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Abstract

Motivation: To understand the dynamic nature of the biological process, it is crucial to identify per-

turbed pathways in an altered environment and also to infer regulators that trigger the response.

Current time-series analysis methods, however, are not powerful enough to identify perturbed

pathways and regulators simultaneously. Widely used methods include methods to determine

gene sets such as differentially expressed genes or gene clusters and these genes sets need to be

further interpreted in terms of biological pathways using other tools. Most pathway analysis meth-

ods are not designed for time series data and they do not consider gene-gene influence on the time

dimension.

Results: In this article, we propose a novel time-series analysis method TimeTP for determining

transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed

sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to

locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propa-

gate the expression changes along the time. Starting points of the perturbed sub-pathways are

mapped into the network and the most influential TFs are determined by influence maximization

technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP

was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators

relevant to the PIP3 signaling pathway.

Availability and Implementation: TimeTP is implemented in Python and available at http://bio

health.snu.ac.kr/software/TimeTP/.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: sunkim.bioinfo@snu.ac.kr

1 Introduction

Our goal in this article is to develop a computational method to per-

form analysis of time series transcriptome data in terms of biological

pathways and also to determine regulators for differentially ex-

pressed gene (DEG) sets or perturbed pathways. Analyzing tran-

scriptome data can be done in many different ways for different

purposes. Thus there are numerous computational methods and we

begin by surveying the literature in the categories such as (i) methods

for determining perturbed pathways, (ii) methods for analyzing time

series transcriptome data, (iii) methods for the pathway based ana-

lysis of time series data and (iv) methods for identifying regulators

while analyzing time series data.

1.1 Methods for determining perturbed pathways
Pathway perturbation has been one of the primary research subjects

in systems biology because the identification of perturbed pathways

can reveal the dysregulated biological mechanism that originates

from stimuli or in disease conditions (Khatri et al., 2012; Kristensen

et al., 2014; Ramanan et al., 2012). The early methods of pathway

analysis include the gene set enrichment analysis (GSEA) by

Subramanian et al. (2005) and improved versions of GSEA (Medina

et al., 2009; Nam et al., 2010) that use gene-level statistics calcu-

lated from the test of differential expression. Later, graph-based al-

gorithms for pathway analysis were developed to utilize interaction

information between genes or proteins in terms of curated pathway
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databases such as KEGG (Kanehisa and Goto, 2000). The graph-

based pathway analysis has been developing with a seminal work

called the signaling pathway impact analysis (SPIA) by Tarca et al.

(2009) and the current trend is to focus on locating perturbed sub-

pathways, rather than entire pathways. Tools to determine per-

turbed pathways include DEGraph (Jacob et al., 2010), DEAP

(Haynes et al., 2013) and Clipper (Martini et al., 2013).

1.2 Methods for analyzing time series transcriptome

data
Considering the time dimension, identifying perturbed (sub-)path-

ways in the time-series transcriptome data is much more challeng-

ing. Due to the computational challenges, many computational

methods for the time series analysis do not utilize pathway informa-

tion directly. The widely used time-series analysis methods employ a

strategy of finding DEGs by fitting the gene expression data to a

model with distributional assumption such as Gaussian or negative

binomial distribution. By utilizing statistical methods such as

ANOVA (Park et al., 2003), several tools and algorithms (Bar-

Joseph et al., 2003; Conesa et al., 2006; Storey et al., 2005) have

been developed for detecting DEG from time-series microarray data.

With the emergence of next-generation sequencing data, DEG detec-

tion algorithms utilized Gaussian process (€Aijö et al., 2014) or hid-

den Markov models (Leng et al., 2015) to identify DEGs from time

series RNA-seq data. Instead of identifying DEGs, clustering

approaches have been developed to determine a set of genes with a

similar pattern of gene expression profile. Clustering expression

data in the gene-time dimension is performed by considering correl-

ation (Wen et al., 1998) or by model-based clustering methods

(Ramoni et al., 2002; Schliep et al., 2003). Recent methods such as

(Zhao and Zaki, 2005) are further developed to handle data with

higher dimensions such as gene-sample-time. The main limitation of

DEG or clustering approaches is that a list of DEGs or genes in clus-

ters requires further analysis in terms of curated knowledge such as

KEGG pathways and the selection of significant pathways is usually

determined by simple statistical methods such as Fisher’s exact test.

