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To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma
pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-
electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphoty-
rosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the
phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to
determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential
biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each
phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and
functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as
oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics
are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize
the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine
phosphorylation and its potential role in the molecular mechanism of a glioblastoma.

1. Introduction

Tyrosine phosphorylation that is an addition of phospho-
group (–HPO

3
to –OH or –H

3
PO
4
to –NH

2
) to the tyrosine

residue is a type of protein posttranslational modification
that plays key roles in the signal transduction and par-
ticipates in many physiological and pathological processes
such as growth, proliferation, differentiation, aging, cancer,
and inflammatory diseases [1–3]. Tyrosine phosphorylation
and dephosphorylation are a reversibly dynamic mechanism

that is regulated by protein tyrosine kinases (PTKs) and
protein tyrosine phosphatases (PTPs) [4]. Moreover, tyrosine
kinase phosphorylation generally occurs within a consensus
pattern/motif [R/K]-x(2)-[D/E]-x(3)-Y or [R/K]-x(3)-[D/E]-
x(2)-Y (Y = the phosphorylation site) [5–7]. Currently,
518 human protein kinase genes [8] including 90 known
tyrosine kinases that include 58 receptor tyrosine kinases
(RTKs) [9, 10] and 107 tyrosine phosphatases [11] have been
discovered for potential targets of anticancer drugs, most
tyrosine kinases are regulated negatively and only activated
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under certain conditions [8], and interestingly tyrosine
kinases accounting for 0.3% of genome contribute to a large
proportion (30%) of 100 known dominant oncogenes [10, 12].
Tyrosine phosphorylation (accounting for only ∼0.05%) is
a low abundance event in the phosphoproteome relative to
phosphorylation at the serine (accounting for ∼90%) and
threonine (accounting for ∼10%) residues in eukaryotic cells
[1, 3, 10, 13].However, characterization of alteredmodification
and functional activities of phosphotyrosine-containing pro-
teins in different types of cancers has helped in the discovery
of specific tyrosine kinase inhibitors to treat a cancer [9, 14].
Thus, it emphasizes the scientific importance of investigating
phosphotyrosine-containing proteins in a cancer.

The most common characteristics of glioblastoma are
highly invasive growth and aggressive infiltration into sur-
rounding normal brain, which causes the failure of current
therapies to control glioblastoma, with a median survival
of 9–12 months in spite of the improvement of the current
therapies such as surgery, radiotherapy, and chemotherapy
[15]. The molecular mechanisms of glioblastoma remain
unclear. It is necessary to discover novel biomarkers for
novel therapeutic strategy to control its invasive growth.
Many studies have indicated that tyrosine phosphorylation
is extensively associated with pathophysiological processes
of glioma including angiogenesis [16–21], immune response
[22], and invasive growth and migration [23–27]. Tumor
angiogenesis is an important reason why glioblastoma is
capable of highly invasive growth and aggressive infiltration.
Many positive and negative regulating factors of angiogenesis
are involved in the tyrosine phosphorylation [16–21], such as
vascular endothelial growth factor (VEGF) and its receptor
(VEGFR) [16, 17, 21, 28], epidermal growth factor (EGF)
and its receptor (EGFR) [15, 19, 20, 29–32], platelet-derived
growth factor (PDGF) and its receptor (PDGFR) [29, 33],
leucine-rich repeat C4 (LRRC4) [18], the uPA/uPAR system
[34], ERK1/2 signaling [35], and the focal adhesion kinase
signaling pathway [36, 37]. A series of protein kinases associ-
ated with glioma are studied including RTK (EGFR, ErbB2,
ErbB3, IGF-IR, and KIT) [30–32, 38–40], Lyn kinase/Src
kinase [41], Akt and focal adhesion kinase [27, 36, 37, 42, 43],
Janus kianse [44], ABL2/ARG tyrosine kinase [45], ephrin
family [46, 47], Fyn related kinase (FRK) [48], STAT-3 [49]
and STAT-6 [23], Mer receptor tyrosine kinase [25], and
VEGFR-2 tyrosine kinase [28]. The documented literature
demonstrates the importance of tyrosine phosphorylation
in the pathogenesis of glioma. However, the large-scale
detection and identification of phosphotyrosine-containing
proteins in glioblastoma are rarely reported. The tyrosine-
phosphorylated proteomics analysis is necessary to detect
the phosphotyrosine-containing proteins and clarify the
potential biological functions of tyrosine phosphorylation in
glioblastoma.

MS/MS-identification of phosphotyrosine-containing
proteins is hindered by the low abundance of phosphotyro-
sine-containing proteins [50], andMS-identification of phos-
phopeptides is also complicated by ion suppression effects
because of the high background of nonphosphorylated pep-
tides. Enrichment of phosphotyrosine-containing proteins
is essential prior to MS analysis. 2DGE in combination

with antiphosphotyrosine antibody is an effective method
to relatively enrich and detect phosphotyrosine-containing
proteins. In this study, we investigated presence of and the
potential biological roles of the tyrosine phosphorylation
in a protein in a glioblastoma tissue. Anti-phosphotyrosine
antibodies were used to detected phosphotyrosine-contain-
ing proteins in a polyvinylidene fluoride (PVDF) membrane
that were transferred from a 2D gel with the separated
glioblastoma proteins. LC-MS/MS was used to determine the
amino acid sequence of those phosphotyrosine-containing
proteins that were contained in the immunoreactive-positive
2D gel spots. The protein and phosphotyrosine sites were
determined with Mascot software, and the biological
functions and pathway networks involved in the modified
proteins were achieved with systems pathway analysis. These
results provided a platform to investigate phosphotyrosine
proteome in human glioblastoma and to explore its poten-
tial biological roles of tyrosine phosphorylation in the
glioblastoma.

