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Population-scale cross-disorder 
atlas of the human prefrontal 
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Neurodegenerative diseases and serious mental illnesses often exhibit overlapping characteristics, 
highlighting the potential for shared underlying mechanisms. To facilitate a deeper understanding of 
these diseases and pave the way for more effective treatments, we have generated a population-scale 
multi-omics dataset consisting of genotype and single-nucleus transcriptome data from the prefrontal 
cortex of frozen human brain specimens. Encompassing over 6.3 million nuclei from 1,494 donors, 
our dataset represents a diverse range of neurodegenerative and serious mental illnesses, including 
Alzheimer’s and Parkinson’s diseases, schizophrenia, bipolar disorder and diffuse Lewy body dementia, 
as well as neurotypical controls. Our dataset offers a unique opportunity to study disease interactions, 
as 21% of donors had comorbid diagnoses of two or more major brain disorders. Additionally, it includes 
detailed phenotypic information on neuropsychiatric symptoms, such as apathy and weight loss, 
which commonly accompany Alzheimer’s disease and related dementias. We have performed stringent 
preprocessing and quality controls, ensuring the reliability and usability of the data. As a commitment 
to fostering collaborative research, we provide this valuable resource as an online repository, enabling 
widespread analyses across the scientific community.

Background & Summary
Alterations in gene expression and changes in cell type abundances are commonly observed in various 
brain-related disorders, ranging from mental illnesses like schizophrenia (SCZ)1,2 to neurodegenerative diseases 
such as Alzheimer’s (AD)3–5 and Parkinson’s disease (PD)6,7. Traditional methods, using bulk tissue or broad 
populations of sorted cells, fail to fully capture the intricate, often highly cell type specific, molecular changes 
associated with these diseases. Recent advances in single-cell expression profiling address these limitations and 
have facilitated the generation of larger datasets, most notably for AD where the combined data now nears 1,000 
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cases3,8–11. However, single cell resolution datasets for other diseases are considerably smaller. For instance, the 
latest release from PsychENCODE, which consolidates all major sources of single-cell data on serious mental 
illnesses, reported only 77 cases of SCZ, 52 cases of autism, 34 cases of bipolar disorder (BD), and 10 cases of 
post-traumatic stress disorder2,12. Although the existing datasets offer valuable insights into each disorder sep-
arately, the potential for conducting complex analyses across different disorders to identify shared or distinct 
molecular pathways is still limited. This is mainly due to the small sample sizes and challenges caused by merg-
ing studies generated by different research groups, introducing an additional layer of systematic bias.

To enhance our ability to identify shared and distinct molecular pathways, causal variants, and genes involved 
in various brain-related disorders, we generated the largest collection, to date, of single-nucleus gene expression 
data in the human brain (Fig. 1). This collection comprises over 6.3 million individual nuclei, isolated from 
1,494 frozen postmortem samples of the dorsolateral prefrontal cortex (DLPFC). We selected the DLPFC for 
our study due to its critical role in higher-level brain processes, including cognitive function, decision making, 
and emotional regulation, all of which are often impaired in the diseases under investigation13,14. Importantly, 
the DLPFC has been implicated in numerous neuroimaging and neuropathological studies as a region that 
undergoes significant pathological changes in both neurodegenerative diseases and serious mental illnesses15–17.

The sample cohort consists of neurotypical controls, as well as donors affected by more than 30 different 
disorders, including three represented by more than 100 cases (AD (n = 519), SCZ (n = 177), and diffuse Lewy 
Body disease (DLBD; n = 112)) and three by more than 40 (vascular dementia (n = 85), BD (n = 72) and PD 
(n = 48)). In addition to providing a more detailed characterization of these somewhat well-studied diseases, 
our dataset also includes a subset of cases with relatively understudied conditions, such as obsessive-compulsive 
disorder (n = 6), amyotrophic lateral sclerosis (n = 5), progressive supranuclear palsy (n = 5), argyrophilic 
grain disease (n = 3) or normal pressure hydrocephalus (n = 3). To our knowledge, many of these disorders 
have not yet been analyzed at the single-cell level. Despite the small number of cases, analyzing them alongside 
well-matched controls for sex, age, and race could offer valuable preliminary insights into these conditions. 
Lastly, we want to highlight the availability in our cohort of phenotypic information on neuropsychiatric symp-
toms (NPS), which frequently accompany AD and related dementias18. Throughout the course of the disease, 
more than 80% of individuals with AD are estimated to exhibit at least one NPS that significantly impacts their 
clinical outcomes19. So far, various studies have examined population data to characterize NPS along the AD 
continuum20–22. For example, depression and apathy are often the most observed symptoms in the early stages 
of AD, with delusions, hallucinations, and aggression becoming more prevalent as the disease advances20. Yet, 
beyond broad population-level observations, research into the mechanistic basis of these NPS remains scarce. 
We believe that our dataset provides a unique opportunity to explain NPS in AD at a more granular level, poten-
tially leading to a better understanding of the disease and the identification of novel therapeutic targets.