In this way, analysis process does not consider curated knowledge

such as relationships among genes, e.g. those in KEGG pathways, to

determine how genes interact over time. More advanced methods

consider relationship between genes or between time points (e.g. dy-

namic Bayesian network) to infer the gene regulatory network

(GRN) (Honkela et al., 2010) or protein–protein interaction net-

work (PIN) (Kim et al., 2014b). These methods, although powerful,

are limited to the analysis of small size gene sets (Kim et al., 2014a).

1.3 Methods for the pathway based analysis of time

series data
To incorporate pathway information for the time series data ana-

lysis, pathways are modeled as graphs. Two recent graph-based

pathway analysis algorithms for time-series data are TRAP (Jo et al.,

2014) and TimeClip (Martini et al., 2014). TRAP (Jo et al., 2014)

leverages the technique similar to SPIA (Tarca et al., 2009) to detect

pathways with a significant expression propagation along the path-

way graph in the time order. TimeClip (Martini et al., 2014) em-

ploys a junction tree algorithm to form sub-pathways using the

same method used in Clipper (Martini et al., 2013) to determine sig-

nificant sub-pathways in terms of the first principal component

from the gene expression data. Although these algorithms produce a

list of biological processes with significant changes over time, few

attempts have been made to locate the regulator that initiates the

pathway perturbation.

1.4 Methods for identifying regulators while analyzing

time series data
DREM (Ernst et al., 2007) is an example of incorporating regulators

in clustering analysis. It estimates transcription factors (TFs) regulat-

ing a cluster by Input–Output Hidden Markov Model, but it is hard

to discover biological implication from the result due to the clusters

with multiple or overlapping biological functions. Master regulator

analysis (MRA) (Carro et al., 2010) introduces a method to rank

TFs in the GRN, but not considering dynamic expression profiles of

genes.

1.5 Motivation
Analysis of time-series omics data is very difficult and there are only

a few tools available (Spies and Ciaudo, 2015). In addition, it is de-

sirable to identify regulators such as TF that are likely to induce

changes in transcriptome over time. However, on top of the com-

plexity of analyzing time series data, considering regulators such as

TF makes the complexity of the time series data analysis task dra-

matically high. In this study, we propose a novel bioinformatics

method for analyzing time series omics data to identify both per-

turbed pathways and regulating TFs. Two main ideas are:

i. We start the analysis by identifying perturbed pathways in com-

parison of control vs. treatment group and then focusing on TFs

that are relevant to the perturbed pathways. In this way, much

smaller number of TFs and pathways are considered, thus the

complexity of the analysis task is significantly reduced.

ii. To systematically analyze the effect of TFs over time, we adopt

and further develop the influence maximization technique in the

bounded time.

With these two main ideas, we designed and implemented a

time-series analysis method of finding TFs regulating perturbed sub-

pathways (TimeTP). The key properties of TimeTP are as follows.

(i) TimeTP identifies perturbed sub-pathways that propagate their

expression levels along time and also identifies TFs triggering that

pathway perturbation by our four-step approach. (ii) TimeTP

adopts two well-established computational methods, cross-

correlation (Ianniello, 1982) and influence maximization (Kempe

et al., 2003), from the fields of signal processing and social network.

(iii) The novel framework of TimeTP produces the TF-Pathway map

in time clock to trace the pathway perturbation triggered from TF to

pathway. As well as the effective visualization of TF-Pathway map,

TimeTP provides user-friendly interface by handling a diverse range

of input data in terms of type of dataset (RNA-seq or microarray)

and type of condition (single time-series or control-treatment).

