persistent AH by their psychiatrist 
following the clinical assessment used in previous studies (González 
et al., 2006; Martí-Bonmatí et al., 2007). The sample consisted of par-
ticipants of both sexes (F/M: 39%/61%). The demographic character-
istics of all the participants are summarized in Table 1. 

Patients who participated in the study met the following inclusion 
criteria for persistent AH:  

a) Voices had been present at least once a day during the last year.  
b) At least two antipsychotics had been tested on the patient at doses 

equivalent to 600 mg/day of chlorpromazine.  
c) Voices had not been modified by pharmacological treatment.  
d) Patients freely accepted participating in the study. 

In addition, we also followed these exclusion criteria: 

Table 1 
Demographic and clinical data of patients with schizophrenia and AH and their 
matched controls (*Clozapine equivalents).   

Matched 
healthy 
controls 

Patients with 
schizophrenia 
with AH 

Patients with 
schizophrenia 
without AH 

Sex, F(%)/M(%) 16(41%)/25 
(59%) 

16(39%)/25(61%) 14(40%)/21(60%) 

Age (range) 37.43 ±
10.61 
(23–68) 

40.02 ± 12.54 
years (17–68) 

36.15 ± 9.96 years 
(18–57) 

Age when first 
diagnosed (range)  

21.17 ± 6.04 years 
(8–32) 

30.88 ± 9.29 years 
(16–52) 

Duration of illness 
(range)  

15.60 ± 11.78 
(2–54) 

6.26 ± 5.87 years 
(1–20) 

Pharmacological 
treatment* (range)  

503.40 ± 448.74 
mg/d (66–1850 
mg/d) 

153.56 ± 89.79 
mg/d (25–400 mg/ 
d) 

Duration of the 
pharmacological 
treatment  

14.3 ± 6.9 years 6.26 ± 5.87 years 
(1–20)  
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a) Patients meeting criteria of Intellectual disability.  
b) Presenting neurological lesions or cranioencephalic trauma.  
c) Patients who were not able to understand the nature, consequences 

of the trial and the procedures they were asked to follow. 
d) Patients with absolute or relative contraindications to MR exami-

nation (claustrophobia or severe hearing loss). 

All patients were being treated with stable doses of antipsychotic 
medication. 

Patients began experiencing AH at a mean age of 21.17 ± 6.04 years 
and the average duration of their illness was 15.60 ± 11.78 years. All 
patients were being treated with antipsychotic drugs at the time of 
evaluation, with an average duration of treatment of 14.3 ± 6.9 years. In 
addition, 24 h prior to image acquisition, 26 of these patients were also 
assessed with the PSYRATS scales to gain insight into the severity of 
their AH. 

2.1.2. Patients with schizophrenia without auditory hallucinations 
A group of 35 patients diagnosed with schizophrenia without AH was 

also considered in this study. These patients were diagnosed by their 
psychiatrist as those in the AH group. The sample consisted of partici-
pants of both sexes (F/M: 40%/60%). These patients were first diag-
nosed at a mean age of 30.88 ± 9.29 years and the average duration of 
the illness was 6.26 ± 5.87. In addition, 20 of these patients were also 
evaluated using the PSYRATS scales prior to image acquisition. 

We followed the same exclusion criteria that was applied in the 
group of patients with schizophrenia and AH. The demographic char-
acteristics of all the participants are summarized in Table 1. 

2.1.3. Healthy control subjects 
Using a pool of 89 healthy control subjects, we selected 55 for the 

comparison with patients with schizophrenia and AH and patients with 
schizophrenia without AH. These healthy controls were matched to the 
patients with schizophrenia for age, sex, and intracranial volume (eTIV). 
The healthy participant sample was composed of both males and females 
(Table 1). 