2. Materials and Methods

2.1. Glioblastoma Tissue. A glioma tissue (male, 57 years old)
was obtained from Department of Neurosurgery of Xiangya
Hospital, China, and approved by the Xiangya Hospital Med-
ical Ethics Committee of Central South University, China.
The glioma tissue was removed from neurosurgery and
immediately stored at liquid nitrogen (−196∘C). A portion of
glioma tissues was used for pathological diagnosis and was
diagnosed as grade IV glioblastoma, and the rest was stored
in −80∘C.

2.2. Protein Extraction. A portion of a human glioblastoma
tissue (430mg) was washed with 0.9% NaCl (3mL, 5×)
to remove contaminated blood fully and then was fully
grilled in liquid nitrogen. A volume (2mL) of protein
extraction buffer (7mol/L urea, 2mol/L thiourea, 40 g/L 3-
(3-cholamidopropyl)dimethylammonio-1-propanesulfonate
(CHAPS), 100mmol/L dithiothreitol (DTT), 5mL/L IPG
buffer pH 3–10NL, and 100 𝜇L of phosphatase inhibitor
cocktail (Sigma)) was added and mixed. The mixture was
vortexed (2 h) on the ice and centrifuged (1,5000×g, 15min).
The supernatant was centrifuged again (1,5000×g, 15min).
The supernatant was used as the protein extract and for
determination of protein concentration (11.8𝜇g/𝜇L) with a
Bio-Rad 2D Quant kit (Bio-Rad). For an 18 cm immobilized
pH gradient (IPG) strip pH 3–10NL (GE healthcare), a total
of 160 𝜇g (13.6 𝜇L) of protein extract were fully mixed with
236.4 𝜇L of protein extraction buffer (7mol/L urea, 2mol/L
thiourea, 40 g/L CHAPS, 100mmol/L DTT, 5mL/L IPG
buffer pH 3–10NL, and a trace of bromphenol blue) and
110 𝜇L of rehydration buffer (7mol/L urea, 2mol/L thiourea,
40 g/L CHAPS, 60mmol/L DTT, 5mL/L IPG buffer pH
3–10NL, and a trace of bromophenol blue). The mixture
was centrifuged (1,5000×g, 15min). The supernatant was
centrifuged again (1,5000×g, 15min). The supernatant is
called the “protein sample solution.”
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2.3. Two-Dimensional Gel Electrophoresis
2.3.1. First Dimension-Isoelectric Focusing (IEF). The precast
IPG strips (pH 3–10NL; 180 × 3 × 0.5mm) and 18 cm IPG
strip holder were used for IEF on an IPGphor instrument
(GHHealthcare) to separate an aliquot (350𝜇L) of the protein
sample solution that contained 160 𝜇g proteins.The IPG strip
was rehydrated overnight (∼18 h), followed by IEF (20∘C)
under a running parameter (a gradient at 250V and 1 h for
125Vh, a gradient at 1000V and 1 h for 500Vh, a gradient
at 8,000V and 1 h for 4,000Vh, a step and hold at 8,000V
and 4 h for 32,000Vh, and a step and hold at 500V and 0.5 h
for 250Vh) to achieve a final 36,875Vh and ∼7.5 h run. After
IEF, the IPG strip was processed to the second-dimensional
electrophoresis.

2.3.2. Second Dimension-Sodium Dodecyl Sulfate-Polyacryl-
amide Gel Electrophoresis (SDS-PAGE). An Ettan DALT II
system (Amersham Pharmacia Biotech; analyze up to 12 gels
at a time) was used. The 12% PAGE resolving gel (250 ×
215 × 1.0mm) was cast with an Ettan TM DALTsix multigel
caster (Amersham BioSciences) that can cast up to 12 gels
at a time. The resolving-gel solution for 3 gels was made
by mixing 90mL of 400 g/L acrylamide/bisacrylamide (29 : 1
by weight; cross-linking ratio = 3.3%), 75mL of 1.5mol/L
tris-HCl pH 8.8, 135mL of distilled and deionized water,
1.5mL of 100 g/L ammonia persulfate, and 75 𝜇L of tetram-
ethylethylenediamine (TEMED). The IPG strip with the
protein sample was equilibrated in a reducing equilibrium
buffer (10mL; 15min) that contained 375mmol/L Trish pH
8.8, 6mol/L urea, 20 g/L SDS, 200mol/L glycerol, 20 g/LDTT,
and a trace of bromphenol blue.The IPG strip was then equi-
librated in an alkylation equilibrium solution (10mL; 15min)
that contained 25 g/L iodoacetamide instead of 20 g/L DTT.
A boiled solution containing 10 g/L low-molecular-weight
agarose in the SDS electrophoresis buffer that contained
192mmol/L glycine, 25mmol/L Tris, and 1 g/L SDS was used
to seal the equilibrated IPG strip to the top of the resolving
gel. Second-dimensional electrophoresis was performed in
10 L of tris-glycine-SDS electrophoresis buffer that contained
25mmol/L tris-base, 192mmol/L glycine, and 1 g/L SDS with
the following conditions: constant 2.5W/gel for 30min and
then constant 10W/gel for 340min.

