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One Zn-Nd complex [Zn2Nd4L2(OAc)10(OH)2(CH3OH)2] (1) was synthesized from Schiff

base ligand bis(3-methoxysalicylidene)ethylene-1,2-phenylenediamine (H2L). 1 shows

nanoscale rectangular structure with sizes of about 0.8× 1.1× 2.8 nm. 1 exhibits typical

near-infrared luminescence of Nd(III) under the excitation of UV-visible light. Further study

shows that the complex displays luminescent response behavior to anions and nitro

explosives, especially with high sensitivity to H2PO2− and 2,4,6-trinitrophenol.

Keywords: lanthanide complex, Schiff base ligand, nanoscale structure, NIR luminescence, luminescent sensing

INTRODUCTION

Construction of heterometallic d-f nanoclusters has received much interest during recent years
because of their unique chemical properties (Peng et al., 2012; Wang et al., 2013; Yang et al., 2014;
Andruh, 2015; Wen et al., 2019). Fluorescent response to ions and small molecules has received
great attention because of the potential application in many areas such as medicine, biology, and
environment (Jankolovits et al., 2011; Sun et al., 2015; Qi et al., 2017). As we know, luminescent
lanthanide complexes can show emissions in both visible and near-infrared (NIR) ranges (900–
1,600 nm) with sharp emission bands, large Stokes shifts, and long lifetimes (Hu et al., 2017; Ning
et al., 2018). At present, many visible luminescent complexes with Tb(III) and Eu(III) ions have
been used to detect analytes (Guo et al., 2011; Liu et al., 2013; Shi et al., 2015). However, compared
with NIR fluorescent probes based on organic fluorophores (Yuan et al., 2013; Guo et al., 2014),
very few NIR luminescent lanthanide complexes with Yb(III), Nd(III), and Er(III) ions have been
reported to be used as sensors for the detection (Shi et al., 2019).

Phosphates play a key role in biological energy storage and signal transduction, and
nitro explosives such as 2,4,6-trinitrophenol (TNP) are very common ingredients of
industrial explosives. Thus, many efforts have been made to design fluorescent sensors for
phosphates (Yang et al., 2015; Sedaghat et al., 2019) and nitro explosives (Nagarkar et al.,
2014; Liu et al., 2017). Our current research interests are in the design of lanthanide-
based complexes with luminescent response to various ions and explosives (Jiang et al.,
2018; Shi et al., 2019; Liu et al., 2020). Thus, we report here the synthesis and NIR
luminescence properties of a Zn-Nd complex [Zn2Nd4L2(OAc)10(OH)2(CH3OH)2] (1) with
Schiff base ligand bis(3-methoxysalicylidene)ethylene-1,2-phenylenediamine (H2L, Scheme 1).
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SCHEME 1 | Schiff base ligand H2L.

FIGURE 1 | The X-ray crystal structure of 1 (Nd3+: blue, Zn2+: green).

1 has nanoscale rectangular structure with diameters of 0.8 ×

1.1 × 2.8 nm. The complex shows interesting NIR luminescent
response behavior to anions and explosives, especially to H2PO2−

and 2,4,6-trinitrophenol (TNP) at ppm level.

EXPERIMENTAL SECTION

Preparation of
[Zn2Nd4L2(OAc)10(OH)2(CH3OH)2] (1)
Zn(OAc)2·2H2O (0.30 mmol, 0.0658 g), NdCl3·6H2O
(0.60mmol, 0.2154 g), and H2L (0.30 mmol, 0.0324 g) were
dissolved in 50mL MeOH at room temperature, and a solution
of triethylamine in EtOH (1.0 mol/L, 1mL) was then added.
The mixture was stirred and heated under reflux for 30min and
then filtered. The yellow crystalline product of 1 was obtained
by the slow diffusion of diethyl ether into the filtrate at room
temperature after 1 month. The crystalline product was collected
by filtering and then dried at 120◦C in the oven for 2 h. Yield:
0.0981 g (25 %). m. p. > 200◦C (dec.). Elemental analysis: found:
C, 32.91; H, 4.12; N, 2.50%. Calc. for C72H104Zn4Nd4N4O40Cl4
([Zn2Nd4L2(OAc)10(OH)2(CH3OH)2]·[ZnCl2(H2O)CH3OH)]):
C, 32.68; H, 3.96; N, 2.12%. IR (CH3CN, cm−1): 1,703 (s), 1,551
(s), 1,484 (s), 1,289 (s), 1,239 (s), 1,193 (s), 1,072 (m), 963 (s),
and 845 (s).

