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Abstract: HAX1 is a human protein with no known homologues or structural domains. Mutations in
the HAX1 gene cause severe congenital neutropenia through mechanisms that are poorly understood.
Previous studies reported the RNA-binding capacity of HAX1, but the role of this binding in physiol-
ogy and pathology remains unexplained. Here, we report the transcriptome-wide characterization
of HAX1 RNA targets using RIP-seq and CRAC, indicating that HAX1 binds transcripts involved
in translation, ribosome biogenesis, and rRNA processing. Using CRISPR knockouts, we find that
HAX1 RNA targets partially overlap with transcripts downregulated in HAX1 KO, implying a role
in mRNA stabilization. Gene ontology analysis demonstrated that genes differentially expressed in
HAX1 KO (including genes involved in ribosome biogenesis and translation) are also enriched in
a subset of genes whose expression correlates with HAX1 expression in four analyzed neoplasms.
The functional connection to ribosome biogenesis was also demonstrated by gradient sedimentation
ribosome profiles, which revealed differences in the small subunit:monosome ratio in HAX1 WT/KO.
We speculate that changes in HAX1 expression may be important for the etiology of HAX1-linked
diseases through dysregulation of translation.

Keywords: RNA–protein binding; HAX1; RIP-seq; CRAC; translation; ribosome assembly

1. Introduction

HAX1 (HCLS1-associated protein X-1) is known as an antiapoptotic protein with
a role in the regulation of cell migration, cell adhesion, and calcium homeostasis [1].
HAX1 deficiency, due to mutations in the HAX1 gene, results in the autosomal recessive
severe congenital neutropenia (SCN) called Kostmann disease [2]. This myelopoietic
disorder is caused by the arrest of granulocyte maturation and the resulting paucity of
mature neutrophils, leading to life-threatening infections. This effect has been attributed
to excessive apoptosis caused by HAX1 deficiency, but the exact molecular mechanism
was not demonstrated. On the other hand, HAX1 overexpression was documented in
several neoplasms [3–6]. Here, we propose that these effects may be linked to ribosome
dysfunction.
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To date, HAX1’s RNA-binding propensity has been reported in two particular cases:
for the vimentin transcript [7] and the DNA polymerase beta transcript [8]. Both instances
pertained to strong hairpin structures at the 3′UTR of these transcripts, although the com-
parison of the hairpin motifs in vimentin and Pol β mRNAs did not reveal any significant
similarities, apart from the presence of U-rich single-stranded regions [8]. In our recent
report [9], in which we described the HAX1 protein interactome, we also suggested the
possibility of RNA-binding by HAX1 deduced from neighboring proteins (first observed
by Brannan et al. [10]).

The role of HAX1 RNA binding in cellular processes has not been clarified so far,
except for some suggestions of its involvement in the regulation of specific mRNAs [11,12].

The HAX1 protein has no homologues or known domains, except for a PEST sequence,
a specific signal which was linked to a shorter half-life of the protein and its proteasomal
degradation [13]. The presence of BCL2-like domains was disproved [14]. Consequently,
HAX1 does not possess any known RNA-binding domain, and a large proportion of
the protein is predicted to be disordered [15,16], so RNA binding probably occurs in a
nonconventional manner.

The current study provides for the first time a comprehensive analysis of the HAX1–
RNA interactome, with two independent approaches for the isolation of its RNA targets.
Subsequent analysis of the impact of HAX1 on the cell transcriptome and analysis of expres-
sion in several cancer databases produced coherent results that indicate the unanticipated
role of HAX1 in ribosome biogenesis and translation. Comparison of the experimental
data obtained for HAX1 RNA binding and transcriptome profiling indicates that HAX1
may regulate the stability of the bound transcripts. These results were corroborated by the
observation that HAX1 KO affects the ribosomal profile, especially with respect to the ratio
of the small ribosomal subunit to the monosome. The involvement of HAX1 in ribosome
biogenesis and translation emerging from this work may help to elucidate its many-sided
effects on cellular processes and HAX1-associated diseases.

2. Results
2.1. Different High-Throughput Analyses of HAX1 Binding Targets Consistently Reveal Its
Involvement in Translation and Ribosome Biogenesis

HAX1 is predicted to contain few secondary structure elements, while most of its
sequence is predicted to be disordered and there is no conventional RNA-binding domain
(Figure 1A, [15,16]). Nevertheless, the RNA-binding propensity of HAX1 was previously
reported [7,8]. Furthermore, three different RNA-binding prediction algorithms suggest
that HAX1 may bind to RNA: RNApred (amino acid composition-based method, the
score for putative RBD: 0.58 SVM (support vector machine), cutoff: 0.5, RNApred. Avail-
able online: https://webs.iiitd.edu.in/raghava/rnapred/, accessed on 10 April 2019) [17],
RBPPred (sequence-based method, the score for putative RBD: 0.928 SVM, cutoff: 0.5, RBP-
Pred. Available online: http://rnabinding.com/RBPPred.html, accessed on 12 Februray
2020) [18], and CatRapid (secondary structure, hydrogen bonding, and van der Waals
forces-based prediction, the score for putative RBD: 0.61, threshold 0.5, CatRapid. Available
online: http://s.tartaglialab.com/page/catrapid_group, accessed on 21 March 2019) [19]
(Figure 1B). Algorithms that compare three-dimensional structures cannot be used, since
HAX1 has no homologs, is mostly disordered, and has not been crystalized.

To verify and globally characterize the RNA-binding propensity of HAX1, we used
two independent, high-throughput screens (RIP-seq and CRAC) for the HAX1 RNA targets
(Figure 1C,D). RIP-seq is simpler, with one purification step and without the crosslinking
step, and thus it yields more background noise (>5000 hits). On the contrary, CRAC
involved RNA crosslinking and two purification steps; thus, the results were more specific
and enabled the analysis of the bound RNA regions. Both approaches unanimously
revealed enrichment in the RNAs linked to translation, ribosome biogenesis, and RNA
processing.

https://webs.iiitd.edu.in/raghava/rnapred/
http://rnabinding.com/RBPPred.html
http://s.tartaglialab.com/page/catrapid_group
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Figure 1. Experimental design of HAX1–RNA interactome studies. (A) HAX1 amino acid sequence 
with characteristic features and regions (acid box, PEST domain, structural elements predicted using 
PSIPRED (PSI-blast-based secondary structure PREDiction)). (B) CatRapid prediction of HAX1 
RNA binding propensity classifies it as a putative RBP, but binding does not occur via classical 
elements. (C) Schematic of RIP experiments: no crosslink, single purification step with HAX1-
specific antibody. (D) Schematic of CRAC experiments, sequential steps: UV crosslink of RNA 
targets, double purification with Sepharose and NiNTA resin, isotope labeling and extraction of the 
RNA–protein complexes from polyacrylamide gel, RNA extraction, reverse transcription, PCR, and 
next generation sequencing of the RNA targets. 

To verify and globally characterize the RNA-binding propensity of HAX1, we used 
two independent, high-throughput screens (RIP-seq and CRAC) for the HAX1 RNA 
targets (Figure 1C,D). RIP-seq is simpler, with one purification step and without the 
crosslinking step, and thus it yields more background noise (>5000 hits). On the contrary, 
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specific and enabled the analysis of the bound RNA regions. Both approaches 
unanimously revealed enrichment in the RNAs linked to translation, ribosome biogenesis, 
and RNA processing. 