2.3.3. Silver Staining of Proteins. The2DGE-separated protein
spots were visualized with a modified silver-staining method
[51].The procedure was that (i) the gel was fixed in 250mL of
50% v/v methanol and 5% v/v acetic acid (20min), washed
in 250mL of 50% v/v methanol (10min), and washed in
deionized water (10min); (ii) the gel was sensitized in 250mL
of 0.02% w/v sodium thiosulfate (1min) and washed with
deionized water (1min, 2 times); (iii) the gel was silver-
stained (20min) in 250mL of 0.1% w/v silver nitrate plus
200𝜇L 37% v/v formaldehyde and washed with deionized
water (1min, 2 times); (iv) the gel was developed in 250mL of
3% w/v sodium carbonate with 100 𝜇L 37% v/v formaldehyde
until the desired intensity of staining occurs (usually ca.
3min); (v) the development was stopped in 250mL of 5%
v/v acetic acid (10min), and then the gel was washed (5min)

in deionized water and was stored in glycerol (250mL, 8.8%
v/v).

2.4. Western Blotting. The proteins separated with 2DGE
were transferred to a PVDF membrane (0.8mA/cm2; 1 h,
40min)with a Pharmacia BiotechNova Blot semidry transfer
instrument. The PVDF membrane with the proteins was
blocked (1 h) with a volume (100mL) of 0.3% bovine serum
albumin/tris-buffered saline with 0.1% sodium azide and
0.1% Tween-20 (BSA/TBST). The BSA-blocked PVDF mem-
brane was incubated (5 h, 4∘C) with a mouse anti-human
phosphotyrosine antibody (Catalogue number MAB3109,
Millipore, USA) that was diluted (1 : 1000 = v : v) in a 0.3%
BSA/TBST solution. After completion of the incubation with
the primary antibody, the membrane was washed with the
TBST solution (100mL; 5min × 3). The secondary antibody,
horse anti-mouse horseradish peroxidase- (HRP-) linked IgG
that was purchased from Cell Signaling Technology Inc.,
USA (Catalogue number 7076), was diluted (1 : 2000 = v : v)
in a 0.3% BSA/TBST solution and was added to the blots
(1 h, room temperature). The membrane was washed with
TBST (100mL; 10min × 3), and phosphotyrosine proteins
were visualized with ChemiDoc XRS imaging system (Bio
Rad, CA, USA). A parallel negative-control experiment was
performed to detect any cross-reactivity of the secondary
antibody. For the negative-control experiment (the primary
antibody was not added), the entire procedure was the same
as the Western blotting. The 2DGE gel, after transferring
proteins to PVDF membrane, was silver-stained in the same
way as described above to detect any remained proteins on the
gel for determination of the efficiency of the protein transfer.

2.5. Image Analysis of a 2D Gel and of Western Blotting.
The scanned images of the silver-stained 2D gels and of the
visualizedWestern blot membranes were input to a PDQuest
system (BioRad, version 7.1, Hercules, CA) to generate the
synthetic image that contained the Gaussian spots (Gaussian
image) with a defined volume (volume = optical density
(OD) × width (mm) × length (mm)) and quality [52]. All
subsequent spot-matching and analysis steps were performed
on the Gaussian spots. In order to minimize the effect of any
experimental factor on a spot volume, each spot volume was
normalized to the total optical density in each gel image [52].

2.6. Determination of Phosphotyrosine-Containing Proteins.
The 2D gel spots corresponding to the phosphotyrosine-
positiveWestern blot spot were excised, and the proteins that
were contained in 2D gel spots were digested in gel with
trypsin [48]. The tryptic peptide mixture was purified with
a ZipTipC18 microcolumn (Catalogue number ZTC18S096,
Millipore, USA), according to the methods recommended
by the manufacturer. For LC-ESI quadrupole time of flight
(LC-ESI-qTOF)MS/MS analysis, the purified tryptic peptide
mixture was eluted with 6 𝜇L of 850mL/L acetonitrile plus
1mL of trifluoroacetic acid (10 cycles) and the elute was air-
dried. Before analysis, the dried tryptic peptide mixture was
redissolved in 6 𝜇L of 50mL/L acetonitrile plus 1mL/L formic
acid. The purified peptide mixture was subjected to LC-ESI-
qTOF MS/MS analysis. Briefly, the tryptic peptides from 2D
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gel spots were loaded onto a C18 precolumn for concen-
trations and fast desalting and then eluted to the reversed-
phase column for separation.MS/MS spectrawere performed
in data-depended mode in which up to four precursor
ions above an intensity threshold of 7 counts/seconds (cps)
were selected for MS/MS analysis from each survey scan.
The obtained MS/MS data were used for protein database
searching.