The rest of the article is organized as follows. The process of per-

turbed sub-pathway mining in TimeTP will be described in Sections

2.1–2.3. Sections 2.4 and 2.5 explain the time bounded network

construction and the influence maximization algorithm for finding

TFs. TimeTP is tested by using the biological dataset and the result

is compared with other pathway/sub-pathway mining tools and

regulator analysis algorithms in Section 3.

2 Methods

The overview of the proposed method is depicted in Figure 1. To

model pathways over time, we created an augmented pathway graph

where a node is a gene augmented with a differential expression vec-

tor as an attribute of a node. By measuring cross-correlation, we de-

termine a set of perturbed sub-pathways containing only genes that

are connected to propagate expression changes over time. The next
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major task is to determine TFs regulating the perturbed pathways.

In general, TFs are not included in pathways, thus we used GRN to

establish orthogonal relationship between regulators and pathways.

Identification of regulating TFs requires to estimate the system-wide

effect of a TF. To estimate the system-wide influence of a TF, we

first augment GRN with PIN. As a result, we have a network of

GRN and PIN combined and the network is big enough to have con-

nections from TF to genes in the pathways. To evaluate of the influ-

ence of TF on the perturbed pathways, we used a labeled influence

maximization algorithm.

2.1 Differential expression vector
Each pathway in the curated pathway database such as KEGG can

be represented as a directed graph G ¼ ðN;EÞ. Genes and their

interactions correspond to nodes and edges in the pathway graph,

respectively. TimeTP assigns a time vector ~v for each node, repre-

senting the differentially expressed time points as 1(overexpressed)

or �1(underexpressed) and otherwise as 0. For example, if data has

T number of measured time points and has control and treatment

conditions to compare, either �1, 1 or 0, will be assigned for each

time point in a differential expression vector ~v of length T. If the

data are generated in a single condition, the differential expression

can be tested between two time points (e.g. relative to the first time

point or adjacent) resulting in a vector of length T � 1. Whether

two groups of samples are differentially expressed is determined by

Limma (Smyth, 2005) for microarray or by DESeq2 (Love et al.,

2014) for RNA-seq data.

2.2 Perturbed sub-pathway with delay-bounded

expression propagation
For each pathway, TimeTP searches for the perturbed sub-pathway

by choosing valid edges from the edges in the original pathway in-

formation. The validity of edges is determined by looking at the rela-

tionship between differential expression vectors of two nodes. We

propose two criteria for edges in the perturbed sub-pathway. First,

every edge of the perturbed sub-pathway is required to propagate

the differential expression pattern along the given direction. Assume

that an edge N1 ! N2 from a node N1 to a node N2 has differential

expression vectors ~v1 and ~v2 , respectively. The direction of propaga-

tion and the number of delayed time points for a pair of expression

vectors can be approximated by cross-correlation, which is a meas-

ure of similarity of two time-series in signal processing. Cross-

correlation of two vectors ~v1 and ~v2 is defined as

ð~v1 ? ~v2 ÞðnÞ ¼
X1

t¼�1 ~v1 ðtÞ~v2 ðt þ nÞ (1)

where~vðtÞ ¼ 0 for t � 0 or t > T (This happens at the preceding or

trailing entries of two vectors). When the two vectors overlap most

with n delay, cross-correlation is maximized with a parameter n.

Therefore, TimeTP finds the shortest possible delay between two

differential expression vectors dð~v1 ; ~v2 Þ where cross-correlation be-

tween two vectors is maximized.

dð~v1 ; ~v2 Þ ¼ arg max
n
ð~v1 ? ~v2 ÞðnÞ (2)

When dð~v1 ; ~v2 Þ of a directed edge (N1, N2) is negative, it implies

that the direction of the expression propagation is opposite to the

given direction. In this case, the edge is considered as invalid and

excluded from the perturbed sub-pathway. Next, a threshold for

delay is used to filter out edges with a long positive delay, i.e. bigger

than a user defined threshold value, so that the expression propaga-

tion in the sub-pathway is bounded within a time period that the

user allows. Figure 2 shows the examples of delay analysis, where

the edge in Figure 2a has a one time point of delay with maximum

cross-correlation 2. Figure 2b is an example of an invalid edge

due to the negative delay. Perturbed sub-pathway with one edge is

disregarded. Since TimeTP determines the best delay between two

genes, different delays can be assigned to different gene pairs, which

can reflect the different speed of signaling steps in the biological

pathways.

