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Abstract: We previously observed that esmolol treatment for 48 h reduced vascular lesions in
spontaneously hypertensive rats (SHRs). Therefore, we investigated whether this beneficial effect
is persistent after withdrawal. Fourteen-month-old SHRs (SHR-Es) were treated with esmolol
(300 µg/kg/min) or a vehicle for 48 h. Two separate groups were also given identical treatment, but
they were then monitored for a further 1 week and 1 month after drug withdrawal. We analyzed
the geometry and composition of the coronary artery, vascular reactivity and plasma redox status.
Esmolol significantly decreased wall thickness (medial layer thickness and cell count), external
diameter and cross-sectional area of the artery, and this effect persisted 1 month after drug withdrawal.
Esmolol significantly improved endothelium-dependent relaxation by ACh (10−9–10−4 mol/L); this
effect persisted 1 week (10−9–10−4 mol/L) and 1 month (10−6–10−4 mol/L) after withdrawal. Esmolol
reduced the contraction induced by 5-HT (3 × 10−8–3 × 10−5 mol/L), and this effect persisted
1 week after withdrawal (10−6–3 × 10−5 mol/L). Esmolol increased nitrates and reduced glutathione,
and it decreased malondialdehyde and carbonyls; this enhancement was maintained 1 month after
withdrawal. This study shows that the effect of esmolol on coronary remodeling is persistent after
treatment withdrawal in SHRs, and the improvement in plasma oxidative status can be implicated in
this effect.

Keywords: esmolol; vascular remodeling; spontaneously hypertensive rat; treatment withdrawal

1. Introduction

Arterial hypertension is the most prevalent risk factor for cardiovascular disease. Every
year, it is associated with high mortality and morbidity [1]. It has been widely demonstrated
that hypertension induces structural and physiological changes in the arterial wall [2],
and regression of these changes is associated with reduced incidence of cardiovascular
events [3,4]. Therefore, we need drugs that interfere with the structural remodeling process
and thus reducing endothelial dysfunction. Several studies have shown that chronic treat-
ment with antihypertensive drugs produces regression of coronary artery remodeling [5–9].
However, our group has demonstrated this beneficial effect with short-term treatment with
antiarrhythmic drugs (esmolol and dronedarone) [10–13].

Esmolol is an ultrashort-acting cardioselective β-adrenergic receptor antagonist with a
different pharmacokinetic profile from that of classic β-blockers [14]. Esmolol has a cardio-
protective effect [15]. In clinical practice, esmolol decreases myocardial ischemia [16], and, in
preclinical studies, it increases nitric oxide bioavailability and reduces asymmetric dimethy-
larginine (ADMA) concentration in plasma (both related to vascular remodeling) [10,11].
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We previously observed that esmolol treatment for 48 h produced reductions in blood
pressure and heart rate in spontaneously hypertensive rats (SHRs) [10,11]. In addition,
these effects were accompanied by an important regression of structural and functional re-
modeling of the coronary artery. Thus, the first aim of this study was to investigate whether
the beneficial effect of esmolol on coronary artery remodeling persists after treatment with-
drawal. Furthermore, this study aims to explore the implication of oxidative stress (plasma
oxidative status) in the regression of vascular remodeling after esmolol withdrawal.

2. Material and Methods
2.1. Animal Model and Treatment

Fifty-four 14-month-old male SHRs were used in this study, and they were housed
in cages (four per cage) under a 12 h/12 h light/dark cycle and maintained at a constant
temperature of 24 ◦C and relative humidity of 40%. At the end of the treatment, the rats
were sedated with 4 mg/kg diazepam and 10 mg/kg ketamine intraperitoneal injection,
and blood was obtained from the tail vein in tubes with heparin (5000 units) to assess
oxidative stress. Thereafter, the rats were killed by decapitation, and the heart was obtained.
The left anterior descending coronary artery was then dissected to assess vascular function
and structure.