For MS/MS database searching, the peptide sequence
tag format file that was generated from MS/MS data with
MassLynx version 4.0 software was input into the Mas-
cot search engine to search protein against the Swiss-Prot
database (release date December 1, 2013; 541954 sequences;
192668437 residues; Homosapiens 20274 sequences). A mass
tolerance of 0.3Da for both parent (MS) and fragmented
(MS/MS) ions, allowance for up to one trypsin miscleav-
age, fixed amino acid modification consisting of cysteine
carbamidomethylation, variable amino acid modifications
consisting of methionine oxidation, and tyrosine phosphory-
lation were used.MS/MS ion score threshold was determined
to produce a false-positive rate less than 5% for a significant
hit (𝑃 < 0.05). The false-positive rate was calculated with
2 ∗ reverse/(reverse + forward)/100. In the current study, the
least MS/MS ion score threshold was 35 and a false-positive
rate was approximately 3.1%. Each protein was determined
with MS/MS-based amino acid sequences. If protein was
identified with only one peptide, its MS/MS spectrum was
further checked manually. Each phosphotyrosine-containing
peptide was checked manually. Each manual check must
consider those factors: high-quality MS/MS spectrum with
good signal-to-noise ratio, matched main ion peaks, a good
b- or y-ion series, a high intensity of the corresponding
precursor ion, the corresponding good LC peaks, and so
forth. Also, a blank gel on themargin on a 2Dgelwas analyzed
in parallel to remove any contaminated proteins including
trypsin and keratin from the statistically significant results
based the MS/MS protein database searching.

Because tyrosine phosphorylation commonly occurs
within tyrosine kinase phosphorylation motif, each MS/MS-
derived protein sequence was input into the ScanProsite
program (http://prosite.expasy.org/scanprosite) to determine
its protein domains and tyrosine kinase phosphorylation
motifs. For the protein without an MS/MS-characterized
phosphotyrosine site, it must contain a tyrosine kinase phos-
phorylation motif to be determined as a phosphotyrosine
immune-positive protein.

2.7. Bioinformatics Analysis. Gene-ontology (GO) analysis
was used to get more insight on the biological significance of
phosphotyrosine-containing proteinswith exploring the rela-
tionship between the biological terms and associated genes
using the NIH-DAVID software (version 6.7, http://david
.abcc.ncifcrf.gov/summary.jsp). GO terms with computed
𝑃 value of less than 0.05 were considered as significantly
enriched terms. Homosapiens were selected to limit annota-
tions. Three structured ontologies were chosen to allow the
description of biological process, molecular function, and
cellular component. Phosphotyrosine-containing proteins
were divided into different clusters according to biological

function. The proteins within a cluster were close from
a biological perspective and correspondingly far from the
proteins in other clusters. Moreover, the Swiss-Prot accession
numbers of phosphotyrosine-containing proteins were saved
as a text file that was input into Cytoscape version 3.0.2
(http://www.cytoscape.org), BiNGOplugin 2.44 downloaded
from Cytoscape manage plugin was used to analyze the
enriched biological processes and molecular functions, and
CytoKegg plugin was used to mine the signaling pathway
networks that involved the phosphotyrosine-containing pro-
teins.

Ingenuity pathway analysis (IPA) was used to obtain
further insight into potential cellular pathways that might
be modified as a result of protein changes identified in
this present study. IPA automatically generated networks of
gene, protein, small molecule, drug, and disease associations
on the basis of “hand-curated” data held in a proprietary
database. The identifiers (Swiss-Prot identification number)
of phosphotyrosine-containing proteins were uploaded as an
Excel spreadsheet file into the Ingenuity software (Ingenuity
Systems, Redwood City, CA, USA). Each human identifi-
cation number was mapped to its corresponding molecule
in the ingenuity pathway knowledge base. The statistically
significant signaling pathway networks, canonical pathways,
biofunctions, and toxfunctions were generated to involve
those phosphotyrosine-containing proteins and address the
effects of protein tyrosine phosphorylation on those biolog-
ical pathway systems. Each network, pathway, biofunction,
and toxfunction was presented as a graph that indicated the
molecular relationship between proteins.

3. Results and Discussion

3.1. DGE-Based Western Blot Detection of Phosphotyrosine-
Containing Proteins. Ca. 900 protein spots were detected
in each silver-stained 2D gel. Most protein spots were dis-
tributed within a region of pI 4–8 and𝑀

𝑟
15–100 kDa. Those

phosphotyrosine immunopositive proteins that were trans-
ferred onto a PVDF membrane were detected with an anti-
human phosphotyrosine antibody (Figure 1). Moreover, a
parallel negative-control experiment was carried out to deter-
mine any cross-reactivity of secondary antibody. Figure 1(a)
shows the silver-stained 2D gel image before proteins were
transferred onto a PVDF membrane. Figure 1(b) shows the
corresponding silver-stained 2D gel image after proteins were
transferred onto a PVDFmembrane and demonstrates that at
least 92% proteins [(900 − 70)/900] were transferred onto the
PVDF membrane. Figure 1(c) shows the Western blot image
with the labeled positive phosphotyrosine-immunoreactivity,
51 phosphotyrosine immunopositiveWestern blot spots were
detected, and the corresponding silver-stained protein spots
were labeled in Figure 1(a). Figure 1(d) shows there was no
cross-reactivity of secondary antibody to further confirm the
positive Western blot spots in Figure 1(c).