Fig. 1  Overview of the dataset collection process and key outputs of the study.
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The release of this dataset by the PsychAD consortium is accompanied by a series of manuscripts describ-
ing the cross-disorder analysis of transcriptomic vulnerability23, genetic regulation of gene expression24 and 
transcriptome-wide association studies25. The consortium has also leveraged neurotypical controls to assemble 
a map of transcriptomic changes across the lifespan26. Lastly, the computational scale and diversity of the gen-
erated data led to the development of analytical tools and databases, including dreamlet for differential gene 
expression27, PASSCODE for detecting phenotype-associated cells28 and iBrainMap for personalized func-
tional genomics analysis, enabling the identification of cell-type-specific regulatory networks and phenotypic 
prioritization29.

Methods
Cohort data collection.  The “PsychAD cohort” comprises 1,494 donors, all of whom have undergone sin-
gle nucleus RNA-seq (snRNA-seq) analysis. Among these donors, genotype data is available for 1,381 (92%) of 
them. Specimens came from multiple sources, the Mount Sinai NIH Brain Bank and Tissue Repository (MSSM; 
1,042 samples), the NIMH-IRP Human Brain Collection Core (HBCC; 300 samples), and five prospective cohort 
studies at the Rush Alzheimer’s Disease Center (RADC; 152 samples)30,31 (Fig. 2a). All five RADC cohorts were 
approved by an Institutional Review Board of Rush University Medical Center and participants signed informed 
and repository consents and an Anatomic Gift Act for organ donation. Importantly, 60% of the PsychAD cohort, 
totaling 896 donors, had previously been included in MSSM AMP-AD32, CommonMind33 and/or RADC stud-
ies34, which had already generated a wealth of omics data for these individuals, including SNP-array33, whole-ge-
nome sequencing (WGS)32, RNA sequencing (RNA-seq)35–37, assay for transposase-accessible chromatin 
(ATAC-seq)4,7,35,38, DNA methylation37, proteomics35, chromatin immunoprecipitation sequencing for histone 
3 lysine 27 acetylation (ChIP-seq H3K27ac)4,39 and for histone 3 lysine 4 trimethylation (ChIP-seq H3K4me3). 
However, it is important to emphasize that, prior to this study, no snRNA-seq data was available for the PsychAD 
cohort, with the exception of 53 donors from MSSM2 and 7 from RADC3,11.

Because the institutions provided the donor’s clinical records in different formats, our first imperative was to 
harmonize the diagnosis status prior to downstream analyses. The full sample cohort captures 20 neurodegener-
ative/neurologic diseases (e.g. AD, PD, DLBD), 13 serious mental illnesses (e.g. SCZ, BD), 19 NPS (e.g. insom-
nia, weight loss) and 4 metabolic diseases (e.g. Type 1/2 diabetes) (Table 1). The presence of these diseases is 
typically encoded in a binary format, except for AD, for which we have: (1) case-control status defined using the 
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria40; (2) Braak AD-staging score for 
progression of neurofibrillary neuropathology15,41; (3) mean density of neuritic plaques (plaque mean); and (4) 
assessment of dementia and cognitive status based on clinical dementia rating scale (CDR) for MSSM samples42, 
or final summary clinical diagnosis (cogdx) for RADC43. For binary diagnosis classification within the PsychAD 
dataset, we define the AD category as follows: CERAD ≥ 2, Braak ≥ 3 and CDR ≥ 1/cogdx ≥ 4 (MSSM/RADC). 
Donors with a neuropathological burden but no cognitive loss are categorized as “Tauopathy” (CERAD = 1, 
Braak ≥ 3 for both MSSM and RADC and, additionally, CDR = 0 for MSSM/no cognitive impairment for 
RADC) (Tables 1, 2). Depending on the severity of cognitive loss, the donors are classified as Mild Cognitive 
Impairment (MCI; CDR = 0.5 for MSSM; MCI for RADC) or Dementia (CDR ≥ 1 for MSSM; clinical dementia 
for RADC) (Tables 1, 2). The AD-related neuropathological and clinical phenotypes are moderately correlated 
(Fig. 2b), indicating shared and distinct disease processes4. While the PsychAD cohort contains 420 donors with 
no diagnosis (28% of the dataset, referred to as “control” samples) and 754 donors with exactly 1 diagnosis (51% 
of the dataset), the remaining 320 donors (21%) are associated with 2 or more diagnoses (Fig. 2c,d). The demo-
graphics and clinical characteristics of donors varied significantly among the sources (Fig. 2e–h), with donors 
of European ancestry constituting over 79% of the MSSM subcohort, compared to 50% in HBCC, and 18% in 
RADC (Fig. 2f). This variation enables the exploration of ancestry-specific disease signatures. Regarding age 
distribution, 89% and 99% of individuals in the MSSM and RADC subcohorts are over 60 years old, respectively, 
while only 10% of HBCC are among this older age category, with 49% of donors under the age of 40 (Fig. 2g). 
These age distribution patterns partly align with disease distribution, as MSSM and RADC primarily consist of 
donors with or at risk for neurodegenerative/neurological diseases, for which age is a major risk factor (Fig. 2h). 
In contrast, in addition to controls, HBCC exclusively includes serious mental illnesses, which typically manifest 
during childhood or adolescence44–47. Due to HBCC’s different disease focus, we lack certain AD-related met-
rics (CERAD, BRAAK, CDR, Plaque Mean) that are available for MSSM and RADC. However, HBCC’s sample 
selection process involved reviewing neuropathology reports to ensure the absence of significant plaque and/or 
tangle pathology. As a result, HBCC donors without brain-related diagnoses can reliably be used as controls for 
comparison with neurodegenerative diseases, even in the absence of additional neuropathological data.

