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Spider webs inspiring soft robotics
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In soft robotics, bio-inspiration ranges from hard- to software. Orb web
spiders provide excellent examples for both. Adapted sensors on their legs
may use morphological computing to fine-tune feedback loops that supervise
the handling and accurate placement of silk threads. The spider’s webs
embody the decision rules of a complex behaviour that relies on navigation
and piloting laid down in silk by behaviour charting inherited rules. Analyti-
cal studies of real spiders allow the modelling of path-finding construction
rules optimized in evolutionary algorithms. We propose that deconstructing
spiders and unravelling webs may lead to adaptable robots able to invent
and construct complex novel structures using relatively simple rules of thumb.
1. Background
Soft robotics or bio-robotics is a novel rapidly growing field that combines bio-
logical insights with engineering solutions in order to address fundamental
questions of real-life demands [1–3]. Solutions in conventional robotics rely
on principal design criteria of repeatability, precision, accuracy and strength.
Nature, by contrast, uses combinations of fundamentally soft materials to con-
struct highly flexible bodies with rule-of-thumb minds well adapted to tasks of
making-do. The octopus robot is a perfect example of the issues involved in
constructing a bioinspired soft-robot, both intellectually and practically [4–6].
Integrating the body’s hardware (especially if soft and nonlinear) and the con-
troller’s software can present high-level challenges [7]. In this context, the
spider and its web present an interesting paradigm because they act as a unit
with the animal’s behaviour creating a structure that, as an extension of the spi-
der’s body, takes over certain functions both sensory and ‘muscular’ [8]. This
extension is relatively inexpensive to make, is self-tuning through its silks
and, being renewed daily, readily matches changing conditions.

Web-building spiders provide interesting examples of model systems for the
interface of Nature and engineering. The spider’s orb web embodies the
decision rules of a complex orientation behaviour that relies on navigation
and piloting [8]. As an extended phenotype, the web is the frozen record of a
long sequence of behaviour patterns [9,10] that follow inherited rules evolved
over millions of years [11,12]. Analytical studies of real spiders followed
by computer modelling allow us to unravel as well as test and deploy key
path-finding and construction rules in a virtual environment [13,14]. Here we
combine a virtual spider robot (controlled by a rule system) with an
evolutionary algorithm (using cost–benefit evaluations). This allows us to
explore the flexibility inherent in a natural system that relies heavily on emer-
gent properties, which is a key feature of stigmergy [15]. Thus, the spider
and its web provide innovative procedural insights for creating highly adapt-
able and efficient robots able to invent and construct complex novel
structures using relatively simple rules of thumb.

In robotics terms, this natural enlargement of the spider’s body is tangible
structure (hardware) created by behaviour (software) manipulating silk (hard-
ware) in an iterative process of growing complexity and emergent properties
(figure 1). Some of that complexity is mitigated by the structure acting as a
dynamic information filter considered to be morphological computing by
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Figure 1. Behaviour and structure evolve together in the spider’s web. The building path (on left) is a track of detours, while the final web structure (on right)
represents the essence of the path frozen in a network of silk. Here, the construction actions and threads of the orb spider A. diadematus are colour coded. The
behaviour (left) first anchors and puts up the frame threads (red) filled in by a tight wheel of spokes (yellow). These radials are then linked by a scaffolding auxiliary
spiral (white) laid from the inside out. This geometric temporary spiral is superseded (and in the process cut down) by the arithmetic permanent and sticky capture
spiral (blue) built from the outside in ending with the spider at the hub surrounded by its evenly meshed, virgin capture net. Thus, in the final web (right) the
stiffening scaffolding spiral is absent (now radials coded in white). Selection acts on the web through (i) costs of the assembly (time, silk, risk of predation) and (ii)
the benefits of the trap, i.e. prey caught, creating an evolutionary feedback loop between the two phenotypes of fleeting behaviour (left) and semi-permanent
structure (right). For details, see [8,10].
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roboticists [16–18]. Thus, both the web-making process and
its outcome provide an interesting paradigm for roboticists
because the combination of spider and web constitutes a
complex and in parts complicated arrangement (or device)
in which emergent properties become an integral part of
the overall system. Webs are natural designs where diversity
and quality can be studied in great detail [8,10] and can also
be easily translated into the virtual reality of a digital cyber
world [13,14,19–21].
2. Results
Aweb-building spider—such as the orb spider Araneus diade-
matus (commonly called the garden cross spider)—faces
interesting challenges, and so does the bioinspired model
spider such as, in our case, the cyber spider Theseus. In
nearly all web spiders the fundamental source of input is
haptic and relies on touch and vibrations. In addition, the
animal also uses positional (kinaesthetic) information of
each leg provided by internal (proprioceptive) sensory
organs in combination with a memory stack on the path
already travelled allowing idiothetic path integration [8]. In
A. diadematus, like most other orb spiders that still have all
their legs, the two pairs of front legs detect the presence of
threads and measure distances while the spinneret lays and
affixes the silk assisted by the fourth pair of legs with the
third pair holding onto the supporting threads.