3.2. LC-ESI-MS/MS Characterization of Phosphotyrosine-
Containing Proteins. The proteins that were contained in
each 2D gel spot corresponding to the positive phospho-
tyrosine immunoreactivity were excised and subjected to
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Figure 1: Two-dimensional gel electrophoresis-based Western blot analysis of antiphosphotyrosine proteins in a glioblastoma tissue (160𝜇g
protein per 2D gel). (a) Silver-stained image on a 2D gel before transfer of proteins to a PVDFmembrane. (b) Silver-stained image on a 2D gel
after transfer of proteins to a PVDFmembrane. (c) Western blotting image of antiphosphotyrosine proteins (antiphosphotyrosine antibodies
+ secondary antibody). (d) Negative control of Western blotting to show the cross-reaction of the secondary antibody (only the secondary
antibody, no antiphosphotyrosine antibody).

in-gel digestion with trypsin and purification of tryptic
peptides, followed by LC-ESI-MS/MS analysis. The protein
and phosphotyrosine site were determinedwithMS/MS data.
Those proteins without MS/MS-characterized phosphoty-
rosine site were subjected to the ScanProsite analysis to
determine their tyrosine kinase phosphotyrosine motifs. In
order to consolidate the protein with a phosphotyrosine-
immunoreactivity, at least one tyrosine kinase phospho-
tyrosine motif was contained in that protein amino acid
sequence. A total of 36 proteins were identified with MS/MS
from 51 phosphotyrosine immunopositive spots (Tables 1
and 2 and Supplemental Table 1 in Supplementary Material
available online at http://dx.doi.org/10.1155/2015/134050). In
order to consolidate the identification of phosphotyrosine-
containing proteins, 12 proteins without predicted Tyr-
phosphomotif and without MS/MS-characterized phospho-
tyrosine sites (Supplemental Table 1) were considered as
uncertain phosphotyrosine-containing proteins.Thus, a total
of 24 phosphotyrosine-containing proteins were identified in
a glioblastoma tissue (Tables 1 and 2). Of them, 15 positive
phosphotyrosine-immunoreactivity proteins were identified

and summarized in Table 1, and 9 phosphoproteins with
MS/MS-characterized phosphotyrosine sites were identified
and summarized in Table 2.

Table 1 contained the spot number, Swiss-Prot access
number, protein name, molecular weight, pI, Mascot score,
the number of matched unique peptides, and tyrosine kinase
phosphorylation motifs; those phosphotyrosine-containing
proteins were heat shock protein 90 alpha, heat shock protein
90 beta, heat shock 70 kDa protein 1A/1B, tubulin alpha-
1A chain, tubulin alpha-1B chain, tubulin alpha-8 chain,
cytoplasmic actin 1, glial fibrillary acidic protein, beta-
actin-like protein 2, L-lactate dehydrogenase B chain, 14-
3-3 protein epsilon, annexin A5, apolipoprotein A-I, and
alpha-enolase. Table 2 contained the spot number, Swiss-Prot
access number, protein name, phosphotyrosine-containing
peptide sequence, peptide mass, Mascot ion score, and tyro-
sine kinase phosphorylation motifs; those phosphotyrosine-
containing proteins were receptor-type tyrosine-protein
phosphatase S, Arf-GAP with Rho-GAP domain, ANK
repeat and PH domain-containing protein 1, centrosomal
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protein of 192 kDa, plexin-D1, HEAT repeat-containing pro-
tein 5B, zinc finger protein 569, beta-hexosaminidase sub-
unit alpha, homeobox protein Hox-A1, and pre-mRNA-
processing-splicing factor 8.

3.3. Protein Domains/Motifs-Based Functional Recognition
of Phosphotyrosine-Containing Proteins. Each protein con-
tained certain structural and functional domains or motifs.
Identification of those domains and motifs is helpful to
understand the structure and functions of each individ-
ual protein. Moreover, tyrosine phosphorylation commonly
occurs within a characteristic Tyr-phosphomotif. The iden-
tification of Tyr-phosphomotifs further consolidated each
identified phosphotyrosine-containing protein. The protein
domains and motifs were determined with literature-based
bioinformatics and ScanProsite analyses. Each protein con-
tained at least one tyrosine kinase phosphorylation motif
(Figures 2 and 3; Tables 1 and 2). It further confirmed the
results of 2D-Western blot antiphosphotyrosine immunity
reaction. Figures 2 and 3 illustrate all the functional domains
of each phosphoprotein.