SHRs were treated with an IV infusion of esmolol (Baxter, S.L.) at 300 µg/kg/min
(SHR-Es) for 48 h. Another two separate groups were given identical treatment but were
then monitored for an additional 1 week (SHR-E 7 d group) and 1 month (SHR-E 1 m
group) after drug treatment withdrawal. SHRs receiving a vehicle (saline solution) were
used as controls (SHR 48 h, SHR 7 d and SHR 1 m groups).

2.2. Blood Pressure and Heart Rate

Systolic blood pressure (SBP) and heart rate (HR) were measured using the tail-cuff
method with a photoelectric sensor (Niprem 546, Cibertec, Madrid, Spain).

2.3. Wire Myography for the Study of Coronary Artery Vascular Reactivity

The heart was removed and maintained in cold (4 ◦C) oxygenated Krebs–Henseleit
solution (KHS, in mmol/L: 115 NaCl, 25 NaHCO3, 4.7 KCl, 1.2 MgSO4·7H2O, 2.5 CaCl2,
1.2 KH2PO4, 11.1 glucose and 0.01 Na2EDTA). Then, 2 mm length segments of the left
anterior descending coronary artery were mounted on a wire myograph (Multi Myo-
graph System, model 610M, Danish Myo-Technology, Hinnerup, Denmark) as previously
described [10,11], and data were recorded through a Powerlab data acquisition system
(AD-Instruments, Castle Hill, Sydney, NSW, Australia). To assess endothelium-dependent
relaxations, the segments were precontracted with 5-hydroxytryptamine (Sigma-Aldrich,
St. Louis, MO, USA) (5-HT, 3 × 10−7 mol/L), and dose–response curves for acetylcholine
(ACh 10−9–10−4 mol/L) were obtained. Relaxation was expressed as the percent of con-
traction reduction. After a 30 min washout period, contractile responses to serotonin
were evaluated (10−9–3 × 10−5 mol/L). Contraction was expressed as a percentage of the
maximum response of the arteries to K+-KHS.

2.4. Confocal Microscopy for the Study of Coronary Artery Structure and Composition

From the left anterior descending coronary artery, 1 mm length segments were isolated.
From them, one ring and two longitudinal sections were cut and stained with nuclear dye
DAPI (1:500 of a 5 mg/mL stock solution) and mounted on a slide with citifluor. One
longitudinal section was mounted with the endothelial side up, and the other was mounted
with the adventitial side up and visualized with a Leica TCS SP2 confocal system (Leica
Microsystems, Wetzlar, Germany) to study the geometry and composition (cell number in
the adventitia and media layers) as previously described [11]. To visualize cell nuclei, the
405 Ex/410–475 emission wavelengths were used. Three randomly selected regions were
visualized with a ×20 objective at zoom 8 from each segment, and stacks of serial 1 µm
optical sections were captured from the adventitial layer (longitudinal sections mounted
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with the adventitial side up) and medial layer (longitudinal sections mounted with the
endothelial side up). The arterial rings were used to analyze arterial geometry. The rings
were visualized with a ×20 objective with the 488 Ex/515 Em nm line showing internal
and external diameters based on the autofluorescence of elastin, and from each ring, an
image was captured.

Quantitative analysis of confocal data. MetaMorph Image Analysis Software (Univer-
sal Imaging, Wokingham, UK) was used as previously described [17]. Adventitial layer
thickness was determined by the number of planes between the first and last images show-
ing an adventitial cell nucleus at the maximum intensity. Similarly, medial layer thickness
was assessed by the number of planes between the first and last image showing smooth
muscle cells (SMC), since both adventitia and SMC and endothelial cells have distinctive
shapes and orientations. Adventitial cells and SMCs were counted in a specific volume
defined by the image area and the layer thickness of each particular vessel.

2.5. Biomarkers of Oxidative Status in Plasma

Blood samples (1.2 mL) with heparin were centrifuged at 900× g for 10 min at 4 ◦C,
and the plasma was aliquoted and stored at −70 ◦C until use.