Once perturbed sub-pathways with bounded propagation is

determined from each pathway, source nodes with no incoming

edge in the sub-pathways are labeled as targets in the time bounded

network. Node weights of labeled source nodes are set as the num-

ber of nodes in the sub-pathway and for the other nodes not labeled,

zero or negative numbers are assigned so that no profit can be

Fig. 1. Overview of TimeTP analysis workflow. TimeTP uses an integrated network of GRN and PIN. Each biological pathway is analyzed by TimeTP and the per-

turbed sub-pathways are identified with the time-delay-bounded propagation of gene expression. The starting point or a gene of each perturbed sub-pathway is

mapped to the integrated network and then regulators of the perturbed sub-pathways are identified by the labeled influence maximization algorithm
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earned from non-labeled nodes. This profit assignment scheme is

used to define and rank regulators.

2.3 P-value for perturbed sub-pathway
P-value of the perturbed sub-pathway is estimated by the permuta-

tion test. The null hypothesis is that perturbed sub-pathways deter-

mined by TimeTP are randomly generated, without considering the

order of genes and their expression patterns in the pathway. To test

the hypothesis, differential expression vector for each gene is ran-

domly re-assigned from the vector set of the whole genes and sub-

pathways are sampled according to the same procedure described in

Section 2.2. Given that the ratio of DEGs is not aberrantly high,

sampled sub-pathways determined from the randomly assigned

expression vectors are most likely to have a short path length.

Cross-correlation of each edge is likely to be small as well due to the

short overlap of two expression vectors. Therefore, a sum of the

cross-correlation of every node pair in the sampled sub-pathway is

chosen to be a pathway-level statistic and the p-value for a per-

turbed sub-pathway is derived as the probability of having higher

statistics in the sample distribution.

2.4 Time bounded network construction
To search for upstream regulators of perturbed sub-pathways, an

integrated network of GRN and PIN is constructed. Interaction in-

formation between TF and target genes (TGs) in GRN is derived

from HTRIdb (Bovolenta et al., 2012) that provides experimentally

verified or computationally predicted TF-DNA-binding sites from

six public databases and literature (Ernst et al., 2010). Protein–pro-

tein interaction for PIN is from STRING (Szklarczyk et al., 2014)

database. Integrated network of GRN and PIN is used to determine

TFs that have the most overall effect on perturbed sub-pathways

and to connect the TFs and perturbed sub-pathways. Two expres-

sion vectors that do not preserve the time order are filtered out so

that expression propagation along the connecting path is always

valid in terms of time clock, as described in Section 2.2. This process

produces a time bounded network. As for undirected edges of PIN,

delay of Equation 2 is calculated for both directions and directed

edge with nonnegative delay remains.

2.5 Labeled influence maximization for TF detection
The main goal of influence maximization is to locate a set of seed

nodes in the network that could maximize the spread of influence

(Kempe et al., 2003) and the technique has been successfully used to

select marketing targets in the social network. A modified version

called the labeled influence maximization developed by Li et al.

(2011) exploits profit values of nodes to prefer seed nodes that have

an influence on a specific node set. TimeTP utilizes a greedy version

of the labeled influence maximization algorithm to the time

bounded network with a few modifications (see below) so that influ-

ence of a gene on the perturbed sub-pathways are properly modeled.