Figures 2(a) and 2(b) show the functional domains and
motifs of heat shock protein 90- (HSP90-) alpha and (HSP90-)
beta, which contains 3 Try-phosphomotifs, 5 ATP-binding
sites, 1 NLS BP motif, and 1 TPR repeat-binding. HSP90-
alpha and HSP90-beta are molecular chaperones promoting
the maturation, structural maintenance, and proper regula-
tion of specific target proteins that are involved in cell cycle
control and signal transduction and undergo a functional
cycle linked to its ATPase activity [53–57]. HSP90-alpha is
a homodimer, interacts with STUB1 and UBE2N, and is
involved in the ubiquitination systems. HSP90-beta is also a
homodimer and interacts with p53/TP53. They are involved
in stress response. Mitochondrial HSP75 (Figure 2(c)) con-
tains a Tyr-phosphomotif, 3 ATP binding sites, and two
glycosylation motifs; it is a chaperone expressing an ATPase
activity and involved in maintaining mitochondrial function
and polarization; it interacts with tumor necrosis factor type
1 receptor; and as a negative regulator of mitochondrial
respiration, it modulates the balance between oxidative phos-
phorylation and aerobic glycolysis [58–60]. HSP70 1A/1B
(Figure 2(d)) contains 3 nucleotide binding sites and 1 Tyr-
phosphomotif and is involved in stress-induced damage.
Tubulin alpha-1A, tubulin alpha-1B, and tubulin alpha-8
chains (Figures 2(e), 2(f), and 2(g)) contain a nucleotide bind-
ing GTP site, ASN glycosylation, and 1 Tyr-phosphomotif.
Tubulin alpha is the major constituent of microtubules and
forms dimmer with beta chains, which binds two moles of
GTP, one at an exchangeable site on the beta chain and
one at a nonexchangeable site on the alpha chain [61, 62].
Cytoplasmic 1 actin (Figure 2(h)) and beta-actin-like protein
2 (Figure 2(i)) contain the same 2 ACTIN domains, 1 ACTIN
ACT LIKE domains, and 2 Tyr-phosphomotifs. Actins are
highly conserved proteins that are involved in various types of
cell motility and are ubiquitously expressed in all eukaryotic
cells. Its phosphorylation would affect cell motility [63].
Glial fibrillary acidic protein (Figure 2(j)) contains 1 Tyr-
phosphomotif and 3 coil domain, is a class-III intermediate
filament, and is a cell-specific marker that distinguishes

astrocytes from other glial cells during the development
of the central nervous system [64]. L-lactate dehydroge-
nase B chain (Figure 2(k)) contains 2 Tyr-phosphomotifs, 1
nucleotide binding site, and 1 L-lactate dehydrogenase active
site; it is homotetramer in cytoplasm and catalyzes lactate
to produce pyruvate and NADH [65]. 14-3-3 protein epsilon
(Figure 2(l)) contains two 14-3-3 domains, two recognitions
of phosphoserine motifs, and one Tyr-phosphomotif; it is
homodimer in cytoplasm and participates in the regulation
of a wide-range of signaling pathways [66]. Annexin A5
(Figure 2(m)) contains 1 Tyr-phosphomotif and 4 ANNEXIN
domains that bind calcium and phospholipid acts, and it
acts as an indirect inhibitor of the thromboplastin-specific
complex [67]. Apolipoprotein A-I (Figure 2(n)) contains 10
approximate tandem repeats and 1 Tyr-phosphomotif. It is a
secreted protein and is involved in the reverse transport of
cholesterol from tissues to the liver for excretion by promot-
ing cholesterol efflux from tissues and by acting as a cofactor
for the lecithin cholesterol acyltransferase and participates in
lipid metabolism [68]. Alpha-enolase (Figure 2(o)) contains
2 Tyr-phosphomotifs and 1 enolase signature and 1 substrate
binding region. Alpha-enolase is a multifunctional enzyme
that is involved in various processes such as growth control,
hypoxia tolerance, and allergic responses, also functions in
the intravascular and pericellular fibrinolytic system [69],
andhas been used as diagnosticmarker formany tumors [70].

Figure 3(a) shows the protein domains and motifs of
receptor-type tyrosine-protein phosphatase S, including 3 Ig-
like C2-type domains, 1 fibronectin type-III domain, 1 trans-
membrane region, 2 tyrosine-protein phosphatases, and 3
Tyr-phosphomotifs; it is involved in receptor desensitization,
signal transduction, and membrane localization [71]. Arf-
GAP with Rho-GAP domain, ANK repeat, and PH domain-
containing protein 1 (Figure 3(b)) contains 4 PH domains,
1 Ras-associating domain, 1 Rho-GAP domain, 1 Arf-GAP
domain, and 4 Tyr-phosphomotifs; it is a phosphatidylinosi-
tol 3,4,5-trisphosphate-dependent GTPase-activating protein
that modulates actin cytoskeleton remodeling by regulating
ARF and RHO family members [72]. Centrosomal protein
of 192 kDa (Figure 3(c)) contains 3 phosphoserine sites and
1 Tyr-phosphomotif; its hydroxylation promotes ubiquiti-
nation [73]. Plexin-D1 (Figure 3(d)) is a transmembrane
protein, containing 1 SEMA domain, 3 IPT/TIG domains,
and 2 Tyr-phosphomotifs; it plays an important role in cell-
cell signaling and in regulating the migration of a wide
spectrum of cell types [74]. HEAT repeat-containing protein
5B (Figure 3(e)) contains 3 HEAT domains and 3 Tyr-
phosphomotifs and is involved in the regulation of cell cycle
[75]. Zinc finger protein 569 (Figure 3(f)) contains 19 zinc
finger C