2.5.1. Reduced Glutathione (GSH) Content

Plasma GSH was assessed using a fluorometric micromethod based on the reaction
with o-phthalaldehyde (Sigma-Aldrich). Fluorescence was measured in a Synergy HT
multimode microplate reader (Sinergy HT, BioTek, Winooski, VT, USA) at 360 ± 40 nm
excitation and 460 ± 40 nm emission wavelengths, and GSH was quantified as µmol/mg
protein [18].

2.5.2. Nitrates

Plasma nitrates were assessed by Griess reaction, modified to a microplate reader. In
brief [19], a 100 µL plasma sample was incubated with 10 µL N-ethylmaleimide 150 mM
for 5 min at room temperature (Thermo Fisher Scientific, Waltham, MA, USA), and 110 µL
trichloroacetic acid 20% w/v was added and centrifuged (12,000× g) for 5 min at 4 ◦C. A
40 µL volume of supernatant was transferred to a microplate, and the following reagents
were added: 40 µL of vanadium (III) chloride (Sigma-Aldrich), 20 µL of sulfanilamide 2%
(Thermo Fisher Scientific, Waltham, MA, USA) and 20 µL of naphthyl-ethylenediamine
dihydrochloride 0.1% (Thermo Fisher Scientific, Waltham, MA, USA). The mixture was
incubated for 1.0 h at 37 ◦C, and the absorbance was read at 540 nm. Nitrates were expressed
as µM. The standard curve (0–100 µM) was prepared with a nitrate solution of 100 µM and
diluted in methanol–H2O solution.

2.5.3. Total Protein Carbonyls

Plasma protein carbonyls were assessed with a 2,4-dinitrophenylhydrazine-based as-
say, as previously described [18,20], and expressed as nanomoles per milligram (nmol/mg)
of protein.

2.5.4. Lipid Peroxidation

Plasma lipid peroxidation was evaluated by assessing the levels of the stable products
malondialdehyde (MDA) and 4-Hydroxynonenal (HNE) using a commercial kit (Lipid
Peroxidation Assay kit KB-03-002, Bioquochem, Gijon, Spain) as previously described [21].
MDA + HNE content was expressed as µM.

2.6. Statistical Analysis

Results are expressed as mean ± SEM. The parameters were compared using repeated-
measures Student’s t test (for concentration–response curve parameters) and Student’s
t test for independent samples (for physiological, structural and biochemical parameters).
ACh and 5-HT vasoactive responses were expressed as differences in the areas under
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the concentration–response curves (AUCs) among the experimental groups. A Statistical
significance level was established at p-values < 0.05.

3. Results
3.1. Blood Pressure and Heart Rate

A pronounced decrease in SBP and HR was observed after treatment with esmolol;
however, these parameters returned to basal levels after withdrawal (Table 1).

Table 1. Blood pressure and heart rate.

SHR
(n = 9/Group)

SHR-E
(n = 9/Group)

Blood pressure (mmHg)
Treatment group 187 ± 20 139 ± 23 *

Withdrawal week group 183 ± 19 179 ± 16 #
Withdrawal month group 179 ± 15 189 ± 10 #

Heart rate (beats/min)
Treatment group 380 ± 6 305 ± 10 *

Withdrawal week group 372 ± 9 369 ± 15 #
Withdrawal month group 389 ± 11 373 ± 7 #

Values are mean ± SEM. SHRs, rats treated with vehicle; SHR-Es, rats treated with esmolol. * p < 0.05 vs. SHRs;
# p < 0.05 vs. SHR-Es after 48 h of treatment.