X-Ray Crystallography
A Smart APEX CCD diffractometer was used to collect the X-ray
data of 1 at 190K. The structure was solved by the direct method

(SHELX 97 program) (Sheldrick, 1997). Non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were included in
the structure factor calculation but not refined. See http://www.
rsc.org/suppdata/cc/ for the crystallographic data of 1 in CIF
format (CCDC no. 1971956). The selected bond lengths and
angles for the structure of 1 are listed in Supplementary Table 1.

For 1: C72H104Zn4Nd4N4O40Cl4, triclinic, space group P-1,
a= 9.6222(19), b = 14.771(3), c = 18.303(4) Å, α = 104.25(3)◦,
β = 98.18(3)◦, γ = 103.42(3)◦, V = 2,397.0(8) Å3, Z = 1,
Dc= 1.833 g cm−3, µ(Mo-Kα) = 3.305 mm−1, F(000) = 1,312,
T = 190K. R1 = 0.0731, wR2 = 0.1934, GOF= 1.036.

RESULTS AND DISCUSSION

Synthesis and Crystal Structure of the
Complex
The Schiff-base ligand H2L was prepared according to the
literature report (Lam et al., 1996; Liu et al., 2020). For the
synthesis of d-f complexes, the proportion of raw materials
in the reaction may affect the composition of the product.
Reaction of H2L with Zn(OAc)2·2H2O and NdCl3·6H2O in a
molar ratio of 1:1:2 gave 1, in which the ratio of L2−:Zn2+:Nd3+

is 1:1:2. The slow diffusion of diethyl ether into the reaction
solution led to the formation of yellow crystalline product of
1. This diffusion way helps to produce pure product of 1, but
results in the low yield (25%), because there are still a large
number of product in the mother solution. In the crystalline solid
product, zinc chloride ([ZnCl2(H2O)CH3OH)]) coexists with the
complex. The crystal structure of 1 is shown in Figure 1. It is
centrosymmetric with two equivalent ZnNd2L moieties linked
by two OAc− anions. The molecular dimensions of 1 are about
0.8 × 1.1 × 2.8 nm. In the ZnNd2L moiety, Zn2+ ion exhibits a
square pyramidal geometry, coordinated with the O2N2 cavity of
L2−. The coordination number of Nd3+ ions is nine, with a single
cap square antiprism geometry. The L2− ligand is coordinated
with metal ions using two nitrogen and two oxygen atoms. In
1, the average distance between neighboring Nd3+ ions is 4.088
Å. The bond lengths of Zn-N, Zn-O, and Nd-O are 2.036–2.047,
1.994–2.012, and 2.314–2.679 Å, respectively.

Because of the volatilization of solvent molecules in the
product, the complex loses about 5% of the weight when heated
before 100◦C (Supplementary Figure 2, thermogravimetric
analysis). It is stable until the heating temperature is about
200◦C. Molar conductivity study indicates that 1 is neutral in
CH3CN, in agreement with its crystal structure. This suggests
that 1 remains its unique molecular structure in solution.

