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ABSTRACT Enterobacter cloacae is an opportunistic pathogen that causes hospital-
acquired infections in immunocompromised patients. Here, we describe vB_EclM_
CIP9, a novel Enterobacter phage that infects a multidrug-resistant isolate of E. cloa-
cae. Phage vB_EclM_CIP9 is a myovirus that has a 174,924-bp genome, with 296
predicted open reading frames.

Most clinically relevant Enterobacter cloacae isolates are resistant to select �-lactam
antibiotics, including ampicillin and amoxicillin. Antibiotic resistance limits treat-

ment options to control E. cloacae infections in immunocompromised patients and can
lead to severe health problems such as bacteremia, endocarditis, and/or death (1, 2).
Lytic bacteriophages hold a potential solution to the problem posed by antibiotic
resistance (3). The objective of this study was to characterize the phage vB_EclM_CIP9,
with specificity against a clinical isolate of E. cloacae.

Enterobacter phage vB_EclM_CIP9 was isolated in 2017, from a municipal waste-
water sample, against a clinical E. cloacae isolate. Briefly, E. cloacae was grown on
tryptic soy broth or agar (Becton, Dickinson and Company) at 37°C with aeration. The
wastewater sample was centrifuged and filtered. Ten milliliters of the clarified waste-
water was mixed with 200 �l of E. cloacae grown to an optical density (at 600 nm) of
0.7, and the mixture was incubated overnight to enrich for E. cloacae-specific phages
(4). Subsequent plaque purification and phage propagation were conducted by the
soft-agar overlay method (5, 6). High-titered phage (�108 PFU/ml) was purified with
20% sucrose (7) and visualized by electron microscopy (Bioimaging Facility, University
of British Columbia, Vancouver, British Columbia, Canada). Phage vB_EclM_CIP9 has a
Myoviridae morphology, with an average head size of 132 � 2 nm and tail size of 119 �

1 nm, as measured from 3 independent images (Fig. 1).
The genomic contents from plaque-purified phage particles were extracted

(PureLink viral RNA/DNA minikit; Thermo Fisher Scientific, Ontario, Canada), indepen-
dently treated with DNase I (1 �g/ml) and RNase (1 �g/ml) (New England BioLabs,
Ontario, Canada), and analyzed by agarose gel electrophoresis to determine the
identity of the nucleic acids in the sample. The genomic DNA was prepared for
sequencing (TruSeq Nano DNA sample preparation kit; Illumina, San Diego, CA) with
the MiSeq 2000 platform (2 � 300-bp reads using MiSeq reagent kit v3 chemistry;
Illumina) from an average fragment length of 500 bp (National Research Council
Canada, Saskatoon, Saskatchewan, Canada). After quality control with FastQC v0.11.8
(8), the 1,585,393 paired-end reads were de novo assembled (Geneious Prime v2019.2.3)
to yield a contig of 174,924 bp (53-fold coverage), with a GC content of 39.9%. The
genome was annotated with Rapid Annotations using Subsystems Technology (RAST)
v2.0 (9) and Phage Search Tool Enhanced Release (PHASTER) (10). All predicted open
reading frames (ORFs) were subjected to a Basic Local Alignment Search Tool (BLAST)
search (11). All software programs used in this study were run with default parameters.

The vB_EclM_CIP9 genome is circularly permuted and terminally redundant (Phag-
eTerm) (12). There are 296 predicted ORFs, with 253 on one strand and the remaining
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43 on the opposite strand. BLAST (11) analysis revealed 114 putative ORFs coding for
common phage gene products with assigned functions. No ORFs were found to be
associated with virulence factors, antibiotic resistance genes, toxins, or integration
elements (PHASTER) (10). When the genome of vB_EclM_CIP9 was compared with
complete phage genomes with BLAST (11), the results indicated that the genome of
vB_EclM_CIP9 exhibited a nucleotide alignment of only 74% and a nucleotide identity
of 81.15%, compared with the genome of the Edwardsiella phage PEi20 (GenBank
accession number NC_028683). Similarly, the genome of vB_EclM_CIP9 exhibited a
nucleotide alignment of only 73% and a nucleotide identity of 81.13%, compared with
the genome of the Edwardsiella phage PEi26 (GenBank accession number AP014715.1).

Data availability. The genome sequence and associated data for phage vB_EclM_CIP9
were deposited under GenBank accession number MN882610, BioProject accession
number PRJNA608533, SRA accession number SRR11178671, and BioSample accession
number SAMN14177620.
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