2.1.1. RIP-Seq Results 
RNA target identification was performed in the human leukemia cell line HL-60, 

because promyelocytes represent the most affected cell type in patients with a recessive 
mutation in both HAX1 alleles (severe neutropenia). This condition is lethal when 
untreated, so the analysis of the role of HAX1 in these cells seems to be the most 
physiologically relevant. The experiment was carried out in five replicates for each, with 
a HAX1-IP and IgG control (correct clustering confirmed by principal component 
analysis, Figure S2A). HAX1-associated transcriptome was identified by employing next 
generation sequencing after the RNA immunoprecipitation (RIP-seq) of the HAX1 
complexes. Transcripts were classified as positive targets using an adjusted p-value cutoff 
of 0.05. Enrichment analysis (the Database for Annotation, Visualization and Integrated 
Discovery; DAVID) of the obtained dataset indicates involvement in RNA processing, 
translation, and ribosome biogenesis, including a strong category of targets involved in 
rRNA processing (Figure 2A, Supplementary Data File S1). Using the DAVID Functional 
Classification Tool, which performs background compensation for Homo sapiens 

Figure 1. Experimental design of HAX1–RNA interactome studies. (A) HAX1 amino acid sequence
with characteristic features and regions (acid box, PEST domain, structural elements predicted using
PSIPRED (PSI-blast-based secondary structure PREDiction)). (B) CatRapid prediction of HAX1
RNA binding propensity classifies it as a putative RBP, but binding does not occur via classical
elements. (C) Schematic of RIP experiments: no crosslink, single purification step with HAX1-specific
antibody. (D) Schematic of CRAC experiments, sequential steps: UV crosslink of RNA targets, double
purification with Sepharose and NiNTA resin, isotope labeling and extraction of the RNA–protein
complexes from polyacrylamide gel, RNA extraction, reverse transcription, PCR, and next generation
sequencing of the RNA targets.

2.1.1. RIP-Seq Results

RNA target identification was performed in the human leukemia cell line HL-60,
because promyelocytes represent the most affected cell type in patients with a recessive
mutation in both HAX1 alleles (severe neutropenia). This condition is lethal when untreated,
so the analysis of the role of HAX1 in these cells seems to be the most physiologically
relevant. The experiment was carried out in five replicates for each, with a HAX1-IP and IgG
control (correct clustering confirmed by principal component analysis, Figure S2A). HAX1-
associated transcriptome was identified by employing next generation sequencing after the
RNA immunoprecipitation (RIP-seq) of the HAX1 complexes. Transcripts were classified as
positive targets using an adjusted p-value cutoff of 0.05. Enrichment analysis (the Database
for Annotation, Visualization and Integrated Discovery; DAVID) of the obtained dataset
indicates involvement in RNA processing, translation, and ribosome biogenesis, including
a strong category of targets involved in rRNA processing (Figure 2A, Supplementary Data
File S1). Using the DAVID Functional Classification Tool, which performs background
compensation for Homo sapiens expression profile, ensures that the obtained pool of highly
expressed transcripts encoding proteins involved in translation and ribosome biogenesis
represents a truly significant output. Plotting enrichment against the false discovery
rate (FDR) for GO terms obtained by gene ontology enrichment analysis (Panther) in the
Biological Process category revealed that the terms related to ribosome (including ribosome
biogenesis and rRNA processing) and translation are of high significance (high enrichment,
low FDR, Figure 2B). Most of the RNA targets obtained in the RIP analysis represent
mRNA (Figure 2C). Figure 2D represents the RIP-seq coverage (X-axis; FPKM, fragments
per kilobase per million, to compensate for the length of the transcript) plotted against
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log2 enrichment in RIP-seq (RIP-seq_HAX1/RIP-seq_IgG). The red points above (or below)
the horizontal axis represent transcripts that are significantly enriched (or depleted) in the
HAX1 pulldown compared to their total abundance in cells.
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metabolism (other than rRNA) are marked light orange. Detailed description of GO terms in 
Supplementary File S1. (C) Distribution of RNA classes among HAX1 RIP targets. (D) MA plot 
showing RIP targets counts (X-axis) calculated as fragments per kilobase per million (FPKM); Y-
axis: log2FC(RIP_HAX1/RIP_IgG), red—significant, grey—not significant. The internal frame 
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2.1.2. CRAC Results 

Figure 2. Identification of HAX1-associated RNA targets by RIP-seq analysis in HL-60 cells. (A) Func-
tional annotation enrichment of HAX1 target genes. Enriched gene ontology terms (DAVID: Biological
Process) presented in bar plot, the length of each bar corresponds to statistical significance of the
enrichment (−log10 p-value). The top twenty terms are presented. (B) Enriched Biological Process
terms (Panther GO) plotted with fold enrichment (log2) against False Discovery Rate (−log10). The
most reliable results are in the upper right corner. Categories associated with ribosome biogenesis,
rRNA processing, and translation are marked red. Categories associated with RNA metabolism (other
than rRNA) are marked light orange. Detailed description of GO terms in Supplementary File S1.
(C) Distribution of RNA classes among HAX1 RIP targets. (D) MA plot showing RIP targets counts (X-
axis) calculated as fragments per kilobase per million (FPKM); Y-axis: log2FC(RIP_HAX1/RIP_IgG),
red—significant, grey—not significant. The internal frame indicates positive log2 FC (physiologically
relevant as possible binding targets).

2.1.2. CRAC Results

CRAC (crosslinking and cDNA) analysis was performed in the HEK293FlpInTRex
human embryonic kidney cell line modified to overexpress HAX1 after doxycycline in-
duction. This cell line was used because it has been standardized for CRAC experiments.
Two different cell lines were generated expressing a protein with a tag added at the 5′

or 3′ end of the HAX1 coding sequence and compared to the negative control cell line
(experiments were performed in two replicates for each cell line). Pooled results for N- and
C-tagged protein were considered for analysis (log2FC[CRAC_HAX1/CRAC_NC] > 0).
Enrichment analysis (DAVID) revealed involvement in translation and ribosome assem-
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bly, including translation and cytoplasmic translation, rRNA processing, and ribosome
biogenesis (Figure 3A, Supplementary Data File S2). Enrichment values plotted against
false discovery rate (FDR) for GO terms obtained by gene ontology enrichment analysis
(Panther) revealed that similar terms as in RIP (involving translation, rRNA processing,
and ribosome biogenesis) are of the highest significance (Figure 3B).
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Figure 3. Identification of HAX1-associated RNA targets by CRAC analysis (HEK293 cells). (A) Func-
tional annotation enrichment of HAX1 target genes (results from the pooled N- and C-tagged protein
approach). Enriched gene ontology terms (DAVID: Biological Process) presented in bar plot, the
length of each bar corresponds to statistical significance of the enrichment (−log10 p-value). The top
20 terms are presented for each category. (B) Enriched Biological Process terms (Panther GO) plotted
with fold enrichment (log2) against false discovery rate (−log10). The most reliable results are in the
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upper right corner. Terms associated with ribosome biogenesis, rRNA processing, and translation are
marked red. Terms associated with RNA metabolism (other than rRNA) are marked in light orange.
Detailed description of GO terms in Supplemental Data File S2. (C) Distribution of RNA species
in HAX1 targets. (D) Coverage of HAX1 CRAC reads along small (18S) and large (28S) ribosomal
subunits. Reads for negative control shown below. (E) Consensus motif identified by STREME in the
HAX1-targets dataset (combined experimental data from C- and N-tagged HAX1). The E-value is
the p-value multiplied by the number of motifs reported by STREME. (F) Genomic position of HAX1
binding in CRAC-identified targets (269 targets overlapping in C- and N-tagged datasets) established
using UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly.

The transcript biotype analysis indicates a high proportion of rRNA and tRNA (re-
spectively 54% and 17%), with mRNA representing 10% of CRAC targets (Figure 3C).
Discrepancy with RIP results may result from methodical differences (UV crosslink, overex-
pression of the protein, see Discussion). Detailed analysis of the coverage of HAX1 reads
along small (18S) and large (28S) ribosomal subunits shows high reads for the region of
1368–1407 in the large subunit, indicating a possible interaction site (Figures 3D and S3).