Photophysical Properties and Response to
Analytes
The free H2L shows UV-visible (UV-vis) absorption bands
originated from the π − π∗ transition, which are red-shifted
in 1 due to the perturbation of metal ions to the transition
(Figure 2). Metal organometallic chromophores with Zn(II) ion
in 1 may efficiently transfer energy to lanthanide ions and
sensitize lanthanide luminescence (“antenna effect”) (Xu et al.,
2010). Thus, excited by ligand-centered absorption bands, 1

Frontiers in Chemistry | www.frontiersin.org 2 October 2020 | Volume 8 | Article 536907

http://www.rsc.org/suppdata/cc/
http://www.rsc.org/suppdata/cc/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. Luminescent Nanoscale Zn(II)-Nd(III) Complex

FIGURE 2 | UV-visible spectra of the free ligand H2L and complex 1 at 298K.

FIGURE 3 | Excitation (λem = 1,054 nm) and emission (λex = 395 nm) spectra

of 1 (50µM) in CH3CN at 298K.

shows typical NIR luminescence of Nd3+ (4F3/2 →
4Ij/2

transitions, j = 9, 11, and 13), and the most intense line is at
1,054 nm (4F3/2 →

4I11/2) (Figure 3). The complex exhibits
broad ligand-centered excitation bands, indicating the ligand-to-
metal energy transfer (LMET) in 1. The NIR emission lifetime (τ )
and quantum yield (8em) of 1 in CH3CN are found to be 6.2 µs
and 0.8%, respectively.

The luminescent response of 1 toward anions H2PO2− ,
F−, CN−, OH−, SO4

2−, OAc−, Cl−, Br−, CrO4− , and
PF6− , and nitro explosives 2,4,6-trinitrophenol (TNP),
4-nitrochlorobenzene (4-NBC), 2-nitrophenol (2-NP),
nitrobenzene (NB), 4-nitrobenzaldehyde (4-NBAP), 4-
nitrotoluene (4-NT), 1,3-dinitrobenzene (1,3-DNB), and
4-nitrobenzyl chloride (4-NCB) (Supplementary Scheme 1) has
been studied in CH3CN. It was found that the addition of all
anions and explosives results in a quenching of the lanthanide
luminescence (Supplementary Figures 4, 5). It is noticeable
that the addition of H2PO2− and TNP causes a more rapid
decrease of the luminescence intensities than the addition of

FIGURE 4 | Lanthanide luminescent response of 1 (5µM) to H2PO2− anion in

CH3CN (λex = 395 nm).

FIGURE 5 | Lanthanide luminescent response of 1 (5µM) to TNP in CH3CN

(λex = 395 nm).

other anions and explosives (Figures 4, 5). For example, the
emission intensities at 1,054 nm of 1 are decreased more than
50% when the concentrations of added H2PO2− and TNP are
1.8 and 5.6µM, respectively, which are much lower than those
of other anions and explosives (Supplementary Figures 4, 5).
These results indicate that 1 shows high selectivity to H2PO2−

and TNP through lanthanide luminescent response.
The addition of anions and explosives with low

concentrations, such as <5µM for H2PO2− and TNP, results
in a linear luminescence quenching response of 1. Thus, the
luminescence quenching efficiencies (KSV ) of the complex to
these analytes can be calculated using Stern–Volmer (S-V)
equation KSV = (I0/I – 1)/[A] (Xiao et al., 2010). As shown in
Figures 6, 7, the KSV values of 1 to H2PO2− and TNP are 4.67
× 105 M−1 and 1.46 × 105 M−1, respectively, which are much
higher than other anions and explosives. The S–V plots of 1
can be explained by static and dynamic quenching models. The
static luminescence quenching is generally associated with the
formation of ground-state molecular associations upon addition
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FIGURE 6 | NIR emission quenching efficiencies of 1 to anions.

FIGURE 7 | NIR emission quenching efficiencies of 1 to explosives.

of the analytes, whereas the dynamic luminescence quenching
is under diffusion control, where collisions between analytes
and excited fluorophores result in deactivation of the excited
states. Basically, the formation of molecular associations in the
static quenching model cannot affect the emission lifetimes of
fluorophores, however, the collisions in dynamic luminescence
quenching may reduce the emission lifetimes. The luminescence
lifetimes of 1 are reduced to 4.1 and 5.2 µs with the addition of
1.8µM of H2PO2− and 5.6µM of TNP, respectively, indicating
the dominance of dynamic luminescence quenching in 1.