2.2. Structural MRI acquisition 

T1 images were acquired for all participants on 3-Tesla magnets 
(Achieva, Philips Medical Systems, Best, The Netherlands). A 3D spoiled 
gradient-echo sequence was used (TE = 7.38 ms; TR = 13.18 ms; flip 
angle = 8◦, NEX = 1, 160 contiguous slices with no interslice gap, 
acquisition matrix = 256 × 256, FOV = 240 mm, and voxel size = 0.90 
× 0.90 × 1 mm). 

2.3. Image processing 

T1-weighted images were processed for automatic segmentation 
using the latest version of FreeSurfer v7.1.1 (Fischl, 2012) (FS7.1. https 
://surfer.nmr.mgh.harvard.edu) by default settings. Next, to quantify 
the volume of thalamic nuclei, we implemented an automatic parcella-
tion of 25 nuclei using the module designed for this purpose (Iglesias 
et al., 2018), which has been built based on a manual delineation 
combining in vivo and ex vivo data. A visual inspection was then carried 
out to check whether this automatic segmentation and labeling was 
conducted properly. This led to the exclusion of the following nuclei: 
paratenial, limitans suprageniculate, ventromedial, parafasciculate, 
paracentral and central lateral nuclei. Because the latter three nuclei 
were part of the intralaminar anatomic group, we finally discarded the 
whole intralaminar complex. In addition, we combined nuclei from the 
ventral (VPL, VLa, VAmc, VA, VLp and VM) and lateral (LD and LP) 
anatomic complexes to simplify their analysis. Therefore, we finally 
calculated 12 volumetric measurements per hemisphere, as well as the 
intracranial volume (eTIV) for each subject. All the thalamic nuclei 
included in the analysis can be found in Table 2. 

2.4. Statistical analyses 

All statistical analyses were performed using R version 4.0.5 and the 
Statistical Package for the Social Sciences (SPSS) version 26.0. We 
analyzed whether there were any significant differences in the variables 
age, sex, and eTIV between the group of patients suffering from 
schizophrenia and that of matched participants. The statistical analyses 
of the structural volumetric data consisted of two blocks. First, to 
determine which variables needed to be used as covariates, we per-
formed multiple linear regression models. Here we included sex, age and 
eTIV to determine their contribution to the total thalamic volume (TTV). 
In the second block of analyses, we compared the volumes of the 
different nuclei among our 3 cohorts of subjects: patients with schizo-
phrenia and AH, patients with schizophrenia without AH, and matched 
healthy controls. We used then a multiple analysis of covariance 
(MANCOVA) to study the three groups, including as covariates the 
variables that showed significant effects in the previous analysis step, 
namely eTIV. Each nucleus was evaluated separately in two independent 
contrasts per hemisphere, resulting in two comparisons of 12 volumes 
(nuclei and anatomic groups). The significance level was adjusted using 
the False Discovery Rate (FDR) method of Benjamini and Hochberg 
(Benjamini and Hochberg, 1995) to prevent increases in the false dis-
covery rate in the general comparisons. Therefore, for the 12 nuclei 
tested the significance level resulted in 0.019 for the left hemisphere and 
0.023 for the right hemisphere. For the nuclei that surpassed the sig-
nificance threshold, we performed again the FDR correction to perform 
pairwise comparisons among patients with schizophrenia with and 
without AH, and healthy control subjects. The FDR significance 
thresholds for the left hemisphere were 0.033 (LGN, PuI, MDm and MDl) 
and 0.017 (PuA). For the right hemisphere these were 0.033 (MGN, PuA, 
MDm and MDl) and 0.017 (PuL and the lateral complex). The effect sizes 
were always calculated for all the significant pairwise comparisons 
(either in relation to the matched controls or to the group of patients 
with schizophrenia lacking AH) using Cohen’s d. 

To study the relationship between the volume of the affected 
thalamic nuclei in patients with schizophrenia and the total PSYRATS 
score, we performed bilateral correlations using the Spearman rank- 
order correlation coefficient (ρ). This could only be performed in those 
patients that also had the clinical assessment available (26 patients with 
AH, and 26 patients lacking AH). We then used again the FDR method of 
Benjamini and Hochberg to prevent increases in the false discovery rate, 
rendering correlations with p-values below 0.014 as significant. 