The CRAC method enables the assessment of the enrichment in recurring sequence
patterns (motifs) in an analyzed experimental dataset. The motif finding was performed
using STREME (The MEME Suite; motif-based sequence analysis tools), resulting in a
characterization of a guanine-rich motif for the C- and N-terminally tagged combined
datasets (Figures 3E and S4).

The analysis of the genomic position of the detected mRNA targets (269 best quality
targets from the pooled C and N dataset) revealed the predominant binding of HAX1 to
the coding sequence (CDS) region and the substantial number of targets located in both
CDS and 5′ or 3′ UTRs. Only 11% of targets were mapped only in noncoding regions.
Interestingly, introns plus CDS represent about 6% of targets, and half of these intronic
targets encode snoRNA (Figure 3F, Supplementary Data File S2).

2.1.3. Comparison of the RIP-Seq and CRAC Results

In both approaches, the enriched GO terms encompassed translation, ribosome biogen-
esis, rRNA processing, and RNA processing in general. Enrichment in the same categories
was detected for the group of 629 targets that overlapped on both screens, and these cate-
gories were also the most probable (Figure 4A–C), with a high proportion of transcripts
encoding ribosomal proteins (including 33 proteins of large and small ribosomal subunits),
ribosome assembly factors, and translation factors (Supplementary File S3). These results
point to the probable role of HAX1 in ribosome assembly and translation.
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Figure 4. Characterization of the overlapping CRAC–RIP subset of HAX1 mRNA targets. (A) Over-
lapping targets in RIP and CRAC_C (629 mRNAs) represent, respectively, 13.7% and 38.5% of the
overall results. Hypergeometric test for these overlap gives p-values of 9.8e–42 (total gene set: 15220).
(B) Functional annotation enrichment of the RIP/CRAC overlap of HAX1 target genes (DAVID,
top 20 terms) maintains a high enrichment in terms associated with translation, RNA and rRNA
processing, and ribosome biogenesis (Biological Process) (C) Enriched Biological Process terms found
for the overlap subset (Panther GO) plotted with fold enrichment (log2) against false discovery rate
(−log10) reveal that terms associated with translation and ribosome biogenesis are the most probable.
(D) Target validation by microscale thermophoresis (MST) performed for the RPL19 in vitro transcript
(sense). From 33 transcripts encoding ribosomal proteins present in the overlapping RIP/CRAC
target list, a fragment of the RPL19 coding sequence was selected for validation. The interaction with
purified and the fluorescently labeled HAX1 protein was confirmed in 4 independent measurements
by thermophoresis under different conditions (MST power medium to high). For each measurement,
the dissociation constant (Kd) and half maximal effective concentration (EC50) were assigned. No
interaction was observed with antisense transcript (negative control).

2.1.4. Validation of a Selected Target by Microscale Thermophoresis

Microscale thermophoresis (MST) was performed for the in vitro transcript containing
a fragment of the coding sequence of the RPL19 ribosomal protein. This target was selected
due to its relatively high rank on the list of overlapping RIP and CRAC targets. The specific
sequence was based on the CRAC identification of the binding region within exon3. The
titration of the target RNA to a constant concentration of the fluorescently labeled HAX1
protein allowed for the determination of the ligand dissociation constants (Kd) and the
systematic comparison of their binding affinity. The half maximal effective concentration
(EC50) was calculated by the Hill fit model. The results reveal binding for the sense
transcript, but not for the antisense negative control (Figures 4D and S5).

2.2. HAX1 KO Affects the Expression Profile of HL-60 Cells

To assess the impact of HAX1 on the HL-60 transcriptome, two independent cell lines
with HAX1 CRISPR/Cas9 knockout were generated (HAX1 KO#1, KO#2, Figure S1) and
used in the RNA-seq experiment to compare expression profiles with HAX1 WT cells.
Statistical significance was assigned only for genes differentially expressed in both HAX1
KO cell lines vs. WT and in the same direction (p-value cutoff 0.05). Gene ontology analysis
revealed that HAX1 knockout affects the expression profile of the HL-60 cells in several
terms of the Biological Process (Figure 5A–C). Weighted analysis of the RNA-seq results
(String 11, functional enrichment analysis for proteins ranked according to fold change
[RNA-seq_HAX1 KO/RNA-seq_WT]) allows to distinguish two main groups: GO terms
linked to ribosome biogenesis, rRNA processing and translation (including mitochondrial
translation), and terms linked to energy generation in mitochondria: respiratory electron
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transport chain and oxidative phosphorylation (details of GO analysis in Supplementary
Data File S4). HAX1 knockout significantly affects the expression of 2344 genes (1158
upregulated and 1186 downregulated in KO). As indicated in Figure 5C, genes related
to ribosome biogenesis, translation, and energy generation in mitochondria tend to be
downregulated in HAX1 KO cells.
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Figure 5. HAX1 KO affects the expression profile in HL-60 cells. (A) Enrichment plots generated
by GSEA analysis for the chosen categories (translation, rRNA processing, respiratory electron
transport) (B) Enrichment in GO Biological Process terms for genes differentially expressed in
HAX1 KO vs. HAX1 WT (String 11 weighted analysis with log2[RNA-Seq_HAX1_KO/RNA-Seq
WT] as values) indicates participation in translation (including mitochondrial translation), rRNA
processing/ribosome biogenesis, and energy generation in mitochondria. Detailed description of
GO terms in Supplementary Data File S4. (C) Scatter plot showing differentially expressed genes in
HAX1 KO. Of the total 1186 transcripts significantly downregulated in KO, 172 are associated with
translation and 202 with energy generation, while from the 1158 transcripts significantly upregulated
in KO, 13 and 58, respectively, are associated with these categories. The p-value cutoff: 0.05. A total of
14 outliers were omitted. The statistical significance of the downregulation of the transcripts involved
in ribosome biogenesis and translation and cellular respiration was assessed by the Chi-Square
test and was shown to be high (p-value = 5.5 × 10−20 and 1.2 × 10−5, respectively). For the other
two groups (all mapped results and all DEGs), there was no statistical significance associated with
downregulation.
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2.3. Correlation Analysis of HAX1 Expression in Cancer Databases Reveals Differences in the
Same GO Terms as Transcription Profiling in HL-60 Cells

The correlation of HAX1 expression with other genes can be analyzed in expression
databases created using high-throughput methods applied to patient samples from many
different neoplasms. Neoplasms selected for the correlation analysis were chosen to corre-
spond to the HL-60 cell line (leukemia) and another hematologic neoplasm (lymphoma) or
common types of epithelial origin cancer (breast, cervical cancer).

Coexpression analysis was performed using cBioPortal for Cancer Genomics with
TCGA data (The Cancer Genome Atlas, PanCancer Atlas) for the four neoplasms (Cervical
Cancer—297 patients, Breast Cancer—1084 patients, Acute Myeloid Leukemia—200 pa-
tients, and Diffuse Large B-cell Lymphoma—48 patients). Gene lists with Spearman rank
correlation coefficients were used in the String 11 gene ontology analysis (with Spearman
coefficients as values/ranks) and the obtained Biological Process terms were plotted in
Figure 6A–D, showing that the terms with the highest enrichment and the lowest false
discovery rate are similar to the expression profiling obtained in HL-60 cells (RNA-seq).
The most enriched and probable terms revealed by the weighted analysis of the genes
whose expression significantly correlates with HAX1 expression included those involved
in translation (cotranslational protein targeting to membrane, mitochondrial translation,
translational elongation, translational initiation, cytoplasmic translation), ribosome assem-
bly, and rRNA processing, but also energy generation in mitochondria (respiratory electron
transport chain, oxidative phosphorylation, cellular respiration), and RNA processing in
general. These enrichments were observed in all neoplasms analyzed. For details, see the
Supplementary Data File S5.
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performed using cBioPortal Cancer Genomics. Clinical data obtained from the TCGA database.
Enrichment analysis was performed using String 11 with correlation coefficients as values. (A) Acute
myeloid leukemia (AML, 200 patients); (B) Diffuse large B-cell lymphoma (DLBCL, 48 patients);
(C) Cervical cancer (297 patients); (D) Invasive breast cancer (1084 patients) C. Detailed description
of genes, Spearman coefficients and GO terms in the Supplementary Data File S5.