Labeled influence maximization algorithm (Algorithm 1) used in

TimeTP is intended to determine the most influential k regulators in

the time bounded network G, especially TFs targeting the starting

nodes of the perturbed sub-pathways. It first initializes a set of seed

nodes S and a set of nodes that can be influenced by seed nodes

SeedInfSet as an empty set. For every TF t not selected as a seed node

and not influenced by the current seed nodes, its influence Inf ½t� is

quantified by the average profit values of nodes that the TF can

reach. The same procedure is repeated for Round times creating a

subgraph G0 from G according to the edge weight between 0 and 1

regarded as a probability of an edge (line 4–9). Probability of edges

is derived from the confidence score of STRING and 1 for GRN

edges. After the iteration, a TF with the maximum influence is

included in the seed set and SeedInfSet is updated as well.

3 Results

TimeTP is tested with a genome-wide RNA-seq dataset of non-

transformed human breast epithelial cells MCF10a starved over-

night and stimulated with 10 ng/ml EGF for 15, 40, 90, 180 and 300

min (Kiselev et al., 2015), in WT and PIK3CA knock-in samples. To

test the power of influence maximization, we need to choose data-

sets with many time points and also with sequencing data to accur-

ately model influence of TFs. Note that many datasets with only

Fig. 2. Cross-correlation examples. (a) Cross-correlation of two vectors ~vA

and ~vB is maximized with the delay 1. The directed edge is valid and remains

in the graph, because the estimated delay is non-negative. (b) Cross-correl-

ation of two vectors ~vA and ~vB is maximized with the delay �2 or �3 which in-

dicates the optimal direction of the edge is opposite. The edge is invalid and

removed from the graph

Algorithm 1. Greedy Labeled IM (G, k)

1: Initialize S ¼ /; SeedInfSet ¼ /; T ¼ tjt 2 TFSet and

Round¼1000

2: for n 1;k do

3: Set Inf ½t� ¼0, for all t 2 T.

4: for i 1;Round do

5: Derive G0 by removing each edge from G according

to the edge probability 1� p.

6: for each node t 2 TnSeedInfSet do

7: Inf ½t�  
Inf ½t� þ

X

v2InfSetðt;G0 Þ
ProfitðvÞ=lenðInfSetðt;G0ÞÞ

8: end for

9: end for

10: newSeed t 2 T with maximum Inf ½t�=Round

11: S S [ fnewSeedg
12: SeedInfSet SeedInfSet [ InfSetðnewSeedÞ
13: T  TnfnewSeedg
14: end for
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two time points are not meaningful for this analysis. In addition, to

test the performance of the proposed approach, data should have

replicates to determine differential expression accurately and the

interval between time points should be short to model signaling ef-

fects. The MCF10a data were the only one to meet the criteria.

PIK3CA knock-in samples (referred to as ‘PIK3CA H1047R’)

contains a mutated gene that encodes the p110a catalytic

subunit (PIK3CA). PIK3CA is a component gene of Class IA

phosphoinositide-3-kinases (PI3Ks) and the mutated form of PIK3CA

is expected to exhibit chronic activation of phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) signaling. PI3K/PIP3 signaling pathway

plays a key role in cell growth and migration. In addition, several

driver mutations in PI3K/PIP3 pathway have been found in multiple

types of cancer. Especially, oncogenic mutations of PIK3CA gene are

discovered in up to 45% of human breast cancer samples (Network

et al., 2012). Thus, this experiment is designed to trigger long-term

activation of PIP3 signaling by the modification of PIK3CA and track

its downstream effect. Analysis result of TimeTP is composed of the

TF-Pathway map in time clock and the whole list of perturbed path-

ways as shown in Figure 3 and Table 1. Javascript library of

Cytoscape is used for TF-Pathway map visualization (Shannon et al.,

2003).

3.1 TF-Pathway map in time clock
Figure 3 is the map of influence path from the TFs selected by the in-

fluence maximization algorithm to perturbed sub-pathways.