In addition to offering disease-related phenotypes, we included a set of 19 NPS, each of which affected 
between 23 and 438 individuals from the 1,042 MSSM donors. These symptoms constitute commonly associated 
features of AD and related dementias, and are linked to significant adverse effects on daily function and quality 
of life48. Utilizing hierarchical clustering analysis, we observed that these NPS tend to group into three distinct 
clusters, broadly aligning with established associations (Fig. 2h). Therefore, as an alternative to analyzing the 19 
individual classes, we also offer a categorization of donors into the three aggregated NPS classes (Table 3).

snRNA-seq data generation and analysis.  Nuclei isolation and snRNA-seq library preparation.  All 
buffers were supplemented with RNAse inhibitors (Takara). 6 samples were processed in parallel. 25 mg of frozen 
postmortem human brain tissue from each specimen was homogenized in cold lysis buffer (0.32 M Sucrose, 5 mM 
CaCl2, 3 mM Magnesium acetate, 0.1 mM, EDTA, 10 mM Tris-HCl, pH8, 1 mM DTT, 0.1% Triton X-100) and 
filtered through a 40 µm cell strainer. The flow-through was underlaid with sucrose solution (1.8 M Sucrose, 3 mM 
Magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH8) and centrifuged at 107,000 xg for 1 hour at 4 °C. Pellets 
were resuspended in PBS and quantified (Countess II, Life Technologies). 2 M nuclei from each sample were then 
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pelleted at 500 xg for 10 minutes at 4 °C and re-suspended in 100 µl staining buffer (2% BSA, 0.02% Tween-20, 
10 mM Tris, 146 mM NaCl, 1 mM CaCl2 and 21 mM MgCl). Each sample was incubated with 1 µg of a distinct 
TotalSeq-A nuclear hashing antibody (Biolegend) for 30 min at 4 °C. Prior to fluorescence activated nuclei sorting 
(FANS), volumes were brought up to 250 µl with staining buffer and 7-AAD (Invitrogen) added to facilitate the 
detection of nuclei. 7-AAD positive nuclei were sorted into tubes pre-coated with 5% BSA using a FACSAria flow 
cytometer (BD Biosciences).

Following FANS, nuclei were washed in staining buffer before being re-suspended in 22 µl PBS and quan-
tified. Nuclei concentrations were normalized and equal amounts from each sample were pooled together. 2 
aliquots of 60,000 pooled nuclei (i.e. 10,000 per sample) were processed in parallel using 3′ v3.1 reagents (10x 
Genomics). At the cDNA amplification step (step 2.2), reactions were supplemented with a hash-tag oligo (HTO) 

Fig. 2  Summary of demographics and clinical data of the PsychAD cohort. (a) Overlap of the PsychAD cohort 
with MSSM AMP-AD, CommonMind and RADC cohorts. (b) Correlations among AD-related phenotypes. 
This analysis includes donors with either sole AD diagnosis (without comorbidities) or control samples (free 
of any diagnosis). For the “cognitive impairment” phenotype, untransformed CDR values are used for MSSM 
donors. RADC donors are numerically scaled as follows: Mild Cognitive Impairment (MCI) = 0.75, clinical 
dementia = 3. (c) Distribution of the number of diagnoses per donor. Note that “Dementia” and “MCI” are 
not counted as separate diagnoses if the donor already has a neurodegenerative or neurological disease. Also, 
NPS are excluded from this comparison. (d) Analysis of the counts and intersections among the top 10 most 
frequently represented diagnoses plus controls, with a minimum intersection size for plotting set to 10. FTD: 
Frontotemporal dementia; ASCVD: Atherosclerotic cardiovascular disease; PD: Parkinson’s disease; BD: Bipolar 
disorder; Diabetes: Diabetes mellitus Type 1/2/unspecified; Vascular: Vascular dementia; DLBD: Diffuse Lewy 
body disease; SCZ: Schizophrenia. (e–h) Exploration of demographic and clinical variables within subcohorts 
of samples from the three brain tissue sources, encompassing sex (e), genetically inferred ancestry (f), age (g), 
and disease status (h). NPS are not included in the disease count in (h). (i) Dendrogram of NPS based on their 
co-occurrence with three highlighted clusters.
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cDNA “additive” primer (GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT*C*T; *Phosphorothioate 
bond). Following cDNA amplification, supernatants from the 0.6x SPRI selection step were retained for HTO 
library generation. Otherwise, cDNA libraries were prepared according to the manufacturer’s instructions (10x 
Genomics). HTO libraries were prepared as described previously49