3.2. Esmolol Improves Vascular Function, and This Effect Remains after Withdrawal

Esmolol significantly improved the endothelium-dependent relaxation induced by
ACh (10−9–10−4 mol/L) in 5-HT contracted coronary arteries (Figure 1A). This improve-
ment was maintained 1 week after withdrawal (ACh 10−9–10−4 mol/L) (Figure 1B) and
1 month after withdrawal (ACh 10−6–10−4 mol/L) (Figure 1C). The AUC was significantly
higher in SHR-Es treated with esmolol than in SHRs (AUCSHR-E 48 h = 209.6 ± 25.9 vs.
AUCSHR 48 h = 74.15 ± 8.67, p = 0.0001). This result was maintained 1 week after withdrawal
(AUCSHR-E 7 d = 185.16 ± 27.65 vs. AUCSHR 7 d = 102.07 ± 18.45, p = 0.017), and 1 month
after withdrawal (AUCSHR-E 1 m = 136.33 ± 20.84 vs. AUCSHR 1 m = 83.29 ± 11.87, p = 0.05).

Esmolol significantly reduced contraction induced by 5-HT (3 × 10−8–3 × 10−5 mol/L)
in coronary arteries (Figure 1D). This improvement was maintained 1 week after withdrawal
(10−6–3 × 10−5 mol/L) (Figure 1E). The AUC was significantly higher in SHRs than in SHR-Es
treated with esmolol (AUCSHR 48 h = 243.3 ± 19.66 vs. AUCSHR-E 48 h = 28.1 ± 2.4, p = 0.00003),
and this result was maintained 1 week after withdrawal (AUCSHR 7 d = 133.13 ± 16.07 vs.
AUCSHR-E 7 d = 74.33 ± 8.68, p = 0.005). However, no difference was observed between the
SHR 1 m and SHR-E 1 m groups (Figure 1F).

3.3. Esmolol Improves Vascular Structure, and This Effect Remains after Withdrawal

The effects of esmolol on coronary artery geometry are shown in Figure 2. External
diameter (ED, internal diameter + adventitial layer + medial layer) (Figure 2B), wall
thickness (WW, adventitial layer + medial layer) (Figure 2C) and cross-sectional area
(CSA, adventitial layer + medial layer) (Figure 2D) of the coronary artery were significantly
reduced after 48 h of treatment with esmolol (SHR-E 48 h group) with respect to untreated
animals (SHR 48 h group). The beneficial effect of esmolol 300 µg/kg/min persisted after
treatment withdrawal (SHR-E 7 d group vs. SHR 7 d group, and SHR-E 1 m group vs. SHR
1 m group) (Figure 2B–D). No differences in internal diameter between groups treated with
esmolol vs. untreated animals were observed (LD) (Figure 2A).
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Figure 1. Concentration–response curves for acetylcholine on the coronary artery: (A) in treatment
groups (48 h) and (B), (C) in withdrawal groups (7 days and 1 month). Concentration–response
curves for serotonin on the coronary artery: (D) in treatment groups and (E), (F) in withdrawal groups
(7 days and 1 month). SHRs, rats treated with vehicle; SHR-Es, rats treated with esmolol; n = 9 rats
for each experimental group. Values are mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SHRs.
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Figure 2. Structural parameters (medial + adventitial layers) of the coronary artery. Lumen diameter
(A), external diameter (B), wall thickness (C), and cross-sectional (D) in treatment groups (48 h) and
withdrawal groups (7 days and 1 month). SHRs, rats treated with vehicle; SHR-Es, rats treated with
esmolol; n = 9 rats for each experimental group. Values are mean ± SEM. * p < 0.05, ** p < 0.01 vs. SHRs.