Table 2 
Thalamic nuclei analyzed (*nuclei or anatomic groups analyzed).  

Anatomic group Nucleus Abbreviation 

Anterior Anteroventral* AV 
Lateral* Laterodorsal LD 

Lateral posterior LP 
Ventral* Ventral anteior VA 

Ventral anterior magnocellular Vamc 
Ventral lateral anterior Vla 
Ventral lateral posterior VLp 
Ventral posterolateral VPL 

Medial Reuniens (medial ventral)* MV-re 
Mediodorsal medial* MDm 
Mediodorsal lateral* MDl 

Posterior Lateral geniculate* LGN 
Medial geniculate* MGN 

Pulvinar Pulvinar anterior* PuA 
Pulvinar medial* PuM 
Pulvinar lateral* PuL 
Pulvinar inferior* PuI  
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3. Results 

3.1. Demographics 

No significant differences were found in age (t = 0.315, p = 0.75) or 
intracranial volume (t = 0.13, p = 0.88) between schizophrenia patients 
with AH and their matched control subjects. Likewise, no significant 
differences in age (t = 0.036, p = 0.97) and eTIV (t = 0.409, p = 0.68) 
were found between patients with schizophrenia without AH and their 
matched controls. 

3.2. Determination of covariates for structural volumetric analysis. 

Associations between TTV, sex, age or eTIV were studied using a 
stepwise multiple regression model. This model explained 50% of the 
variance of TTV (R2 = 0.51; p = 0.001) with eTIV (p = 5.4⋅10-4) and sex 
(p = 2.3⋅10-4) as significant factors. 

3.3. Volumetric variation in thalamic nuclei of patients with 
schizophrenia and auditory hallucinations 

Among the 12 nuclei considered in the exploratory analysis, 

Fig. 1. Volumes of thalamic nuclei and anatomic groups that were affected in patients of schizophrenia with and without AH when compared with matched 
healthy subjects. 
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significant differences were only detected in 5 volumes belonging to the 
pulvinar, mediodorsal and posterior groups, in which we found volume 
reductions in patients with schizophrenia and AH. Inter-group volu-
metric differences that were significant are summarized in Figs. 1 and 2, 
and Table 3. We found significant bilateral volumetric reductions in two 
nuclei of the dorsomedial complex. Concretely, the MDm from both 
right and left hemispheres were reduced (RH: p = 1.62⋅10-4; LH: p =
1.78⋅10-4), with associated medium effect sizes (RH: d = -0.740; LH: d =
-0.679). Likewise, we also found strong reductions bilaterally on the 
MDl (RH: p = 2.40⋅10-4; LH: p = 1.05⋅10-5) with also medium effect sizes 
on both hemispheres (RH: d = -0.683; LH: d = -0.748). There were also 
significant volumetric reductions in several nuclei from the pulvinar 
complex. The PuA nucleus was reduced bilaterally (RH: p = 2.69⋅10-4, d 
= -0.668; LH: p = 0.003, d = -0.461), while the PuI was only affected in 
the left hemisphere (LH: p = 0.005, d = 0.551). The volume of the right 
lateral group was also decreased in patients with schizophrenia with AH 
when compared to those patients lacking AH (RH: p = 0.006, d =
-0.551). In the geniculate group, patients with persistent AH showed a 
smaller left LGN in relation to patients lacking AH (LH: p = 0.011, d =
-0.443), with no differences when compared to healthy controls.). Last 
of all, the volume of the MGN from the right hemisphere was also 
reduced when compared to healthy control subjects (RH: p = 2.34⋅10-6) 
showing a large effect size (RH: d = -0.820), and to those patients with 
schizophrenia without AH (RH: p = 2.44⋅10-4, d = -0.590). 