Computational processing.  Sequencing reads from all pools of multiplexed samples were aligned to the hg38 
reference genome using STARsolo50,51. To assign the nuclei from each pool to their respective donors, we applied 
a genotype-based demultiplexing approach followed by a genotype concordance check. First, cellSNP52 was 
used to pile up the alleles from polymorphic sites overlapping snRNA-seq reads within expressed genes (for 
inclusion, a gene needed to be expressed by at least 10 cells). Polymorphic sites had to show a minimum minor 
allele frequency of 0.1 and a minimum aggregated UMI count of 20. Then, vireo53 utilized those pile-ups to split 
cells into clusters corresponding to six distinct donors per pool. The assignment of the identity of each cluster of 
cells to a particular donor was derived from genotype concordance analysis that compared the clusters of cells 

Disease Categorya

Sample size Age of death (mean)

Total MSSM HBCC RADC MSSM HBCC RADC

Dementiab NDD 752 666 0 86 82.7 85.1

Alzheimer’s diseasec NDD 519 447 0 72 84.3 85.8

Schizophrenia SMI 177 127 50 0 72.1 52.1

Mild cognitive impairementd NDD 125 103 0 22 77.4 83.4

Diffuse Lewy body disease NDD 112 107 0 5 82.1 80.7

Vascular dementia NDD 85 65 0 20 82.7 83.9

Bipolar disorder type I SMI 55 0 55 0 43.7

Tauopathye NDD 45 33 0 12 87.6 84.1

Diabetes mellitus unspecified MD 42 0 1 41 75.0 87.9

Atherosclerotic cardiovascular disease MD 40 0 40 0 48.1

Parkinson’s disease NDD 40 25 0 15 81.8 80.3

Type 1 diabetes MD 16 0 16 0 55.6

Frontotemporal dementia NDD 16 15 0 1 78.1 67.4

Neuroleptic-induced tardive dyskinesia SMI 14 0 14 0 53.0

Head injury NDD 12 6 0 6 68.3 85.2

Seizures NDD 12 0 12 0 48.2

Type 2 diabetes MD 11 0 11 0 53.7

Encephalitis, uncertain Parkinson’s disase NDD 8 8 0 0 79.1

Brain tumor NDD 8 7 1 0 75.3 45.0

Cerebral atrophy NDD 7 7 0 0 71.0

Bipolar disorder type II SMI 7 0 7 0 43.7

Amyotrophic lateral sclerosis NDD 6 5 0 1 79.0 53.8

BD NOS (not otherwise specified) SMI 6 0 6 0 35.7

Obsessive-compulsive disorder SMI 6 0 6 0 47.5

Progressive supranuclear palsy NDD 5 5 0 0 80.6

Leucotomy/Lobotomy NDD 4 4 0 0 79.8

Anorexia nervosa SMI 4 0 4 0 42.8

Schizoaffective bipolar disorder SMI 4 0 4 0 45.8

Argyrophilic grain disease NDD 3 3 0 0 83.0

Multiple sclerosis NDD 3 3 0 0 41.7

Normal pressure hydrocephalus NDD 3 3 0 0 83.0

Bulimia nervosa SMI 3 0 3 0 47.0

Major depressive disorder SMI 3 2 1 0 62.5 55.0

Epilepsy NDD 2 0 2 0 64.0

Attention deficit hyperactivity disorder SMI 2 0 2 0 32.5

Post-traumatic stress disorder SMI 2 1 1 0 60.0 44.0

Schizoaffective depressive disorder SMI 2 0 2 0 42.5

Table 1.  Summary of all diagnoses recognized within the PsychAD cohort. aNDD: Neurodegenerative/
neurological disease; SMI: serious mental illness; MD: metabolic disease. bMSSM: derived from Clinical 
Dementia Score (CDR ≥ 1); RADC: derived from Consensus Cognitive Status (cogdx ≥ 4). cMSSM: derived 
from (CERAD ≥ 2 and Braak ≥ 3 and CDR ≥ 1); RADC: derived from (CERAD ≥ 2 and Braak ≥ 3 and 
cogdx ≥ 4). dMSSM: derived from Clinical Dementia Score (CDR == 0.5); RADC: derived from Consensus 
Cognitive Status(cogdx ∈ (2,3)). eMSSM: defined as (CERAD == 1 and Braak ≥ 3 and CDR == 0); or 
determined by brain bank; RADC: defined as (CERAD == 1 and Braak ≥ 3 and cogdx == 1).
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against reference genotyping data using QTLtools-mbv54. This analysis could be accurately performed only for 
cells exceeding baseline quality control (QC) metrics, i.e. minimum number of expressed genes (n ≥ 1,000) and 
maximum fraction of mitochondrial reads (less than 5%). Cells that didn’t meet these criteria were excluded. 
While the majority of pools contained the cells from the expected sets of donors, we leveraged the genotype 
concordance results to detect and correct occasional sample swaps and mislabeling.