Similar enrichments were also observed in other types of cancer (renal cell carcinoma,
glioblastoma; data not shown).

2.4. Comparison of RIP-Seq and RNA-Seq Suggests That HAX1 Binding May Stabilize a Subset of
Transcripts Involved in Ribosome Biogenesis

RIP-seq analysis and RNA-seq for HAX1 KO/WT were performed in the same HL-60
cell line; thus, the comparison should reveal whether RNA binding has an effect on RNA
stability.

The RNA-seq fold change (RNA-seq_HAX1_KO/RNA-seq_WT) distributions of the
transcripts representing the HAX1 targets (RIP target subset) and the rest of the transcripts
(non-RIP target subset) were compared (Figure 7A), showing that the changes in the
distribution towards the downregulation of the RIP-associated transcripts in HAX1 KO
increase with the increasing probability of the HAX1-specific RNA interaction (lower
FDR), suggesting that the RIP targets are less stable. The effect, although statistically
significant, is not ubiquitous and does not affect all RIP targets equally, suggesting some
other layers of regulation. Distribution analysis performed only for transcripts involved
in ribosome biogenesis (red line) shows a much more substantial shift toward lower FC
values (log2[RNA-seq_HAX1_KO/RNA-seq_WT]). Furthermore, the fraction of transcripts
involved in ribosome biogenesis increases when the RIP results are analyzed with the same
FDR cut-offs in the weighted analysis (String 11, Biological Process) with FC from RNA-seq
as values (Figure 7B).

Interestingly, HAX1 binding seems to be limited to transcripts linked to transla-
tion/ribosome biogenesis and includes far fewer transcripts linked to the oxidative phos-
phorylation/respiratory electron chain, which were also significantly downregulated in
HAX1 KO, indicating a different mode of regulation for this other group of transcripts.
Furthermore, mRNA RIP targets (RIP target subset) along with their respective FCs in
RNA-seq were analyzed in weighted analysis (String 11, values, Biological Process), sep-
arately for the downregulated and upregulated transcripts, revealing an enrichment in
ribosome biogenesis and rRNA processing (GO:0042254 and GO:0006364) for the group
of downregulated transcripts, while the same analysis of the upregulated group did not
reveal any enrichment (Figure 7C).

The possibility of the direct stabilization of transcripts by HAX1 binding was tested
for two mRNAs: DHX37(encoding DEAH-box helicase 37, involved in ribosome biogenesis
and translation initiation) and RRP7A (encoding ribosomal RNA processing 7 homolog
A, predicted to be involved in rRNA processing and small ribosomal subunit assembly).
The mRNA targets were selected from transcripts downregulated in HAX1 KO and simul-
taneously from the results of the RIP/CRAC analysis as potential HAX1 targets with a
binding region within the coding sequence of the transcript. Transcription was inhibited by
Actinomycin D treatment and subsequent mRNA degradation was analyzed by qPCR in
HAX1 WT and HAX1 KO cell lines, indicating faster degradation in the HAX1-deficient
cell line (Figure 7D).

To test the possibility that the effect of HAX1 on the transcriptome may not be direct
but may instead consist of influencing the transcription factors (TFs) and propagating
the effect to the group of genes regulated by these factors, TFs potentially regulating the
subset of genes for which the expression has changed in the HAX1 KO were identified
using the Enrichr package (Transcription, ENCODE and ChEA) and juxtaposed with the
ranked list of RIP targets. TFs of the highest rank (FC, FDR) and the highest combined
score provided by Enrichr are listed in Figure S6A. YY1 and USF1 are the only TFs with
FC > 2, but MYC, which has the highest combined score, although not highly ranked itself,
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should be considered because MYC-binding proteins are also among the RIP targets, with
MYCBP of FC>3. Genes regulated by all these TFs are mostly downregulated in HAX1 KO
(Figure S6B). However, the expression of all of these TFs is not changed at the mRNA level,
as determined by RNA-seq, undermining the possibility of the indirect regulation via TFs.
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Figure 7. HAX1 binding to RNA targets may be responsible for changes in the expression pro-
file (A). Comparison of the distribution of FC changes caused by HAX1 knockout (data obtained
in RNA-seq) in the subset of transcripts present between targets identified by RIP (RIP target)
and not identified by RIP (non-RIP target). Three different RIP target subsets were compared
with cut-offs determined according to the decreasing FDR, showing a shift towards lower FC val-
ues (RIP_HAX1/RIP_IgG) in the subsets with lower FDR. Red line: a subset of transcripts in-
volved in ribosome biogenesis, identified by String 11 weighted analysis for RIP-target transcripts
(RIP_HAX1/RIP_IgG FC as values). Significance calculated by the Kolmogorov–Smirnov test (B).
The fraction of transcripts involved in ribosome biogenesis increases with decreasing FDR for the
subset of RIP targets. Pathway enrichment calculated in String 11 weighted analysis with FC val-
ues from RNA-seq (RNA-seq_HAX1_KO/RNA-seq_WT). (C) Enrichment in GO terms assessed by
String 11 weighted analysis with FC values from RNA-seq for a subset of downregulated transcripts.
Analogous analysis for the upregulated subset produced no results. (D) The degradation of DHX37
and RRP7 mRNAs is more dynamic in HAX1 KO cells. Cells were treated with Actinomycin D (10
µg/mL). Relative expression was quantified by qPCR at designated time points. The experiment was
carried out in several biological repeats and evaluated by the t-test (DHX37, n = 4, p-value: 0.026, 6 h,
RRP7A n = 3, p-value: 0.035, 3 h). Error bars: SEM.
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2.5. HAX1 KO Affects the 40S:80S Ratio

To assess the physiological effect of HAX1 deficiency in the context of ribosome
biogenesis, ribosome sedimentation in the sucrose density gradient was performed for
HAX1 WT and HAX1 KO HL-60 cells. The ribosomal P/M (polysome-to-monosome)
stoichiometry ratio did not reveal significant changes between the WT and KO cell lines,
but the 40S to 80S ratio revealed that the peak corresponding to the small subunit increases
in HAX1 KO compared to WT (Figure 8A,B). The overall subunits:monosome ratio (40S +
60S:80S) is also significantly increased in HAX1 KO compared to WT (Figure 8B).
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Figure 8. HAX1 KO affects the subunit:monosome ratio. (A) Representative absorbance profiles
at 254 nm of sucrose gradient (10–50%) sedimentation of HL-60 cell extracts. The three leftmost
peaks include ribosomal subunits (40S and 60S) and nontranslating monosomes (80S). The remaining
peaks represent polysomes. Western blots for HAX1 and RPL26 ribosomal protein (large subunit)
performed for the corresponding fractions are presented under the profiles. (B) Quantitative analysis
of sedimentation profiles indicates that free subunits are more abundant in HAX1 KO in relation to
the monosome (upper graph: 40S:80S ratio, lower graph: subunits/monosome ratio). The area under
each peak was quantified using ImageJ (n = 6 in each sample), statistical significance determined
with an unpaired t-test. Analysis by one-way ANOVA and Tukey multiple comparison test also show
statistically significant difference for the 40S:80S ratio (p-value: 0.003 and 0.0486 for HAX1 KO #1 and
#2, respectively) and for the subunits:monosome ratio (p-value: 0.0296 for HAX1 KO #1, for HAX1
KO #2, p-value: 0.15).