3.4. Volumetric variation in thalamic nuclei of patients of schizophrenia 
without auditory hallucinations 

To clarify which results were due to AH, we also considered in the 
analysis 35 patients with schizophrenia lacking AH. These results are 
summarized in Figs. 1 and 2, and Table 3. We found differences in the 
pulvinar and mediodorsal groups when compared to healthy controls. 
The PuA and PuL from the right hemisphere were significantly 
decreased (RH: PuA p = 0.003, d = -0.677; PuL p = 0.007, d = -0.296), 

while the volume of the PuI was only reduced in the left hemisphere (LH: 
p = 9.74⋅10-6, d = 0.551). Bilateral reductions could also be found in the 
MDm (RH: p = 4.92⋅10-4; LH: p = 0.011), with associated medium effect 
sizes (RH: d = -0.740; LH: d = -0.679. Likewise, the volume of the MDl 
was also decreased (RH: p = 2.48⋅10-4; LH: p = 0.001) and the effect 
sizes were moderate (RH: d = -0.683; LH: d = -0.748). 

In addition, we also found increases in the volume of the LGN from 
the left hemisphere in this cohort of patients when comparing to healthy 
control subjects (LH: p = 0.005, d = 0.497), while no differences could 
be found in the MGN from both hemispheres. 

3.5. Correlation with clinical scores 

Next, we aimed to study the relationship between the volumes of the 
affected nuclei and clinical assessments. Therefore, we performed 
bilateral correlations between the volumes of affected thalamic nuclei in 
those patients in which the PSYRATS scores were available (26 patients 
with AH, and 26 patients lacking AH), and the total PSYRATS score in 
both cohorts of schizophrenia patients. We found that, indeed, the 
PSYRATS score was correlated to the volume of the MDl from the left 
hemisphere (LH: ρ = -0.4893, p = 0.0096; Fig. 3) and the MDm from 
both hemispheres (RH: ρ = -0.5006, p = 0.0078; LH: ρ = -0.5794, p =
0.0015; Fig. 3) in patients with schizophrenia and AH. Interestingly, no 
significant correlations could be found between the thalamic nuclei 
affected and the total PSYRATS score in schizophrenia patients without 
AH. 

4. Discussion 

In this study we have found volumetric reductions in different 
thalamic nuclei in patients of schizophrenia with and without persistent 
AH. Furthermore, we have described correlations between these 
changes and scores of PSYRATS, a clinical scale frequently used to 
evaluate the severity and frequency of hallucinations and delusions, 

Fig. 2. Effect size in relation to matched healthy controls (Cohen’s d).  
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especially for the group of patients with schizophrenia and AH. 
Several studies, including postmortem and different neuroimaging 

analyses, have examined the volume of the whole thalamus in schizo-
phrenia (see Byne et al., 2009 for review). Most of these studies have 
found reductions in patients with schizophrenia, which is consistent 
with our present results in the specific nuclei. Also, in line with our 
results, restricted to chronic schizophrenia patients with AH, one of 
these studies found a correlation between the reduction of gray matter 
volume in the left thalamus and AH (Neckelmann et al., 2006). 

Among the relationships of the reductions in the volumes of thalamic 
nuclei with the AH, the most straightforward to explain might be that 
observed in the MGN, since this nucleus relays auditory information to 
the auditory cortex (Dorph-Petersen and Lewis, 2017). In concordance 
with our results, a recent report has found reductions in the volume of 

the MGN in 22q11.2 deletion syndrome patients, a genetic disorder, 
which confers high risk for schizophrenia and frequently courses with 
AH (Mancini et al., 2020). In addition, patients with AH show a thinner 
thickness of the Heschl’s gyrus (Mørch-Johnsen et al., 2017), which 
contains the primary auditory cortex. These type of patients also have 
altered tonotopy maps in primary auditory regions, including the 
Heschl’s gyrus (Doucet et al., 2019), which depend on the ordered 
output arising from the MGN. Furthermore, patients with schizophrenia 
have consistently showed decreased prepulse inhibition of the startle 
reflex (Braff et al., 1992; Grillon et al., 1992; Kumari et al., 2000), a test 
of sensorimotor gating that includes information arising from the 
cochlear nucleus (Fendt et al., 2001; Swerdlow et al., 2001). These 
changes have also been broadly reported in animal models of the disease 
(Brody et al., 2004; Geyer et al., 2001; Powell et al., 2009). Moreover, 