After genome alignment and demultiplexing, the downstream processing was performed using Pegasus and 
scanpy55. We applied rigorous three-step QC to remove ambient RNA and retain viable cells for downstream 
analysis. First, we implemented a more stringent QC for individual cells, in addition to the initial QC car-
ried out during the demultiplexing stage. Cells falling outside the defined ranges for UMI counts (1,500 ≤ n_
UMIs ≤ 110,000), gene counts (1,100 ≤ n_genes ≤ 12,500), and mitochondrial content (less than 5%) were 
removed. We also checked for possible contamination from ambient RNA using CellBender56. Further filtering 
was carried out by removing doublets using the Scrublet method57. Second, the QC was applied at the fea-
ture level. We removed features (genes) that were not robustly expressed by at least 0.05% of the nuclei. Lastly, 
the QC was applied at the donor level and, because they could introduce noise in downstream analysis, those 
with less than 50 nuclei were removed. Then, to correct for unwanted (non-biological) variance, such as dis-
section biases arising from differing tissue source protocols across source brain banks, we employed Canonical 
Correlation Analysis using the Harmony method58. Highly variable features were selected from mean and var-
iance trends, and we used the k-nearest-neighbor (kNN) graph calculated on the basis of harmony-corrected 

AD phenotype Sample size Age of death (mean)

Name Value Total MSSM RADC MSSM RADC

CERADa 1 341 308 33 70.6 81.6

CERADa 2 113 103 10 84.6 81.7

CERADa 3 229 189 40 88.2 87.3

CERADa 4 394 325 69 81.4 84.5

BRAAKb 0 163 156 7 59.7 70.2

BRAAKb 1 107 102 5 75.8 75.8

BRAAKb 2 161 149 12 81.2 76.7

BRAAKb 3 161 135 26 84.5 85.0

BRAAKb 4 122 75 47 86.9 88.0

BRAAKb 5 134 92 42 87.1 87.9

BRAAKb 6 328 315 13 82.6 77.5

Plaque meanc 0 384 384 0 70.2

Plaque meanc 0.01–4.89 158 158 0 86.0

Plaque meanc 4.90–8.72 158 158 0 85.3

Plaque meanc 8.73–14.03 158 158 0 85.9

Plaque meanc >14.04 157 157 0 79.7

MSSM: CDRd 0 221 221 0 68.0

MSSM: CDRd 0.5 103 103 0 77.4

MSSM: CDRd 1 83 83 0 80.7

MSSM: CDRd 2 103 103 0 82.6

MSSM: CDRd 3 249 249 0 83.1

MSSM: CDRd 4 111 111 0 84.4

MSSM: CDRd 5 120 120 0 81.6

RADC: cogdxe 1 38 0 38 83.1

RADC: cogdxe 2 22 0 22 83.4

RADC: cogdxe 4 68 0 68 86.0

RADC: cogdxe 5 14 0 14 82.7

RADC: cogdxe 6 4 0 4 77.1

Table 2.  Classification of donors by various clinical and neuropathological measurements related to AD 
diagnosis. aCERAD (Consortium to Establish a Registry for Alzheimer’s Disease): Qualitative variable from 
neuropathological scoring where 1 = normal, 2 = possible AD, 3 = probable AD, 4 = definite AD. bBraak: 
Braak neurofibrillary tangle score from the regional patterns of the density of neurofibrillary tangles across the 
brain. cPlaque mean: The average density of neuritic plaque across five brain regions, i.e., middle frontal gyrus, 
orbital frontal cortex, superior temporal gyrus, inferior parietal lobule and occipital cortex. Plaque categories 
are defined by quartile values calculated on distribution of non-zero plaque values. dMSSM CDR: Clinical 
dementia rating available only for MSSM donors where 0 = no dementia, 0.5 = questionable dementia (very 
mild), 1 = mild dementia, 2 = moderate dementia, 3 = severe dementia, 4 = profound dementia, 5 = terminal 
dementia. eRADC: cogdx: Final consensus cognitive diagnosis available only for RADC donors where 1 = no 
cognitive impairment, 2 = MCI but no other CI (cognitive impairment), 3 = MCI and another cause of CI, 
4 = AD dementia but no other CI, 5 = AD dementia and another cause of CI, 6 = Other dementia.
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PCA embedding space to cluster cells in the same cell type using Leiden59 clustering algorithms. We used UMAP 
(Uniform Manifold Approximation and Projection)60 for the visualization of the resulting clusters.

Defining cellular taxonomy using iterative clustering.  Cellular taxonomy was defined using a divide-and-conquer 
strategy. From the full dataset containing over 6 million nuclei, 8 major cell classes were defined as described 
above. After subsetting the data by each class, we re-calculated highly variable genes (HVGs) among cells in the 
same class. This allowed us to re-focus on feature space that is more relevant for the same class of cells. We then 
calculated kNN graph on the basis of the harmony-corrected PCA of the selected HVGs. Leiden-clustering was 
used to annotate subclass-level annotation. We iterated to the second level of taxonomy which returned us with 
67 subtypes of human brain cell types.