3. Discussion

In this manuscript we report a comprehensive analysis of the HAX1–RNA interactome
by two independent, high-throughput methods, which both suggest HAX1 involvement
in the regulation of transcripts controlling translation, rRNA processing, and ribosome
biogenesis. The two methods differ in complexity and specificity (Figure 1A), and the exper-
iments were carried out in two different cell lines (HL-60 promyelocytic cell line, selected
due to the strong effect of HAX1 inactivation in these cells, and HEK293 embryonic kidney
cells with adrenal endocrine characteristics, selected for technical reasons). Nevertheless,
both approaches yielded enrichment in similar GO terms in the Biological Process category
(translation, rRNA processing, and ribosome biogenesis). The pool of overlapping targets
obtained simultaneously by both methods also shows involvement in translation, rRNA
processing, and ribosome biogenesis.
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The distribution of RNA biotypes detected in both methods was different, with RIP
targets predominantly consisting of mRNA and CRAC targets with a high proportion of
rRNA and tRNA. These differences may stem from the fact that in CRAC: (1) the protein
of interest was overexpressed, which should increase the abundance of nonmitochondrial
protein able to interact with rRNA compared to endogenous RIP; (2) RNA targets were UV-
crosslinked to it, which may shift the distribution towards less stable, transient interactions
eliminated in RIP; (3) the background (negative control sample) is cleaner than in RIP-seq,
and thus it may be easier to detect significant fold changes for very abundant transcripts
(rRNAs, tRNAs, and snRNAs).

The next important question was if the expression of HAX1 RNA targets has changed
after HAX1 knockout. This comparison was made for HL-60 cells, since this cell line was
used in both RIP and RNA-seq expression profiling for HAX1 KO vs. WT. The results
indicate a partial overlap between HAX1 RNA targets and mRNAs downregulated in
HAX1 KO and the overlap is related to transcripts involved in ribosome biogenesis and
translation, and, only to a very small extent, to the transcripts involved in energy generation
in mitochondria, which are also significantly downregulated in HAX1 KO. This result
suggests that only the subset involved in ribosome biogenesis and translation is regulated
through direct HAX1 binding and the subsequent stabilization of the mRNA. Therefore,
the other detected changes (especially the downregulation of a very important subset
of transcripts involved in energy generation) must be therefore regulated by a different
mechanism.

Further support for the hypothesis of the HAX1 transcript-stabilizing role is provided
by the quantitative assessment of DHX37 and RRP7A mRNA degradation. The DHX37
RNA helicase is involved in ribosome biogenesis, including the formation of the central
pseudoknot structure of the small ribosomal subunit [20]. RRP7A is also predicted to
be involved in rRNA processing and assembly of the small ribosomal subunit. Both
transcripts represent top RIP/CRAC targets, which are downregulated in HAX1 KO cells.
Quantification of the degradation of the DHX37 and RRP7A transcripts revealed more
dynamic degradation in HAX1 KO cells, suggesting stabilization by HAX1.

Analysis of the genomic position of the RNA targets obtained using the CRAC method
revealed the prevalence of coding sequence (CDS) regions, which is not typical for the
regulatory RNA sequence and is not consistent with the genomic position of previously
characterized HAX1 binding regions (3′UTR). However, new high-throughput analyses
demonstrated that binding to CDS is not as uncommon as previously thought and may
play a role in the regulation of mRNA stability [21]. Interestingly, this stabilization should
refer to the situation when mRNA is not actively translated, and thus it is not covered and
protected by ribosomes and susceptible to endonuclease attack, as in the case of protein
CRD-BP, which binds to c-myc mRNA, thus protecting it [22]. Furthermore, CDS binding
was also observed for the FMRP protein and was related to the recruitment of the APP
mRNA to processing bodies (P-bodies), which was proposed to restrict translation [23]. In
line with this observation, we previously reported that HAX1 was observed to colocalize
with the P-body marker, Dcp1 [12], pointing to its possible role in transcript stabilization
during storage.

Interaction with one of the targets within CDS reported by both methods (RPL19)
was confirmed by microscale thermophoresis, with the dissociation constants indicating
relatively weak binding (Kd in a range of 0.1–0.2 µM, comparing, for example, to the strong
FMRP interaction with N19 RNA with a Kd of 1 nM [24]). These values suggest a transient,
regulatory interaction. Interestingly, the Kd values previously reported for HAX1 binding
to 3′UTR are lower [8], indicating a different strength of interaction and, possibly, a different
mode of binding for the CDS and 3′UTR regions. A similar phenomenon was also observed
for the GLD-1 and FMRP proteins, involved in translation regulation [21].

Analysis of the possibility of indirect regulation mediated by transcription factors
indicated that such regulation is improbable, since the expression of TFs itself is not changed
in HAX1 KO. However, this hypothesis cannot be totally dismissed, since TF-encoding
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transcripts may be differentially translated, or their protein product may be degraded in
HAX1 KO cells, resulting in differences in TFs at the protein level and subsequent changes
in specific groups of transcripts regulated by those TFs.

Interestingly, the analysis of the correlation of expression with HAX1, performed
for the TCGA database in four neoplasms (AML, DLBCL, breast cancer, cervical cancer),
identified enrichment in the same biological processes as detected for HAX1 KO vs. WT in
the HL-60 cell line, indicating that these results are not cell line or neoplasm-specific, and
thus further corroborating these findings.

The observed changes in expression related to ribosome assembly and translation are
not huge, but reproducible, and refer to a relatively large group of transcripts and do not
appear to be cell-type or neoplasm-specific. Relatively weak binding and small but reliable
changes in expression suggest regulation via small, additive effects. It is an open question
whether these effects can manifest more robustly in nonquiescent cells subjected to some
kind of stress. This conjecture is supported by the reported changes in the location of HAX1
after stress, including nucleocytoplasmic shuttling [11], which could be linked to ribosome
biogenesis and RNA binding in the nucleus/nucleolus. Furthermore, the abundance of
rRNA observed as a potential target in the CRAC analysis suggests the possibility of a
more direct involvement in ribosome biogenesis. The suggested binding site (Figure S3)
maps within rRNA expansion segments, for which the function in ribosome biogenesis was
proposed [25]. Thus, the involvement of HAX1 in ribosome assembly could encompass not
only the regulation of the stability of mRNAs that encode ribosomal proteins and assembly
factors, but also a direct interaction with ribosomal RNA. Interestingly, the possibility of the
simultaneous regulation of translation by direct ribosome binding and controlling mRNA
stability was described for the FMRP protein [26], already mentioned here for similar mode
of binding and possible recruitment of transcripts to P-bodies.

To test the physiological consequences of HAX1 KO on ribosome status, we performed
ribosome sedimentation profiling, demonstrating a difference in the 40S:monosome ratio
for HAX1-deficient cells. The shift towards free subunits in HAX1 KO may indicate less
efficient monosome assembly, resulting from lower expression of ribosomal assembly
factors and ribosomal components.

In conclusion, we provide evidence for the involvement of HAX1 in ribosome assembly
and translation, which represents a new finding. Previously, it was reported that HAX1
has an interaction with PELO, a protein involved in ribosomal rescue during ribosome
stalling, but no mechanism for HAX1 involvement was proposed and no physiological
effect was observed [27]. Recently, You et al. [28] demonstrated, among other things, that
HAX1 levels correlate with ribosome formation and that HAX1 promotes the translation of
the transcript encoding integrin subunit beta 6 in endothelial cells, partially matching the
findings presented here.

Thus, the results presented suggest the possibility that HAX1 binds to the CDS of the
nontranslated transcripts, protecting them from degradation, and that the main mRNA
targets subjected to this regulation include transcripts involved in ribosome biogenesis.

Changes in ribosomal status and translation efficiency affect proliferation, which in
turn can contribute (in opposite directions) to neutropenia and/or cancer. Indeed, the
status of HAX1 has already been shown to affect proliferation [29], and we also observed
this effect in our cell lines (data not shown). Further research should elucidate the exact
role of HAX1 in maintaining translation efficiency, but the results presented here provide a
starting point to explore these new and unanticipated possibilities.