Table 3 
Significant results from the comparison between matched healthy controls vs patients with schizophrenia with and without AH. We proceeded with pairwise com-
parisons when the significance in the nuclei was below 0.019 for the left hemi-sphere and 0.023 for the right hemisphere.  

Anatomic group     F (from general 
contrast) 

df p-values from pairwise comparisons    

HC SCZ with AH SCZ without 
AH   

HC vs SCZ 
with AH 

HC vs SCZ 
without AH 

SCZ with AH vs SCZ 
without AH 

Medial MDm R 725.699 ±
76.899 

661.819 ±
86.218 

660.672 ±
80.59  

9.990 2, 
128 

1.62⋅10-4 4.92⋅10* NS 

L 725.682 ±
75.385 

668.363 ±
82.849 

675.903 ±
85.766  

8.105 2, 
128 

1.78⋅10-4 0.011 NS 

MDl R 256.591 ±
28.896 

232.712 ±
37.574 

228.417 ±
32.382  

10.178 2, 
128 

2.40⋅10-4 2.48⋅10-4 NS 

L 253.642 ±
29.983 

230.253 ±
29.234 

231.669 ±
28.624  

11.734 2, 
128 

1.05⋅10-5 0.001 NS 

Pulvinar PuA R 219.669 ±
30.297 

201.623 ±
25.339 

201.382 ±
16.336  

8.463 2, 
128 

2.69⋅10-4 0.003 NS 

L 221.555 ±
36.157 

206.464 ±
30.125 

211.861 ±
28.014  

4.616 2, 
128 

0.003 NS NS 

PuI R 254.856 ±
39.152 

268.925 ±
50.73 

265.662 ±
52.648  

1.339 2, 
128 

NS NS NS 

L 249.715 ±
43.877 

278.933 ±
55.606 

291.347 ±
53.116  

11.195 2, 
128 

0.005 9.74⋅10-6 NS 

PuL R 199.274 ±
41.95 

189.04 ±
40.995 

174.383 ±
27.624  

3.955 2, 
128 

NS 0.007 NS 

L 191.594 ±
44.64 

190.473 ±
47.141 

185.973 ±
39.844  

0.143 2, 
128 

NS NS NS 

Posterior LGN R 268.099 ±
49.442 

267.541 ±
41.409 

281.976 ±
40.566  

2.429 2, 
128 

NS NS NS 

L 279.637 ±
49.02 

282.604 ±
49.728 

306.665 ±
63.744  

4.723 2, 
128 

NS 0.005 0.011 

MGN R 86.639 ±
24.015 

67.195 ±
18.106 

81.191 ±
24.083  

13.268 2, 
128 

2.34⋅10-6 NS 2.44⋅10-4 

L 83.003 ±
23.481 

70.986 ±
25.267 

74.447 ±
25.98  

3.242 2, 
128 

NS NS NS 

Lateral  R 146.985 ±
32.201 

134.516 ±
30.095 

150.962 ±
32.883  

4.202 2, 
128 

NS NS 0.006 

L 150.286 ±
29.285 

148.905 ±
41.551 

160.031 ±
35.465  

1.891 2, 
128 

NS NS NS  

Fig. 3. Significant correlations between the total PSYRATS score and the volumes of those thalamic nuclei that were affected in patients with schizophrenia. Sig-
nificance below 0.014. 
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also in line with our volumetric findings in the MGN, a genetic mouse 
model of 22q11.2 deletion syndrome displays a decreased auditory 
input from this thalamic nucleus to the auditory cortex (Chun et al., 
2014). On the other hand, we have found increases in the volume of the 
LGN only in schizophrenia patients without AH compared with controls. 
These interesting results seem to agree with a previous report showing 
slight increases in this nucleus in patients of this disorder, regardless of 
the presence of AH (Dorph-Petersen et al., 2009). However, no further 
information exists on how AH might influence the effect of the disease 
on this nucleus. Further research should address why these increases 
seem to be limited to patients lacking AH. 

We have also reported reductions on the volumes of Pu, MDl and 
MDm nuclei in schizophrenia patients with and without AH. These 
nuclei establish sparse connections with the auditory cortex, as shown 
by tracer studies performed in primates (de la Mothe et al., 2012; Scott 
et al., 2017), and they receive inputs from Broca’s area, indicating an 
involvement in language processing (Goldman-Rakic and Porrino, 