The effects of esmolol on coronary artery composition (medial and adventitial layers)
are shown in Figures 3 and 4. Forty-eight hours of treatment with esmolol induced a
significant reduction in wall thickness and cell count in the SHR-E 48 h group compared
with the SHR 48 h group. These effects persisted after treatment withdrawal (SHR-E 7 d
group vs. SHR 7 d group, and SHR-E 1 m group vs. SHR 1 m group). There were no
significant differences in the medial layer cell density between esmolol-treated groups
with respect to untreated animals. Esmolol induced a significant reduction in cell count
in the adventitial layer, and cell density was significantly minor in the SHR-E 48 h group
with respect to the SHR 48 h group; however, these changes did not persist after esmolol
suppression. There were no significant differences in the adventitial layer wall thickness
between esmolol-treated groups with respect to untreated animals.
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Figure 3. Medial layer of the left anterior descending coronary artery. Shown are rings (confo-
cal microscopy images, ×20, zoom 2) (A), cell nuclei (confocal microscopy images, ×20, zoom 8)
(B) and the composition of the medial layer (C) of the coronary artery in treatment groups (48 h) and
withdrawal groups (7 days and 1 month). SHRs, rats treated with vehicle; SHR-Es, rats treated with
esmolol; n = 9 rats for each experimental group. Values are mean ± SEM. * p < 0.05 vs. SHRs.
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Figure 4. Adventitial layer of the left anterior descending coronary artery. Shown are cell nuclei
(confocal microscopy images, ×20, zoom 8) (A) and the composition of the adventitial layer (B) of
the coronary artery in treatment groups (48 h) and withdrawal groups (7 days and 1 month). SHRs,
rats treated with vehicle; SHR-Es, rats treated with esmolol; n = 9 rats for each experimental group.
Values are mean ± SEM. * p < 0.05, ** p < 0.01 vs. SHRs, ## p < 0.01 vs. SHR-E 48 h group.

3.4. Esmolol Improves Plasma Redox Status, and It Persists after Treatment Withdrawal

Esmolol induced a significant increase in GSH in the SHR-E 48 h group with respect
to the SHR 48 h group, and this effect persisted after treatment withdrawal (SHR-E 7 d
group vs. SHR 7 d group, and SHR-E 1 m group vs. SHR 1 m group) (Figure 5A). Esmolol
induced a significant increase in plasma nitrates in the SHR-E 48 h group with respect to
the SHR 48 h group. Treatment withdrawal increased this biomarker in the SHR-E 7 d
group but decreased it in the SHR-E 1 m group; however, the values were still lower than
in the respective SHR control groups (Figure 5B).
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treatment [30]. Nebivolol induced a reduction in aortic media thickness and improved the 
acetylcholine-induced relaxant response after chronic treatment (6 months) in SHRs. 
These effects were maintained 3 months after drug withdrawal [30]. 

Figure 5. Oxidative status biomarkers. Reduced glutathione (GSH) (A), nitrate (B), malondialdehyde
+ 4-hydroxynonenal (MDA + HNE) (C) and carbonyls (D) in plasma of treatment groups (48 h) and
withdrawal groups (7 days and 1 month). SHRs, rats treated with vehicle; SHR-Es, rats treated with
esmolol; n = 8 rats for each experimental group. Values are mean ±SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. SHRs; ## p < 0.01, ### p < 0.001 SHR 1 m/SHR-E 1 m groups vs. SHR 48 h/SHR-E 48 h
groups; †† p < 0.01, ††† p < 0.001 SHR 1 m/SHR-E 1 m groups vs. SHR 7 d/SHR-E 7 d groups.

Both peroxidation lipid (MDA + HNE) and carbonyls were significantly reduced in
the SHR-E 48 h group with respect to the SHR 48 h group. Treatment withdrawal increased
both oxidative damage biomarkers in the SHR-E 7 d and SHR-E 1 m groups, but the values
were still lower than those of the SHR 7 d and SHR 1 m groups, respectively, (Figure 5C,D).
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4. Discussion

This is the first study to show regression of coronary artery remodeling after a short treat-
ment with an antihypertensive drug (esmolol) that persisted following treatment withdrawal.