4. Materials and Methods
4.1. Generation of Cell Lines
4.1.1. HEK293FlpInTRex with Induced Overexpression of HAX1

Plasmid design and molecular subcloning: HAX1 CDS was obtained by PCR and
cloned into prepared vector (pcDNA5FRT TO) with a special gene coding tag (Protein A
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fragment, TEV protease cleavage site, and His-tag) in two orientations (tag at the 3′ or 5′

end of the HAX1 coding sequence).
Cell line generation: HEK293-FlpIn cells (ThermoFisher Scientific) were transfected

with an empty vector (negative control, NC) or plasmid with the HAX1 cDNA with a tag
at the 3′ end or 5′ end of the gene, and cotransfected with pOG44 vector, containing Flp
recombinase, for Flp–FRT recombination. Transfection was carried out according to the
manufacturers’ instructions (LipofectamineTM2000, ThermoFisher Scientific, Waltham,
MA, USA). Cells were detached and seeded on 100 mm plates in a concentration enabling
obtaining single colonies (selection: Blasticidin 15 µg/mL and Higromycin B 100 µg/mL)
for 2 weeks. Single colonies were passaged to 24-well plates and tested by Western blot
and qPCR with and without doxycycline induction (18–48 h).

4.1.2. HL-60 HAX1 CRISPR Knockout

Plasmid design and molecular subcloning: two pairs (4 oligonucleotides) of small
guide RNA (sgRNA) complementary to the HAX1 gene were designed using the online
bioinformatic tool (https://CRISPR.mit.edu, accessed on 15 August 2022). Each pair of
sgRNA was introduced to the AIO-GFP plasmid that encodes the Cas9 nickase tagged with
EGFP (D10A), as described in [30]. Briefly, each of the four oligonucleotides contained 5’
overhangs (forward: ACCG, reverse: AAAC) compatible with BbsI and BsaI restriction
enzymes. The BbsI site present in AIO-GFP was utilized to introduce antisense (LC—left
CRISPER) oligonucleotides and therefore generate AIO-GFP HAX1 LC1 and AIO-GFP
HAX1 LC2 plasmids. To each respective plasmid, the second (sense, RC—right CRISPER)
sgRNA of a given pair was introduced utilizing the BsaI site. As a result, two different
constructs were generated, AIO-GFP HAX1 LCRC1 and AIO-GFP HAX1 LCRC2.

Cell line generation: HL-60 cell line was grown in RPMI1640 medium with L-glutamine
(Biowest) and 10% Fetal Bovine Serum (Gibco) at 37 ◦C in a 5% CO2. Electroporation of
5 × 106 HL-60 cells was carried out with AIO-GFP HAX1 LCRC1 and AIO-GFP HAX1
LCRC2 using the CLB-Transfection™ Kit (Lonza, Austria) and the CLB-Transfection™
System (Lonza, Austria) with the default program 9 setting. Single transfected cells were
sorted into separate wells of 96-well culture plate using BD FACSAria™ III (Becton Dickin-
son, Franklin Lakes, NJ, USA). Cells were cultured in RPMI for 14–21 days, colonies were
propagated, and successful KO was validated by Western blot in four cell lines, two of
which were used in experiments (Figure S1).

4.2. RIP-Seq

The HL-60 promyelocytic cell line (DSMZ, Braunschweig, Germany) was grown in
RPMI1640 medium with L-glutamine (Biowest) and 10% Fetal Bovine Serum (Gibco) at
37 ◦C in a 5% CO2. Sample preparation: The experiment was carried out in five replicates.
The EZ-Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore, 17–700
Sigma-Aldrich) was used according to the manufacturer’s protocol. A single freeze–thaw
was employed to gently lyse the cells, as described by Keene et al. [31]. An amount of
30 × 106 cells per sample were collected by centrifugation at 966× g, 5 min at 4 ◦C, and
washed two times with PBS containing protease inhibitors, resuspended in 200 µL of RIP
lysis buffer (Millipore) containing protease and RNase inhibitors, incubated for 5 min on ice,
snap-frozen in liquid nitrogen, and stored at −80 ◦C. Magnetic Beads Protein A/G (from
Magna RIP Kit) were incubated overnight (4 ◦C) with 10 µg of anti-HAX1 rabbit polyclonal
antibody (Thermo Fisher Scientific, Waltham, MA, USA; cat. PA5-27592) and Rabbit IgG
(Millipore) as a negative control. The lysates from the previous step were quickly thawed,
centrifuged at 14,000 rpm for 10 min at 4 ◦C, and 150 µL of supernatants were added to
each antibody complex in the RIP Immunoprecipitation Buffer. The final volume of the
immunoprecipitation reaction was 1.5 mL. A total of 10% of the sample was taken and
stored as a total input. The lysate was incubated with antibody-coated beads for 4 h at 4 ◦C.
After immunoprecipitation, the beads were washed 5 times with 1 mL of cold RIP Wash
Buffer. The last, sixth wash was performed with 0.5 mL of wash buffer and 50 µL out of

https://CRISPR.mit.edu


Cells 2022, 11, 2943 16 of 22

500 µL of each beads’ suspension was taken to test the efficiency of immunoprecipitation
by Western blotting. The remaining 450 µL of each suspension was collected with magnetic
separator, immune complexes and input were eluted and treated with proteinase K (55 ◦C
for 30 min). RNA was purified by extraction of phenol/chloroform followed by ethanol
precipitation. The concentration of the precipitated RNA samples was checked using
QuantiFluor RNA System (Promega), and the samples were used for library preparation
and RIP-seq.

4.3. RNA-Seq

Sample preparation: HL-60 cell lines (WT and HAX1 KO#1 and #2) were grown to
3.5 × 106 cells in each culture (each cell line in four replicates). RNA was isolated using
RNA PureLink Mini (Thermofisher, Waltham, MA, USA). Genomic DNA was removed
from the samples using the TURBO DNA-free kit (Thermofisher, Waltham, MA, USA).
RNA integrity was evaluated using Agilent RNA 6000 Nano Kit (Agilent Technologies,
Waltham, MA, USA). RNA samples with a RIN score ≥ 9 were used for the preparation of
cDNA libraries.

4.4. NGS Library Preparation and Sequencing (RIP-Seq, RNA-Seq)

The cDNA libraries were prepared using TruSeq™ Stranded Total RNA Library Prep
Gold (Illumina, San Diego, CA, USA) according to the manufacturer’s procedure. The
average size of the libraries was determined using the Agilent 2100 Bioanalyzer and High
Sensitivity DNA Kit (Agilent Technologies, USA), while the concentration was assessed
using the Qubit Fluorometer and dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA). Uniquely indexed libraries were pooled, mixed with Illumina PhiX Control v3
Library (1% of the total amount), and sequenced on HiSeq 1500 (Illumina) in Rapid Run
Mode. Single-read sequencing (1 × 50 bp) and paired-end sequencing (2 × 100 bp) were
performed for RIP-seq and RNA-seq, respectively.

4.5. RIP-Seq and RNA-Seq Data Analysis
4.5.1. RIP-Seq

All experiments were performed in five replicates. Raw sequences were trimmed
according to quality using Trimmomatic [32] (version 0.39) using default parameters, ex-
cept MINLEN, which was set to 50. Trimmed sequences were mapped to the human
reference genome provided by ENSEMBL (version grch38_snp_tran) using Hisat2 [33]
with default parameters. Optical duplicates were removed using the MarkDuplicates
tool from GATK [34] package (version 4.1.2.0) with default parameters, except OPTI-
CAL_DUPLICATE_PIXEL_DISTANCE, which was set to 12000. The mapped reads were
associated with transcripts from the grch38 database [35] (Ensembl, version 96) using
HTSeq-count [36] (version 0.9.1) with default parameters, except for the stranded, which set
to “reverse”. The variation was assessed by visual inspection of the first two components
from the principal component analysis (PCA), which revealed correct clustering. FPKM
was calculated with the fpkm function of the deseq2 package. Differentially expressed
genes were selected using the DESeq2 package [37] (version 1.16.1). The fold change was
corrected using apeglm. PCA, FPKM, and Deseq2 calculations were performed in the R
environment (version 3.6).