Pathways perturbed but not affected by TFs are excluded in the TF-

Pathway map. For example, TimeTP detected perturbation of the

PI3K-Akt signaling pathway (Table 1) but it was not included the

TF-Pathway map in time clock (Fig. 3) because PI3K-Akt signaling

pathway is directly activated by the modification of PIK3CA in the

experiment.

As in Figure 3, FOXO4 is on the top of the TF-Pathway map and

propagates its effect to all of the downstream pathways and FoxO

signaling pathway itself. The forkhead box O (FoxO) TFs are

known as targets of the serine/threonine protein kinases (PKB)/Akt

(Zhang et al., 2011) that is directly affected by PIP3 generation

(Kiselev et al., 2015). Specifically, Akt inhibits FoxOs and causes

consequent inactivation of FoxO signaling pathway, which can be

clearly shown in the TF-Pathway map of PIK3CA H1047R samples.

Wnt signaling pathway is one of the activated pathways in PIK3CA

H1047R samples. TimeTP estimated that differential expression of

the TF FOXO4 and SREBF1 in the early time points (1–3) is propa-

gated through the path and activated Wnt signaling. Although the

first gene GSK3B of the perturbed sub-pathway is down-regulated,

consequently it made CTNNB1 that encodes b-catenin activated to

further transduce the signal to other cytoplasmic regions or into the

nucleus. Interaction of FoxOs with b-catenin has an inhibitory effect

on b-catenin activity (Essers et al., 2005), while TimeTP inferred a

devious route that has the same consequence. As for the cooperation

between PI3K-Akt signaling and Wnt signaling, several studies pro-

vide the logical underpinnings (Perry et al., 2011; Vadlakonda et al.,

2013).

The activation process of ErbB signaling pathway and Regulation

of actin cytoskeleton is more complicated. Albeit both perturbed sub-

pathways themselves are seemingly down-regulated first, the path

from TF to the first genes of the sub-pathway (ACTB, ACTG1,

HBEGF) is activated and finally three genes are activated in the last

time point, forecasting the late activation of two pathways beyond the

observed time points. As in the previous studies (Hynes and Lane,

2005), ErbB signaling pathway encompasses the PI3K-Akt signaling

pathway. The perturbed sub-pathway that TimeTP detected in the

ErbB signaling pathway includes the cell surface receptor EGFR,

which is the upstream part of PI3K-Akt pathway. Taken together, the

effect of Akt signaling activation attributes the delayed activation of

the ErbB signaling, which can be the positive feedback loop of the

Akt signaling pathway. Detection of a transcriptional feedback loop

of PIP3 signaling is the major contribution of the original article of

the dataset (Kiselev et al., 2015) and the analysis result of TimeTP can

be a parallel contribution of the study. Moreover, TF-Pathway path

to the Regulation of actin cytoskeleton pathway found in TimeTP re-

sult suggests for further research in addition to the previously sug-

gested path (Jiménez et al., 2000).

Fc gamma-R mediated phagocytosis is one of the activated path-

ways in PIK3CA knock-in samples. Mammary epithelial cells can

act as phagocytes (Monks et al., 2005). During phagocytosis, ligated

Fc gamma-R on plasma membranes induces recruitment of PI3K

and increased synthesis of PIP3 (Zhang et al., 2010). TimeTP found

the perturbation of phagocytosis pathway starting from PI3K recep-

tor and its downstream genes. One of the TFs expected to trigger the

perturbation is ATF3 (Fig. 3) down-regulated in the early time

points, which is a key regulator that inhibits the immune response of

macrophage (Gilchrist et al., 2006). Our analysis correctly suggested

that ATF3 would function similarly in MCF10a cells. TimeTP de-

tected the same sub-pathway in Oocyte meiosis and Oxytoxin sig-

naling. In both pathways, Calcium/calmodulin (CALM) signaling

pathway is included and its sub-pathway was found as perturbed.

Previous studies of mammary carcinoma cells report that calmodu-

lin mediates Akt activity (Coticchia et al., 2009; Deb et al., 2004),

suggesting that the increased PIP3 not only recruited Akt by itself

but also induced calmodulin-dependent activation of Akt signaling

pathway.