Hypertension leads to adverse cardiovascular remodeling and, therefore, increases
the incidence of cardiovascular events (myocardial ischemia, arrhythmias, heart failure
and sudden death) [22,23]. Regression of cardiovascular remodeling is an objective of
antihypertensive therapy, reducing cardiovascular events. Esmolol is a cardioselective
β1-receptor blocking agent with the beneficial effects of β-blockers but without the detri-
mental effects of long-acting agents due to its pharmacokinetics (ultra-short half-life of
9min, rapid hydrolysis by plasma esterases and full therapeutic effect in 5 min) [14]. The
efficacy of esmolol has been demonstrated in clinical practice in the treatment of supraven-
tricular arrhythmias and perioperative tachycardia and hypertension [24]. In the literature,
we found that esmolol has cardioprotective effects in a number of settings (acute myocardial
infarction, during cardioplegic cardiac arrest and after cardiopulmonary bypass) [15,25] but
not in cardiovascular remodeling. Our group demonstrated vascular protection by esmolol
in an animal model of arterial hypertension and coronary damage and its persistence after
discontinuation of treatment.

Several studies investigated regression artery remodeling with antihypertensive
drugs [5–9,26–29]. However, only a few showed vascular protection after withdrawal
of treatment [30]. Nebivolol induced a reduction in aortic media thickness and improved
the acetylcholine-induced relaxant response after chronic treatment (6 months) in SHRs.
These effects were maintained 3 months after drug withdrawal [30].

A few studies showed regression of hypertensive vascular remodeling after the ad-
ministration of drugs as a short-term treatment [10,11,28]. Nifedipine, after 1 week of
administration, attenuated aortic wall thickness and the cross-sectional area, and improved
endothelium-dependent relaxation in SHRs; however, all parameters returned to control
SHR values after a very short withdrawal from the drug (72 h) [28]. In our study, esmolol
produced the same effects as nifedipine on the coronary artery with short-term treatment
(48 h); however, these effects persisted after a 1-month withdrawal.

Reduction in blood pressure has been related to the regression of vascular remodeling.
Chronic treatment with nebivolol reduced systolic blood pressure in SHRs, which increased
progressively after withdrawal without reaching the values of the SHR controls. These
changes were associated with aortic remodeling [30]. In our study, short-term treatment
with esmolol decreased systolic blood pressure; however, this parameter returned to basal
levels after withdrawal. Therefore, vascular protection by esmolol is not restricted to short-
term blood pressure modulation. A blood-pressure-independent effect is also suggested in
previous studies about vascular remodeling [11].

Hypertension-induced vascular dysfunction may occur as a contributing factor or
as a consequence of vascular remodeling caused by chronically elevated systemic blood
pressure [31]. The effect of 48 h of treatment with esmolol on vascular remodeling is
related to increased nitric oxide bioavailability and a reduction in ADMA concentration
in plasma [10,11]. Nitric oxide shows vasorelaxing and antiproliferative properties [32].
Therefore, esmolol improved the response of endothelium-dependent vasodilation in the
coronary artery, and it decreased the contractile function (inhibiting SMC proliferation) as
a result of the increased bioavailability of nitric oxide.

In the present study, we explored plasma redox status following the administration
and withdrawal of esmolol in SHRs because oxidative stress is also associated with vascular
remodeling in hypertension [33]. In the present study, esmolol improved plasma redox
status (decreased lipid peroxidation and carbonyls and improved/reduced glutathione
and nitrates), and this improvement was maintained a month after the end of treatment.
Some studies attributed antioxidant properties to esmolol but in other contexts (myocardial
infarction) [34,35].

The present study has limitations. This study was designed to analyze maintenance
over time of esmolol’s effect on the structure and function of coronary arteries in SHRs.
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Endothelial disease is highly variable in SHRs due to differences in artery type, sex, age
and methodology used to study vascular function [36]. The results of our study apply only
to the left anterior descending coronary artery in 14-month-old male SHRs. However, we
need the translation of vascular protection by esmolol from animal experiments to clinical
practice using clinical trials. Cardiovascular changes in SHRs are similar to those occurring
in human hypertension; therefore, our observations with esmolol are predictive of effects
in human patients [37].

5. Conclusions

In conclusion, our results show that the regression of coronary artery remodeling after
a short treatment with an antihypertensive drug (esmolol) persists following withdrawal.
The improvement in plasma oxidative status could be implicated in this effect.
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