1985). Furthermore, their lesion leads to subcortical aphasia (Crosson, 
2013). This connectivity of the Pu and MD nuclei also links directly our 
results to the alterations in the auditory cortex found in patients with 
schizophrenia (Doucet et al., 2019; Mørch-Johnsen et al., 2017). Simi-
larly, the Pu, MDl and MDm nuclei send their main synaptic output to 
the PFC. This region has extensively been shown to be smaller (Fornito 
et al., 2009; Kawada et al., 2009; Rimol et al., 2010) and less activated 
while performing a task (Barch et al., 2001) in schizophrenia patients, 
independently of the presence of AH. In addition, previous reports have 
also described that patients suffering from psychotic disorders display 
smaller volumes of Pu and MD nuclei (Byne et al., 2009; Huang et al., 
2020), and the connectivity between the MD and the PFC is reduced in 
these patients (Giraldo-Chica et al., 2018). Altogether these results are in 
accordance with the reduced volume we report in Pu and MD. However, 
there are also significant differences between the studies. In the MD and 
Pu complexes (the only regions that could be compared between the 
studies), our effect sizes were much bigger than those from Huang et al. 
(2020). In addition, they also included bipolar patients in the study, only 
tested for cognitive impairment and the positive score in PANSS was 
relatively low (16.8/49). To our knowledge the influence of AH has not 
been evaluated in these reports. 

The reduction in volume observed in our study can be due to 
different factors affecting the neurons and glial cells or their microen-
vironment. These changes may be the result of the progression of the 
disease during many years or may be already present, at similar or lower 
levels in FEP. These factors include reductions in the density of neurons, 
which have already been described in the Pu and MD (Byne et al., 2007; 
Highley et al., 2003), or in their dendritic arborization. Changes in the 
density of different synaptic inputs to these thalamic nuclei may also 
contribute to the volumetric reductions. Although there are no specific 
studies in postmortem brains, some neuroimaging studies analyzing 
connectivity have found alterations in these nuclei (Giraldo-Chica et al., 
2018). Alterations in the density or structure of astrocytes, microglial 
cells, oligodendrocytes or polydendrocytes may have also contributed to 
the volume reductions. Future studies should analyze in detail these glial 
cells in postmortem brains. 

We have found significant negative correlations between PSYRATS 
total scores and the volumes of the MD nuclei of patients of schizo-
phrenia with AH. Interestingly, the PSYRATS score has also been 
negatively correlated with the density of gray matter of different brain 
regions in chronic schizophrenia patients with AH (García-Martí et al., 
2012, 2008). In a similar way, the severity of AH has been significantly 
correlated with reductions in the volume of the PFC and the superior 
temporal gyrus, where most of the cortical auditory regions are located 
(Barta et al., 1990; Gaser et al., 2004; Levitan et al., 1999; Oertel- 
Knochel et al., 2013). We have found that PSYRATS have good predic-
tive capability in regard to the volumes of the mediodorsal nuclei in 
patients with schizophrenia and AH. Interestingly, we have not been 
able to detect similar correlations when studying patients without AH. 