4.5.2. RNA-Seq

All experiments were carried out in four replicates. The DEGs selection was performed
as described above.

4.6. CRAC (Crosslinking and Analyses of cDNAs)
4.6.1. Sample Preparation

Stable established cell lines with HAX1 overexpression (coding protein tagged at
the C or N terminal end, two replicates for each construct) were induced with 1 µg/mL
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doxycycline and incubated 18–48 h. After, the incubation cells were UV-crosslinked in
Stratalinker 1800 (E = 400 mJ/cm2) at a wavelength 254 nm. Cells were lysed for 10 min
on ice in lysis buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl, 1% NP-40, 5 mM EDTA,
10% glycerol, 5 mM β-mercaptoethanol). Lysates were spun at 4600 RPM, 4 ◦C for 5 min,
and then filtered using syringe filter of 0.45 µm with PES membrane. IgG Sepharose was
added to the lysates and incubated overnight at 4 ◦C with rotation. The beads were washed
with IgG wash buffer (50 mM Tris-HCl pH 7.5, 800 mM NaCl, 0.5% NP-40, 5 mM MgCl2)
and PNK wash buffer (25 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% NP-40, 1 mM MgCl2).
RNAs were trimmed on beads using 1 unit of RNAce-IT in 0.4 of PNK buffer for 7 min at
37 ◦C. To stop the reaction, the supernatant with RNaceIT was removed and the beads were
resuspended in the room temperature denaturing elution buffer Ni-WBI (50 mM Tris-HCl
pH 7.5, 300 mM NaCl, 1.5 mM MgCl2, 10 mM Imidazole pH 8.0, 0.1% NP-40, and 6 M
guanidine hydrochloride). The elution was repeated one more time, both fractions were
combined, and the Ni-NTA beads were added for overnight incubation at 4 ◦C. The NI-NTA
beads were washed and transferred to Pierce columns. RNA was dephosphorylated with
8 U of Thermosensitive Alkaline Phosphatase (Promega) in supplied MultiCore buffer
with 80 U RNAsin for 30 min at 37 ◦C. Beads were washed with Ni-WBI and PNK wash
buffer. The 3′ linker ligation was performed overnight at 16 ◦C with 1 µM 3′ linker, 800 U
of truncated T4 RNA ligase 2 K227Q (New England Biolabs) in supplied PNK buffer with
RNAsin (Promega), and 10% (PEG8000). The beads were washed with WBI and PNK wash
buffer. The RNA–protein complexes were radioactively labeled with 32P-γ-ATP (20 µCi)
using 40 U T4 Polynucleotide Kinase (New England Biolabs) in the supplied PNK buffer
for 30 min at 37 ◦C. The 5′ linker ligation was performed in the same reaction mixture by
addition of the 5′ linker to the final 2.5 mM, nonradioactive ATP to final 1.25 mM, and 40 U
T4 RNA ligase 1 for 8 h at 16 ◦C. After washing the beads with the Ni-WBI and PNK wash
buffer, the RNA–protein complexes were eluted with elution buffer (50 mM Tris-Hcl pH
7.8, 300 mM NaCl, 150 mM Imidazole pH 8.0, 0.1% NP-40, 5 mM 2-mercaptoethanol) at
room temperature for 5 min. Protein–RNA complexes were precipitated with 80% acetone
in the presence of GlycoBlue at −20 ◦C overnight and spun for 20 min with max speed at
4 ◦C. Pellets were resuspended in LDS sample buffer (ThermoFisher, Waltham, MA, USA),
DTT, and EDTA and denatured for 3 min at 90 ◦C.

4.6.2. Autoradiography

Samples were resolved on 4–12% Bis-Tris NuPAGE gel at constant voltage (120 V)
using NuPAGE MOPS SDS running buffer (Thermo Fisher Scientific, Waltham, MA, USA)
and transferred to nitrocellulose membrane in NuPAGE transfer buffer using BioRad
Protean wet transfer system at constant voltage (100 V) for 1 h. Exposition was performed
at −80 ◦C overnight.

4.6.3. RNA Isolation from Membrane

Bands corresponding to RNA crosslinked to the HAX1 protein (Figure 1D) were cut
out and incubated with 450 µL Proteinase K buffer (50 mM Tris-HCl pH 7.8, 50 mM NaCl,
10 mM imidazole pH 8.0, 0.1% NP-40, 1% SDS, 5 mM EDTA, 5 mM 2-mercaptoethanol) and
200 µg Proteinase K for 2 h at 55 ◦C. The 3M sodium acetate pH 5.2 was added to final 10%
and the RNA was extracted with 500 µL phenol:chloroform:isoamyl alcohol. After 5 min
spin with a maximum speed at 4 ◦C, the aqueous phase was collected to a new tube and
the RNA was precipitated with 3 volumes of ethanol in the presence of GlucoBlue.

4.6.4. cDNA Library

Isolated RNA was incubated with SSIV reverse transcriptase (ThermoFisher) and a
primer binding to 3′ linker. The cDNA was amplified using LA Takara Taq polymerase.
PCR products were resolved on 3% Metaphor agarose gel (Lonza), and DNA fragments of
sizes approximately 150–200 nt were isolated from the gel using Qiagen’s Gel Extraction
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Kit (Figure 1D). The cDNA library was sequenced on the Illumina MiSeq platform in
Edinburgh Genomics (the University of Edinburgh).

4.7. CRAC Data Analysis

For CRAC experiments, all experiments (for N- and C-tagged protein) were performed
in two replicates each. Fold change for each gene was calculated as a Log2 from the exper-
iment/negative control ratio, normalized for total number of hits, and means from two
replicates. NGS results were analyzed using algorithms: flexbar (preprocessing), tophat
(genome mapping), and bedtools (analysis of genomic annotations). To identify HAX1
binding motifs, we extracted the coordinates of all HAX1 binding sites in mRNAs and
created a control dataset by randomly placing the coordinates of these binding sites on the
same mRNAs using shuffleBed. We then used the STREME sequence motif discovery algo-
rithm (minimum motif length 4 nt, maximum length 8 nt) to identify enriched motifs [38]
(https://meme-suite.org/meme/doc/streme.html, accessed on 15 August 2022).

Genomic position of HAX1 binding identification was done using UCSC Genome
Browser on Human Feb. 2009 (GRCh37/hg19) Assembly.

4.8. Gene Ontology and Correlation Analysis

Enrichment plots for RNA-seq data were generated by GSEA (gene set enrichment
analysis, [39,40]) software. Table of transcripts, identified during the RNA-seq experiment,
with an associated number of counts per transcript (data obtained with HTSeq-count),
was used as input data. Number of permutations was set to 1000 and permutation type
was set to “gene_set”. Gene set database (version 7.2) used for analysis is included in
the respective enrichment plots titles. The other gene ontology enrichment analyses were
performed using packages: Gene Ontology resource (http://geneontology.org, accessed on
15 August 2022); ([41] Gene Ontology 2021), DAVID Functional Annotation Tool, DAVID
Bioinformatics Resources, NIAID/NIH (https://david.ncifcrf.gov/home.jsp, accessed on
15 August 2022) [42,43], and String 11 Functional Enrichment Analysis for proteins with
values/ranks (https://string-db.org, accessed on 15 August 2022) [44]. Transcription
factors were analyzed using Enrichr ENCODE and ChEA Consensus TFs from ChIP-X
(https://maayanlab.cloud/Enrichr/, accessed on 15 August 2022) [45,46].