The selectivity of 1 to H2PO2− and TNP in the presence
of other anions and explosives was investigated. As shown in
Figures 8, 9, the existence of another anion and explosive with
the same concentration does not affect the high quenching
percentage of 1 to H2PO2− and TNP. These results indicate that 1
shows high selectivity to H2PO4− and TNP even in the presence
of other anions and explosives, respectively.

For luminescent lanthanide complexes, the LMET plays a key
role in the intensities of luminescence. The electronic structure
and excited state of the Schiff base ligand may be disturbed

FIGURE 8 | The luminescence quenching percentages of 1 (0.5µM) before

and after the addition of H2PO2− (5µM) in the presence of other anions (5µM)

in CH3CN.

FIGURE 9 | The luminescence quenching percentages of 1 (0.5µM) before

and after the addition of TNP (10µM) in the presence of other explosives

(10µM) in CH3CN.

by the added anions, resulting in the change of the LMET
process in 1 (Parker et al., 1998; Parker, 2000). In addition,
the possible intermolecular electron transfer from anions to
Schiff base ligands may also consume the excitation energy of
lanthanide ions and in turn decreases the luminescence of 1
(Guha and Saha, 2010). The intermolecular interaction between
the added anions and 1 is crucial to the lanthanide luminescent
response. The interaction between H2PO2− anion and 1 was
studied by UV-vis spectral titration (Liu et al., 2017). The red-
shift of the absorption bands of 1 indicates the formation of
interaction between the added H2PO2− anion and 1 (Figure 10).
It is noticeable that the addition of H2PO2− anion decreases the
absorption of 1 at the excitation wavelength (λex = 395 nm),
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FIGURE 10 | UV-visible spectra of 1 with the addition of H2PO2− anion at

298K.

SCHEME 2 | HOMO and LUMO energy levels for the free H2L and

selected explosives.

FIGURE 11 | UV-vis absorption spectra of explosives in CH3CN.

which is not advantageous for the Schiff base ligand to absorb
light energy and further decreases the lanthanide luminescence
(Feng et al., 2019).

Usually, the luminescence quenching of lanthanide complexes
arisen by the addition of nitro explosives can be explained
by photoinduced electron transfer mechanism (Li et al., 2013;
Nagarkar et al., 2013; Qin et al., 2015). According to the literature
(Xie et al., 2016), the approximate LUMO energy level of H2L in
1 is shown in Scheme 2, which is higher than those of explosives.
Thus, the excited electrons of the Schiff base ligand can transfer to
the LUMO orbitals of the explosives. TNP has the lowest LUMO
energy level among the explosives, which helps in the electron
transfer process. Meanwhile, the UV-vis spectra exhibit that TNP
has the highest molar absorption at λex = 395 nm, compared
with other explosives (Figure 11). This indicates that TNP may
compete with 1 for the excitation energy, resulting in the further
decrease of lanthanide luminescence.

CONCLUSIONS

In brief, one Zn-Nd complex 1 with dimensions of 0.8 × 1.1
× 2.8 nm was constructed from Schiff base ligand H2L. The
structure of 1 is determined by X-ray crystallography. 1 shows the
typical emission of Nd(III) under the excitation of UV-vis light.
The addition of anions and nitro explosives leads to a quenching
of the luminescence, with high sensitivity of 1 to H2PO2−

and TNP. UV-vis spectral titration confirms the formation of
interaction between H2PO2− anion and 1, and the addition of
H2PO2− anion decreases the absorption of 1 at the excitation
wavelength of lanthanide luminescence. TNP has the lowest
LUMO energy level among the added explosives. The addition
of TNP results in the competition of excitation energy between
the explosive and 1. Further investigations focused on the
construction and luminescent response properties of lanthanide-
based complexes are in progress.
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