Genotyping.  Overall strategy.  The majority of donors from the HBCC (98%) and RADC (87%) had pre-
viously undergone genotyping32,33,61 and we opted to utilize this existing data. For the MSSM donors, however, 
the coverage from previous genotyping efforts was notably lower, with only 57% (598 donors) having been 
genotyped. Therefore, we conducted genotyping for all MSSM donors for whom we had a sufficient amount of 
material, as detailed in the “Library preparation for MSSM donors” and “Computational processing for MSSM 
donors” sections. We made use of the existing genotyping data from MSSM to assess genotype concordance with 
the newly generated SNP array. This allowed us to identify sample swaps and unintended duplicates. Lastly, we 
implemented a multi-step procedure to merge genotypes from the existing and newly generated WGS and SNP 
array data, resulting in the creation of a comprehensive genotype dataset for the PsychAD cohort, as outlined in 
the “Integration of multi-source genotype data” section.

SNP arrays.  Genomic DNA was isolated using the QIAamp DNA mini kit (Qiagen), according to the man-
ufacturer’s instructions, and quantified via Qubit (Life Technologies). 400 ng of DNA was then whole-genome 
amplified, fragmented, precipitated and resuspended in the appropriate hybridization buffer. Genotyping was 
performed using the Infinium Global Screening Array-24 Kit (Illumina) according to the manufacturer’s proto-
col. Briefly, denatured samples were hybridized on prepared Illumina Bead Chips. After hybridization, the Bead 
Chip oligonucleotides were extended by a single fluorescent labeled base, which was detected by fluorescence 
imaging with an Illumina Bead Array Reader, iScan.

Computational processing for MSSM donors.  Pre-imputation processing of the PsychAD MSSM subcohort 
genotype data consisted of running the quality control script HRC-1000G-check-bim.pl from the McCarthy 

Neuropsychiatric symptom Type NPS-present NPS-absent

Group 1: Early insomnia specific 93 676

Group 1: Middle insomnia specific 73 694

Group 1: Late insomnia specific 91 682

Group 1: Hypersomnia specific 23 766

Group 1: Weight gain specific 41 761

Group 1: Suicidal ideations specific 91 717

Group 1: Delusional worthlessness specific 53 746

Group 1: Worthlessness specific 67 730

Group 1: Psychomotor retardation specific 88 723

Group 1: Sleep/WeightGain/Guilt/Suicide aggregated 316 519

Group 2: Weight loss specific 401 401

Group 2: Decreased appetite specific 415 386

Group 2: Psychomotor agitation specific 438 390

Group 2: Loss of energy specific 438 379

Group 2: Ruminations specific 391 428

Group 2: WeightLoss/PMA aggregated 678 160

Group 3: Dysphoria specific 410 408

Group 3: Anhedonia specific 357 454

Group 3: Depression: current to 2 weeks specific 254 558

Group 3: Depression: current to 6 months specific 268 541

Group 3: Depression: lifetime specific 251 528

Group 3: Depression/Mood aggregated 448 386

Table 3.  Summary of the donor counts with defined neuropsychiatric symptoms. For “aggregated” types 
of symptoms, a donor is classified as “NPS-present” if they exhibit at least one of the “specific” symptoms. 
Conversely, a donor is classified as “NPS-absent” if at least one “specific” symptom is marked “false” and no 
symptoms are marked “true.”
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Lab Group (https://www.well.ox.ac.uk/~wrayner/tools/). Genotypes were then phased and imputed on 
the Trans-Omics for Precision Medicine (TOPMed) Imputation Server62. Only variants with an imputation 
R2 > 0.3 were retained. Biallelic variants were additionally annotated with ancestry-specific MAF values from 
the National Center for Biotechnology Information’s Allele Frequency Aggregator (ALFA) (https://ftp.ncbi.nih.
gov/snp/population_frequency/latest_release/). The populations included in the ALFA database are described 
at https://www.ncbi.nlm.nih.gov/snp/docs/gsr/data_inclusion/#population.

Integration of multi-source genotype data.  To compile a combined dataset covering the largest possible fraction 
of the PsychAD cohort, we leveraged the following datasets:

•	 PsychAD-MSSM SNP array: Genotyping data for 882 donors that cover the majority of MSSM donors were 
generated and described in this manuscript.

•	 CommonMind SNP array: Genotyping data for 513 samples overlapping the PsychAD cohort were obtained 
from previously generated SNP array on Illumina Infinium HumanOmniExpressExome 8 v 1.1b chip33. These 
data are accessible to all registered users of the NIMH Data Archive (RRID:SCR_004434) under the collec-
tion identifier C5063.

•	 RADC WGS: Whole-genome sequencing data for 131 samples overlapping the PsychAD cohort were obtained 
from a Diverse study61 available to all registered users of the AD Knowledge Portal (RRID:SCR_006307) 
under the release number 20.6, accession identifier syn51757644.