3.2 Comparison with existing pathway/regulator

analysis tools
Most of the pathway analysis tools assume that the expression value

for each gene follows the Gaussian distribution, which is not appro-

priate next generation sequencing data. Therefore, we selected four

representative tools without the Gaussian assumption in each class

of pathway analysis tools: DEAP(sub-pathway analysis),

timeClip(sub-pathway analysis, time-series), SPIA(pathway ana-

lysis), TRAP(pathway analysis, time-series). Samples of different

time points are treated as replicates in DEAP and SPIA that do not

perform time-series analysis, and WT samples are not used for

TimeClip that does not support control vs. treatment group analysis.

Table 1 shows a list of sub-pathways with significant expression

propagation from TimeTP analysis. DEAP and SPIA failed to choose

most of the pathways including PI3K-Akt signaling pathway that is

expected to be activated in PIK3CA H1047R samples, presumably

due to the disregard of time factor. timeClip and TRAP selected out

more significant (sub-)pathways, yet disregarded FoxO signaling

pathway and ErbB signaling pathway presumably pertaining to PIP3

signaling as described in Section 3.1. Pathways that were not de-

tected by TimeTP but by other (sub-)pathway analysis tools are

summarized in Supplementary Table 1. Relevance to PI3K was eval-

uated using a state of the art context-aware literature search tool,

BEST (http://best.korea.ac.kr/). Running times of the methods are

compared in Supplementary Table 3. Even though TimeTP performs

an additional step, that is, influence maximization, compared with

competing pathway analysis tools, overall running time of TimeTP

is similar to those of other pathway analysis tools. As for the sub-

pathway detection process of TimeTP, running time of TimeTP
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(408.862 s) is smaller than the average running time of other four

tools (849.077 s) and the overall process including the regulator

search by influence maximization takes similar time (906.767 s) in

average.

Two regulator analysis methods are compared with TimeTP.

MRA is a method for selecting and ranking TFs in GRN and DREM

is a tool for time-series clustering. WT samples are not used for

DREM that does not support control versus treatment analysis.

Table 2 is the list of master TFs selected from TimeTP, MRA and

DREM. TFs from TimeTP are regulators of the perturbed sub-

pathways chosen and ranked by the labeled influence maximization

algorithm. Among 16 TFs from the TimeTP result, USF1, TGIF1

and RREB1 are TFs expected to bind to strongly genes regulated in

the PI3K signaling-activated samples based on the motif activity

analysis in the original paper of the dataset, corroborating the cred-

ibility of TimeTP. MRA performs Fisher’s exact test to first confirm

the ratio of signature genes among its TGs and ranks TFs that passed

the test by the number of signature genes. To apply the same stand-

ard with TimeTP, TF-gene interaction information is extracted from

the same GRN and 18 genes that start the perturbation in each sub-

pathway are used as signature genes for MRA. However, only one

TF, SREBF1 that directly targets Wnt signaling pathway satisfied

the criteria of MRA. Distinct from the one-to-one mapping of a

MRA, the influence maximization algorithm rescued 15 TFs with in-

direct influence on targeted pathways in the network structure in

addition to SREBF1. Furthermore, TFs that target multiple path-

ways are prioritized higher than TFs with a single target. LMO2,

ATF3, FOXO4 and RFX1 in the Figure 3 are such examples. TFs

that do not target multiple pathways but are highly ranked have the

small number of downstream genes, thus the ratio of genes in the

perturbed pathway is relatively high among its downstream genes.

DREM performed time-series clustering and found three TFs differ-

ent from TimeTP or MRA, regulating one of the clusters

(Supplementary Figure S1). The three TFs target the same cluster

with 71 genes, but the cluster is not enriched with any KEGG path-

way by Fisher’s exact test (Supplementary Table S2).