2
H
2
type domains, 1 KRAB domain, and 1 Tyr-

phosphomotif; it involved transcription regulation and sup-
presses MAPK signaling pathway [76]. Beta-hexosaminidase
subunit alpha (Figure 3(g)) contains a critical motif for
hydrolysis GM2 gangliosides and a propeptide and 1 Tyr-
phosphomotif; it is responsible for the degradation of GM2
gangliosides and a variety of other molecules containing
terminal N-acetyl hexosamines, in the brain and other
tissues [77]. Homeobox protein Hox-A1 (Figure 3(h)) con-
tains 2 Poly-HIS, 1 homeobox 2, 1 poly-Ser, Antp-type
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Figure 2: Continued.
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Figure 2: Tyrosine kinase phosphorylation motif and functional domains of putative phosphotyrosine-containing proteins in a glioblastoma
tissue. INIT-Met, initiatormethionine; HSP90, heat shock protein 90 family signature; GLU RICH, glutamic acid-rich region profile; NLS BP,
bipartite nuclear localization signal profile; TPR, tetratricopeptide; ASN, N-glycosylation site; HSP70, heat shock protein 70 family signature;
GTP, guanosine triphosphate; PLG, plasminogen.

hexapeptide, and 1 Tyr-phosphomotif; it is involved in tran-
scription regulations [78]. Pre-mRNA-processing-splicing
factor 8 (Figure 3(i)) contains a reverse transcriptase homol-
ogy domain, a restriction endonuclease homology domain,
an RNase H homology domain, an MPN, and 2 Tyr-
phosphomotifs; it is involved in mRNA processing and
functions as a scaffold that mediates the ordered assembly of
spliceosomal proteins and snRNAs [79].

3.4. Systems Biology Strategy-Based Recognition of Biologi-
cal Functions of Phosphotyrosine-Containing Proteins. Func-
tional enrichment analysis was performed for 24 phosphoty-
rosine-containing proteins identified from a glioblastoma
tissue; their biological functionswere rationalized in glioblas-
toma. All the 24 phosphotyrosine-containing proteins were
accepted for GO analysis and CytoScape BINGO analysis and

were hierarchically classified into 4 clusters (Table 3). Pro-
teins within the same cluster were coregulated proteins and
might have similar biological functions in the glioblastoma.
Those phosphoproteins were involved in multiple biological
functions altered in glioblastoma, including oxidative stress
and stress response and cell migration. Significantly, GO
analysis showed that different biological functions changed
during the pathophysiological processes of glioblastoma.

Pathway network analysis further revealed the potential
biological functions of those characterized phosphotyrosine-
containing proteins in a human glioblastoma. Among 24
phosphotyrosine-containing proteins (Supplemental Table
2), all those 24 phosphotyrosine-containing proteins were
accepted for IPA analysis to determine significant pathway
networks, canonical pathways, and disease biological events.
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Figure 3: Phosphotyrosine sites, tyrosine kinase phosphorylation motifs, and functional domains of phosphotyrosine-containing proteins
in a glioblastoma tissue. SAM, the sterile 𝛼 motif; PH, pleckstrin homology; Arf-GAP, ADP ribosylation factor GTPase-activating protein
domain; Rho-GAP, Rho GTPase-activating proteins domain; SEMA, semaphorins; IPT/TIG, Ig-like, plexins, transcription factors/trigger
factor-like protein; KRAB, Krueppel-associated box; GM2, the second monosialic ganglioside; HIS, histidine; MPN, domain at Mpr1p and
Pad1p N-termini; EFTUD2, elongation factor Tu GTP-binding domain-containing protein 2; SNRNP200, small nuclear ribonucleoprotein
200 kDa.

Two statistically significant pathway networks were identified
to involve the phosphotyrosine-containing proteins (Figure 4
and Supplemental Table 3). Those nodes in Figure 4 corre-
spond to those molecules (genes; proteins) that were sum-
marized in Supplemental Table 3. Network A (Figure 4(a))
functions in cancer, organismal injury and abnormalities,
reproductive system disease, and developmental disorder
(merged from Networks 1 and 3 in the Supplemental Table
3) and includes 39 nodes (genes; proteins). Among those
39 nodes, 17 phosphotyrosine-containing proteins (44%
of the total nodes) were identified with MS. ERK, Akt,
P38MAPK, Jnk, HSP90, HSP70, tubulin complex, NF-𝜅B

complex, and insulin play key roles in this network. Network
B (Figure 4(b)) functions in cell morphology, cellular assem-
bly and organization, cellular function, and maintenance
(corresponded to Network 2 in the Supplemental Table 3)
and includes 35 nodes (genes; proteins). Among those 35
nodes, 7 phosphotyrosine-containing proteins (20% of the
total nodes) were identified withMS. TNF, UBC, and CEP192
play key roles in this network.