•	 ADSP WGS: Whole-genome sequencing data for 284 samples overlapping the PsychAD cohort were obtained 
from the seventh release of WGS data under the ADSP Umbrella Study (NG00067.v7) from the National 
Institute of Aging Genetics of Alzheimer’s Disease Data Storage Service63.

These datasets exhibited a significant overlap, resulting in 377 donors with one or more duplicates, as iden-
tified by KING64 (kinship score ≥ 0.4; Fig. 3a). To determine which of the duplicated samples were retained for 
use as the final genotype file, the following criteria were applied: First, if one sample was obtained through WGS 
and the other through SNP array genotyping, we retained the WGS sample. This prioritization criterion was 
applied to 249 donors. Next, if one sample displayed a heterozygosity value falling within ± 2 standard devia-
tions from the mean, we retained the other sample, thus excluding an additional 8 pairs. All of the remaining 
120 donors had samples in both the PsychAD-MSSM and CommonMind SNP arrays. We opted to prioritize the 
PsychAD-MSSM SNP array due to inherent imperfections of the CommonMind SNP array, which was initially 

Fig. 3  Analysis of genotyping data. (a) Counts and intersections among sources of genotyping data available 
for donors from the PsychAD cohort. (b) Distribution of genetic similarities estimated between combined 
genotype dataset and genotypes called from snRNA-seq data. (c) F-statistic from plink’s “check-sex” function 
plotted by reported sex (samples with known sex chromosome aneuploidies not shown). (d,e) The first two PCs 
of genetic ancestry were calculated separately for the PsychAD-MSSM genotype dataset of 882 samples (d) and 
for the combined dataset of 1,381 samples (e).
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provided in hg19 coordinates and necessitated conversion to hg38 coordinates. As a result, the final combined 
genotype file encompasses 92% (1,381) of the PsychAD donors.

Whole-genome sequencing (WGS) variant calling for the RADC and ADSP samples was carried out accord-
ing to the best practice guidelines of the Genome Analysis Toolkit (GATK)65. In summary, the identification 
of single nucleotide variants (SNVs) and insertions/deletions (indels) was performed jointly using GATK’s 
HaplotypeCaller and GenotypeGVCFs tools. The refinement and annotation of variants were achieved through 
Variant Quality Score Recalibration (VQSR) within the GATK environment. Quality control (QC) steps followed 
previously established pipelines66–68. For sample-level QC, relatedness, DNA contamination, and sample-level 
missingness (samples excluded if > 0.05) were evaluated, as well as overall coverage (samples excluded if < 25x). 
Outlier samples were identified and excluded based on several criteria, including the number of called SNVs and 
indels, insert size length, alignment mapping quality score (MQ), CRAM file size, transition/transversion ratio 
(Ti/Tv), the ratio of novel variants to all variants, and the ratio of mapped reads to paired reads, as detailed in 
previous studies66–68. At the variant level, filtering removed variants with more than 10% missingness and high 
levels of heterozygosity (InbreedingCoeff <−0.8). Individual genotype calls with a depth (DP) of less than 10 or 
a genotype quality (GQ) of less than 20 were marked as missing. Analyses were limited to biallelic variants only.

Ancestry estimation.  Based on the success of Mahalanobis distance techniques in ancestry assignment69,70, 
we leveraged quadratic discriminant analysis (QDA) to assign ancestry using scikit-learn71. We determined 
the genetic ancestry of our samples based on the five superpopulations defined by the 1000 Genomes Project. 
Initially, we merged unimputed genotypes with the 1000 Genomes Project data on the GRCh38 v2a reference 
using BCFtools version 1.9. We then computed the principal components (PCs) of the merged genotypes using 
PLINK PCA. The merged genotype used for this calculation was variant-level filtered to keep only single nucle-
otide variants (SNVs) with a minor allele frequency (MAF) of at least 0.01, a Hardy-Weinberg equilibrium 
(HWE) P-value of at least 10−10, and a variant-level missingness of no more than 0.01. We also performed 
linkage disequilibrium (LD) pruning with a window size of 1,000 kb, a step size of 10, and an R2 threshold of 
0.2. Finally, we used forward selection to choose PC1 through PC6 for training the QDA models, applying a 
regularization parameter of 5−7.

Data Records
Raw and processed data described herein are available for use by the research community and have been 
deposited in the AMP-AD Knowledge Portal in the study-specific folder72. These include sample meta-
data, as well as raw and processed sequencing data for snRNA-seq and genotyping. Single nuclei data 
can be inspected at the CELLxGENE (RRID:SCR_021059) portal at https://cellxgene.cziscience.com/
collections/84ce6837-548d-4a1f-919f-0bc0d9a3952f.