4 Conclusion

We presented TimeTP, a four-step approach to locate perturbed

sub-pathways and their regulators from time-series transcriptome

data. TimeTP has two novel contributions: estimation of delay be-

tween two expression vectors that leads to the construction of a time

bounded sub-graph, and introduction of the influence maximization

technique into the analysis of times series data in search of TFs

that are involved in perturbed pathways. TimeTP is the first

Table 1. Significantly perturbed pathways in PIK3CA H1047R samples found by TimeTP and comparison with other representative pathway

tools (þ: found, �: not found)

Pathway Pathway name DEG

P-value

Path Path

P-value

Combined

P-value

Sub-pathway Pathway References

non-TS TS non-TS TS

DEAP TimeClip SPIA TRAP

hsa04012 ErbB signaling pathway 0.000 Path1 0.000 0.000 � � � � Hynes and Lane (2005)

hsa04810 Regulation of actin

cytoskelet. . .

0.000 Path1 0.001 0.000 � � � � Jiménez et al. (2000)

Path2 0.005 0.000

hsa04520 Adherens junction 0.000 Path1 0.020 0.000 � � � � Berglund et al. (2013)

hsa04310 Wnt signaling pathway 0.001 Path1 0.021 0.000 � þ � � Essers et al. (2005),

Perry et al. (2011),

Vadlakonda et al. (2013)

hsa04510 Focal adhesion 0.000 Path1 0.024 0.000 � þ þ þ
hsa04068 FoxO signaling pathway 0.004 Path1 0.027 0.000 � � � � Zhang et al. (2011)

hsa04666 Fc gamma R-mediated

phagocytos. . .

0.003 Path1 0.019 0.001 � � � � Zhang et al. (2010)

hsa04151 PI3K-Akt signaling

pathway

0.032 Path1 0.005 0.001 � þ � þ Kiselev et al. (2015)

hsa04114 Oocyte meiosis 0.032 Path1 0.020 0.005 � � � � Coticchia et al. (2009)

hsa04921 Oxytocin signaling

pathway

0.032 Path1 0.023 0.006 � � � þ Coticchia et al. (2009)

TS: time-series.

Pathways with DEG P-value and sub-path P-value below 0.05 are shown.

Table 2. TFs found by TimeTP and other tools. TFs in boldface are

the intersection with TFs selected as significant in the original

article

TimeTP MRA DREM

Rank TF Rank TF TF

1 NKX3-1 1 SREBF1 FOXF2, NF1, SRF

2 LMO2

3 ATF3

4 FOXA1

5 CEBPA

6 FOXO4

7 FOXL1

8 RFX1

9 TGIF1

10 SREBF1

11 FOXO3

12 USF2

13 USF1

14 GTF2A1

15 RORA

16 RREB1

TFs from DREM do not have ranks.
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sub-pathway mining tool for time-series data that analyzes and visu-

alizes the explicit expression pattern, providing a holistic picture of

the pathway perturbation dynamics. In particular, TF-Pathway map

in time clock enables user to navigate the perturbation propagation

route along time.

Analysis of the PIK3CA knock-in dataset shows that TimeTP

can capture the perturbation in PI3K-Akt signaling, confirming the

main objective of the biological experiment and re-producing conse-

quent changes in the downstream pathways. Especially, FOXO4 is

expected to be the master regulator of the perturbation of five path-

ways in TF-Pathway map, which is in an agreement with the fact

that FoxO TFs are the known targets of Akt. As well as the perturb-

ation in FoxO and Wnt signaling pathway directly affected by

FoxOs, TimeTP suggests the late activation of ErbB pathway that

highlights the same assumption of previous study, a positive feed-

back loop of the Akt signaling. In addition, TFs predicted and

ranked by TimeTP include three important TFs from the original

article of the dataset while MRA or DREM failed to discover any

TF in the list.

TimeTP supports various types of dataset with flexible param-

eters that can be adjusted for the search of regulators. We believe

that TimeTP will be a very valuable tool to identify both perturbed

pathways and their regulators, especially in analysis of time series

sequencing data.
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