Among those sets of glioblastoma phosphotyrosine-
containing protein data, 36 statistically significant canonical
pathways were identified to involve those phosphotyrosine-
containing proteins (Figure 5). Each detailed statistically
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Figure 4: Significant signaling pathway networks mined from phosphotyrosine-containing proteins in a glioblastoma tissue. Significant
signaling pathway networks that are involved in human glioblastoma phosphotyrosine-containing proteins and that function in (a) cancer,
organismal injury and abnormalities, reproductive systemdisease, and developmental disorder (mergedNetworks 1 and 3 in the Supplemental
Table 3) and (b) cell morphology, cellular assembly and organization, cellular function, and maintenance (Network 2). A black solid edge
denotes a direct relationship between two nodes (molecules: proteins; genes). A black unsolid edge denotes an indirect relationship between
two nodes (molecules: proteins; genes). The various shapes of nodes denote the different functions. A curved line means intracellular
translocation; a curved arrow means extracellular translocation.

significant canonical pathway was collected in Supplemental
Figure 1, including 14-3-3-mediated signaling, cell cycle
G2/M DNA damage checkpoint regulation, eNOS signal-
ing, gap junction signaling, gluconeogenesis I, glycolysis
I, HIF1a signaling, PI3K-AKT signaling, protein ubiquiti-
nation pathway, pyruvate fermentation to lactate, signal-
ing by Rho family GTPases, and VEGF signaling. More-
over, 74 statistically significant disease biological events
(Figure 6) involved those phosphotyrosine-containing pro-
teins, including cancer, endocrine system disorders, neuro-
logical disease, inflammatory disease, cell cycle dysregula-
tion, energy metabolism, immunity, and protein synthesis.
Those pathway networks, canonical pathways, and disease
biological events provided a functional profile of those
phosphotyrosine-containing proteins in human glioblas-
toma.

Furthermore, extensive literature-based analysis pro-
posed an experimental data-based diagram that rationalizes
the identified phosphotyrosine-containing proteins in the
glioma biological system (Figure 7). Those phosphotyrosine-
containing proteins are involved in tumor cell proliferation,
growth, adhesion,migration, angiogenesis, tumormetastasis,
blood supply, nutrition, signal transduction, and oxida-
tive stress to associate the processes of tumor pathogene-
sis.

4. Conclusions

The present study provides new insights to explore the
presence and biological significance of tyrosine phosphoryla-
tion in the pathological processes of glioblastoma. The
combination of Western blotting and LC-ESI-MS/MS is an
effectivemethod to detect and characterize phosphotyrosine-
containing proteins in human glioblastoma proteome.
2DGE-based Western blotting can preseparate and enrich
proteins with a similar pI and𝑀

𝑟
. LC can real-time presep-

arate and enrich those tryptic peptides before mass spec-
trometry analysis. MS/MS can accurately locate each phos-
photyrosine site. Protein domain/motif analysis can locate
the phosphotyrosine site within the corresponding protein
domains. Each identified phosphotyrosine-containing pro-
tein contains at least one Tyr-phosphomotif. Pathway anal-
ysis-based bioinformatics can reveal the signaling pathway
networks that involve phosphoproteins. This methodology
provides a basis to comprehensively investigate the phos-
photyrosine-containing proteome in the human glioblas-
toma, especially to achieve our goal to detect and charac-
terize glioma-related phosphotyrosine-containing proteins
in a program to clarify the basic molecular mechanisms
of glioblastoma formation. Further investigation is needed
to determine the biological consequences of the identified
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Figure 5: Significant canonical pathways that are involvedwith phosphotyrosine-containing proteins in a glioblastoma tissue. Each significant
canonical pathway was collected as in Supplemental Figure 1.
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Figure 6: Significant disease biological events that are involved with phosphotyrosine-containing proteins in a glioblastoma tissue.
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Figure 7: Experimental data-based diagram that rationalizes phosphotyrosine-containing proteins in the glioma biological system. The
orange frame means identified phosphotyrosine-containing proteins. ANXA5, annexin A5; PLXD1, plexin-D1; TRAP1, TNFR-associated
protein 1 (heat shock protein 75 kDa, mitochondrial); PRP8, pre-mRNA-processing-splicing factor 8; ACTB, actin, cytoplasmic 1; ZN569,
zinc finger protein 569; GFAP, glial fibrillary acidic protein; HEXA, beta-hexosaminidase subunit alpha; ENOA, alpha-enolase; LDHB, L-
lactate dehydrogenase B chain; 14-3-3, 14-3-3 protein; HSP90A, heat shock protein HSP 90-alpha; TBAIA, tubulin alpha-1A chain; CE192,
centrosomal protein of 192 kDa; ACTBL, beta-actin-like protein 2; TBA8, tubulin alpha-8 chain; ARAP1, Arf-GAP with Rho-GAP domain,
ANK repeat, and PH domain-containing protein 1; HXA1, homeobox protein Hox-A1; APOA1, apolipoprotein A-I; and HSP90B, heat shock
protein HSP 90-beta.

tyrosine phosphorylation events and their relevance to the
pathogenic mechanisms of glioblastoma.
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