Correlation analysis with high-throughput data accumulated in TCGA (The Cancer
Genome Atlas) database was performed using cBioPortal for Cancer Genomics, a platform
for exploring multidimensional cancer genomic data [47,48] (https://www.cbioportal.org/,
accessed on 15 August 2022 ).

4.9. Transcription In Vitro

Transcription in vitro was performed for 140 nt RPL19 fragment of CDS from exon 3
(primers: FW 5′-GGTGCATTATGCTTTCCCAGGTCAG-3′, REV 5′-CTATGCCCATGTGCCT
GCCCTTC-3′) cloned into pGEM-T Easy vector in sense and antisense orientation. M13
fwd and rev primers were used in the PCR reaction for template generation. MEGAscript
T7 transcription Kit (ThermoFisher Scientific) was used for in vitro transcription with T7
RNA polymerase, according to the manufacturers’ protocol. Transcripts were purified
using MEGAclear Kit (ThermoFisher Scientific, Waltham, MA, USA).

4.10. Microscale Thermophoresis (MST)

MST experiments were performed using Monolith NT.115 (NanoTemper Technologies
GmbH, Munich, Germany). Purified HAX1 protein (Proteintech, Ag27244, fused with
His-tag) was labeled with RED-NHS 2nd Generation dye according to the supplied labeling
protocol Monolith NT™ Protein Labeling Kit. A series of dilutions of ligand RNA (sense
and antisense transcript) were prepared using buffer solution containing PBS with 0.2%
Tween-20. The solution of labeled protein was mixed 1:1 with different concentrations of
RNA strand, yielding a final concentration of 50 nM of the protein and the ligand in a range
of final concentrations between 10.8 µM and 0.000328µM. After 5 min of incubation, the

https://meme-suite.org/meme/doc/streme.html
http://geneontology.org
https://david.ncifcrf.gov/home.jsp
https://string-db.org
https://maayanlab.cloud/Enrichr/
https://www.cbioportal.org/
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NT.115 premium capillaries (NanoTemper Technologies, Munich, Germany) were filled
with the RNA/protein solution and thermophoresis was measured at an LED power of
100% and an MST power of 60% at RT. Each operation was controlled using the MO control
software. The Kd was determined by nonlinear fitting of the thermophoresis responses and
EC50 was determined by Hill fitting model using the MO Affinity Analysis v2.3 for both
types of the calculations.

4.11. Western Blot

Protein extracts were heat-denaturated (95 ◦C) in Laemmli buffer (50 mM Tris/HCl,
0.01% Bromophenol Blue, 1.75% 2-mercaptoethanol, 11% glycerol, 2% SDS) and separated
by 10–12% SDS/PAGE electrophoresis. Proteins were transferred to Immobilon-P PVDF
membrane (Merck Millipore, Burlington, MA, USA). The membranes were incubated for
1h using 5% low-fat milk solution in 1X TBS (50 mM Tris-Cl, pH 7.5, 150 mM NaCl) as a
blocking buffer, and then overnight at 4 ◦C in the same blocking solution containing one of
the following antibodies: anti-HAX1 (rabbit, Proteintech 11266-1-AP) or anti-RPL26 (rabbit,
1:5000, Abcam, ab59567). After washing (3 × 10 min in TBS), membranes were incubated
for 2 h at room temperature with the adequate HRP-conjugated secondary antibody: goat
anti-rabbit IgG (1:5000, Abcam, GB; cat. 97051) or goat anti-mouse IgG (1:10,000, Abcam,
GB; cat. ab97023). Membranes were developed using HRP detection kit WesternBright
Quantum (Advansta, San Jose, CA, USA; cat. K-12042).

4.12. qPCR

Quantitative PCR was performed as described [11]. Briefly, stable cell lines with HAX1
WT and HAX1 KO were subjected to Actinomycin D treatment (10 µg/mL). Cells were har-
vested in a designated time points and used for total RNA preparation (PureLink RNA mini
kit; Invitrogen), followed by the treatment with recombinant DNase I (Roche). An amount
of 1 µg of the obtained RNA was used for cDNA synthesis using Superscript III (Invitro-
gen). The cDNA was quantified by quantitative PCR on an ABI Prism 7500 real-time PCR
system using Power SYBR Green PCR Master Mix (Applied Biosystems, Life Technologies,
Carlsbad, CA, USA) and primers amplifying a fragment of DHX37 transcript (forward 5′-
CCCGATATCGAGAAAGCCTGG-3′; reverse 5′-CGTCCAGCACGTGAGATGAA-3′), RRP7
transcript: (forward 5′- TTCTCGTCACAAGGCACAGG-3′; reverse 5′-GAAGGGCCACACC
TAAGTCC-3′) and, as a reference, ACTB transcript (forward 5′-AGCCTCGCCTTTGCCGA-
3′; reverse 5′-GCGCGGCGATATCATCATC-3′). The ∆∆ CT method was used for calculating
mRNA expression levels.

4.13. Sucrose Gradient Centrifugation

HL-60 cell lines (WT and HAX1 KO#1 and #2) were grown and subcultured until
achieving 6 T-75 or 3 T-175 flasks with cells at a density of 1 × 106/mL. Cells were treated
with cycloheximide (100 µg/mL) at 37 ◦C for 10 min, harvested by centrifugation for 5 min
at 500× g, 4 ◦C, and washed 3 times with ice-cold PBS supplemented with 100 µg/mL
cycloheximide. After final wash and complete removal of PBS, the cell pellet was resus-
pended in 0.75 mL of lysis buffer A (10 mM Tris-HCl pH 7.4, 12.5 mM MgCl2, 100 mM KCl,
0.5% Triton X-100 reduced, 2 mM DTT, 100 µg/mL CHX, 200 units SUPERaseIn™ RNase
Inhibitor (20 U/µL; ThermoScientific), and cOmplete EDTA-free protease inhibitor (Roche)).
Cells were lysed by thorough pipetting and incubation for 15 min at 4 ◦C on a rotating
wheel. Lysates were aspirated into 1 mL syringe, passed through a 26G needle seven times,
and then centrifuged for 10 min at 16,000× g, 4 ◦C. RNA concentration in clarified cyto-
plasmic extracts thus obtained was measured using Nanodrop 2000c (ThermoScientific). A
total of 14–20 OD260 units of cytoplasmic extract in 500 µL of lysis buffer was layered on
top of 10–50% linear sucrose gradients, prepared using ÅKTA Purifier FPLC system and
0.22 µm-filtered sucrose solutions in polysome buffer (20 mM Hepes-KOH pH 7.4, 12.5 mM
MgCl2, 100 mM KCl; 2 mM DTT, 100 µg/mL CHX, and cOmplete EDTA-free protease
inhibitor), and ultracentrifuged for 3 h 15′ at 36,000 rpm, 4 ◦C in SW-41Ti rotor (Beckman
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Coulter). Subsequently, 0.5 mL fractions were collected from gradient by pumping 60%
sucrose solution in polysome buffer to the bottom of tubes, and OD254 was monitored on
an ÅKTA Purifier.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11192943/s1, Figure S1: HAX1 protein is not present in
HAX1 KO cell lines used in analysis. Figure S2: Principal Component Analysis of five RIP-seq
replicates shows correct clustering of data. Figure S3: Large ribosomal subunit rRNA with marked
region of potential interaction site with HAX1. Figure S4: STREME analysis of CRAC data. Figure S5:
The raw MST data for HAX1-RPL19mRNA interaction. Figure S6: Analysis of transcription factors
detected in RIP-seq selected as regulating transcripts differently expressed in HAX1 KO. File S1:
RIP-seq results; experimental data and analysis. File S2: CRAC results; experimental data and
analysis. File S3: Overlap of RIP and CRAC results File S4: RNA-seq (HAX1 KO/WT) results. File S5:
Correlation of expression of HAX1 with other genes in different neoplasm (cBioPortal analysis)
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