Technical Validation
Genotype data quality control.  Out of four genotype datasets used in this study, three external datasets 
already underwent QC before they were released so we performed only a limited check. For the newly generated 
PsychAD-MSSM SNP array data, we started by removing samples with missingness over 0.05 (calculated within 
a subset of high-quality variants with variant-level missingness ≤ 0.02). All SNP-array samples were compared 
against genotypes called from snRNA-seq samples to check the across-assay concordance for samples originating 
from the same donor. This comparison allowed us to resolve sample swaps in both assays, as well as to detect and 
remove duplicated and contaminated samples (Fig. 3b). Next, the samples with a mismatch between the self-re-
ported and genetically inferred sex were removed, as well as those with outlier heterozygosity defined by ± 3 
standard deviations from the mean (samples with known sex chromosome aneuploidies were not subjected to 
this check). After performing all QC steps, we observed unambiguous separation of male and female samples and 
good concordance of inferred and reported ancestry for all remaining 882 samples (Fig. 3c,d). Comparable results 
were obtained for the merged genotype dataset, which included 1,381 samples (Fig. 3e).

snRNA-seq data quality control.  After the QC processes, our snRNA-seq dataset consisted of 6.32 mil-
lion nuclei spread across 561 pools. Each pool contained six libraries, and each library underwent sequencing in 
duplicate on different sequencing lanes. The typical yield was about 21,238 nuclei per pool (Fig. 4a), which were 
anticipated to be distributed evenly across the libraries. Nevertheless, we observed considerable variability in 
nuclei counts, largely attributed to variances in tissue quality that impact cell viability and capture efficiency73. 
The largest replicate in a typical pool accounted for about 32% of the nuclei (3,367 nuclei), while the smallest only 
captured about 5% (721 nuclei) (Fig. 4b). Such fluctuations are not unusual and align with findings from other 
studies53,73,74. Despite these discrepancies in nuclei numbers, the replicates consistently showed a high correlation 
in gene expression signals (Spearman’s ρ = 0.82), underscoring the data’s robustness (Fig. 4c). Notably, samples 
discarded at the QC step had roughly 55% fewer nuclei than those that met the QC criteria (1,920 vs. 4,240 nuclei, 
Fig. 4d). The cellular taxonomy revealed eight major cell classes and 27 subclasses (Fig. 4e).

Usage Notes
Having a dataset with such a large scope, including over 6 million nuclei, 1,494 donors, 33 diagnoses, and ages 
ranging from 0 to 108 years, presents many opportunities but also demands careful handling. A common use 
case involves a statistical comparison of two groups of donors, typically those from disease carriers and neuro-
typical controls. In such scenarios, it is important to ensure the careful selection of donors for the control group 
because controls have typically much lower age at the time of death in our dataset (Fig. 5). Due to the impact 
of normal aging on cell function11, a wide variation in the age distributions of the groups being compared can 
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obscure the actual effects of the disease. While complex non-linear modeling can adjust for some of these effects 
in differential analysis, we still recommend setting a minimum age threshold. In disease-oriented papers pub-
lished using this dataset23–25,28,29, we established a minimum age of 17 years for serious mental illnesses and 60 
years for neurodegenerative disorders. While researchers can choose which effects they want to correct for in 
their analysis, it’s worth noting that our studies typically adjust for demographic factors such as sex, brain bank, 
and postmortem interval, each of which was modeled as having a linear effect.

All data are available via the AD Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge 
Portal is a platform for accessing data, analyses, and tools generated by the Accelerating Medicines Partnership 
(AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported programs to 
enable open-science practices and accelerate translational learning. The data, analyses and tools are shared early 
in the research cycle without a publication embargo on secondary use. Data is available for general research 
use according to the following requirements for data access and data attribution (https://adknowledgeportal.
synapse.org/Data%20Access).

Fig. 4  Analysis of the snRNA-seq dataset. (a) Distribution of the number of nuclei across sample pools. Dashed 
line indicates the mean. (b) Distribution of nuclei to libraries within pools, ordered by nuclei count (top) and 
fraction of nuclei (bottom). Each replicate is depicted using two boxplots representing the nuclei distribution 
before (blue) and after QC (green). The center line (black) indicates the median, the box shows the interquartile 
range, and the whiskers indicate the highest/lowest values within 1.5 × the interquartile range. (c) Comparison 
of QC-passed nuclei counts between pairs of replicates from the same sequencing pools (Spearman’s ρ = 0.84). 
(d) Distribution of nuclei counts in samples that passed or failed QC (vertical line indicates the mean values). 
(e) UMAP visualization of snRNA-seq data. IN: inhibitory/GABAergic neurons, EN: excitatory/glutamatergic 
neurons, SMC: smooth muscle cells, VLMC: vascular leptomeningeal cells, PVM: perivascular macrophages, 
OPC: oligodendrocyte progenitor cells, Astro: astrocytes, Oligo: oligodendrocytes, Micro: Microglia, Endo: 
endothelial, Adaptive: adaptive immune cells, PC: Pericytes.

Fig. 5  Distribution of the age at death stratified by diagnosis. The diagnoses shown in this plot were 
intentionally selected to highlight age differences.
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Code availability
The source code used to analyze the metadata and create figures for this manuscript can be found on GitHub at 
this location: https://github.com/DiseaseNeuroGenomics/psychAD_SciData.
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