This can be due to the smaller participant number of this cohort, or 
simply because patients without AH lack values in most of PYRATS 
items. In fact, it has to be noted that PSYRATS measure delusions as well 
as hallucinations (Haddock et al., 1999), symptoms that have more 
predictive validity in patients that also experience AH. 

We should consider some limitations that might overcast our results. 
First and most important, the patients we have considered had been 
treated with antipsychotic drugs for an average of 14 years, to control 
their hallucinations and, consequently, this might have also influenced 
the volumetric changes we report. Despite this being a valid concern, 
given the widespread distribution of the receptors affected by these 
drugs, one would expect a general effect on most thalamic nuclei, and 
not only a limited effect in a few ones. Although there is no clear evi-
dence of structural effects of antipsychotics, even in longitudinal MRI 
studies, some studies in patients and animal models suggest that chronic 
exposure to antipsychotics can induce volume loss (Byne et al., 2009; 
Goff et al., 2017; Roiz-Santiañez et al., 2015). Secondly, it is not clear 
from our design if the effect size we report in patients with schizophrenia 
and AH is secondary to chronic psychosis or specific to AH. We must 
consider that these patients have lived for years with the disease and, 
consequently, have had vital trajectories and/or non-pharmacological 
treatments that might have influenced their neural plasticity and 
might have contributed to the volumetric changes that we observe. Our 
analyses indicate that the duration of illness does not influence thalamic 
volume, but the severity of the disease may have also fluctuated over the 
years and influenced thalamic structure. Unfortunately, we do not have 
data on the illness progression in our patients. Although there are no 
studies on the volume of the different thalamic nuclei on FEP patients, 
reports analyzing the thalamus as a whole have found that its volume is 
already reduced (Huang et al., 2015). Moreover, a recent longitudinal 
study has found that the volume of the thalamus decreases during the 3 
years after the FEP (Akudjedu et al., 2020). Although in one study the 
reduction of thalamic volume in FEP was correlated with delusions 
(Huang et al., 2017), it is not known yet whether these structural 
changes also correlate with hallucinations. Therefore, future studies 
comparing psychotic patients with and without AH, as well as in FEP 
patients, are granted to analyze volumetric alterations in specific 
thalamic nuclei. 

Schizophrenia is an impairing disorder that leads to dysfunctional 
attention processing, working memory and executive functions (Gold 
et al., 2018; Kamal et al., 2016; Mihaljević-Peleš et al., 2019; Orellana 
and Slachevsky, 2013). However, problems in the early processing of 
sensory information often escape the scope of clinical evaluation (Butler 
et al., 2001; Rissling et al., 2012; Saccuzzo and Braff, 1981; Thomas 
et al., 2017). Among them, those arising from the malfunctional coding 
and transmission of auditory stimuli are increasingly important as they 
appear to contribute directly to the overall psychosocial disability and 
cognitive dysfunctions reported in these patients (Cantonas et al., 2019; 
Javitt and Sweet, 2015). Furthermore, interventions tackling early 
processing of auditory information have been proposed to improve 
cognition in these patients (Medalia et al., 2019; Moschopoulos et al., 
2021). 

Altogether our results show reductions in the volume of thalamic 
nuclei related to information integration in patients of schizophrenia 
with and without AH. In addition, for those patients experiencing AH the 
data also shows alterations mainly in thalamic nuclei related to auditory 
experience. In this line, future research should address whether the 
connectivity between thalamic nuclei and auditory regions is affected in 
these patients, especially that with the primary auditory cortex, and 
with cortical regions related to language processing. In addition, our 
results also highlight the relationship between these volumetric alter-
ations and the clinical outcome, suggesting a relationship between 
structural changes in thalamic regions relevant for information pro-
cessing and the presence of persistent AH. 
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