The virtual web of our cyber spider Theseus is a two-
dimensional network of rigid ‘segments’ connected to
others at ‘junctions’. Theseus crawls from one attachment
point to the next with its web building being divided into
a series of cycles each consisting of a crawl along existing
threads (navigation) and an attachment or removal of a
thread (construction). During each cycle, a new junction is
added to connect a new segment to its predecessor. Local
web geometry and global web position are factors for the
placement of attachment points; this information the
spider must sense itself. Local web geometry is found, for
example, during capture spiral construction, by the position
of the radials (leading to the hub) and auxiliary spiral as
well as the distance to the previous turn of the capture
spiral. Global web position is given by the direction of grav-
ity (the vertical), although both real and simulated webs can
be built in zero gravity with somewhat more symmetric
features.

Here, we discuss two slightly different versions of Theseus
dedicated to two different questions. Focusing on behaviour,
we employ Theseus AD (the AD invoking A. diadematus)
which allows us to study and test in detail the rules used
by a real Araneus to position the capture spiral—including
the use of shorter regenerated legs, which probes the impor-
tance of length measurements. To explore the effects of
selection and adaptation on web construction, we employ
Theseus EVO—with EVO standing for evolution. This allows
us to explore the concept of encoding web-building rules
into a genetic algorithm in order to examine the response
to selection pressures on overall web parameters and struc-
ture. Both rule details and rule optimization will be
of considerable importance in any attempt to build a truly
bioinspired robot spider.
2.1. Adaptations in a web-building control system
Fortunately for investigations into the spider’s behaviour
algorithms, some web-building spiders are able to regenerate
lost legs that are also fully functional on first use [22]. Not
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Figure 2. Regeneration of legs in Araneus. (a) Some spiders, like this common garden cross spider A. diadematus, regenerate lost limbs after voluntary autotomy
and are able to build and also operate. (b) A perfect web already the very day of their moult when the legs are still untried [22]. These new legs are much
stubbier and less hairy than the normal legs and with slightly smaller and modified claws (c,d ). Importantly, in lyriform organs, the physical form determines
the sensory function [25] and on the regenerated legs, they differ significantly in shape [24] with implications on sensing as well as feedback on leg positions
(e,f ). Note that (a) shows the dorsal and (b) the ventral view of the spider; also note the wrapped prey left in situ in the web, a natural behaviour. See figure 4
for a web built with regenerated legs.
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all web spiders do this but instead actively supress regen-
eration [23], which tells us something about the sensor and
motor requirements and hand-shaking necessary to con-
trol and supervise the fine movements and handling
associated with web building [24]. In A. diadematus, the
regenerated legs are much shorter and stubbier than
those they replace yet already fully functional hours after
emerging from the precursor so far dormant under the
hip stump of the old discarded leg [22]. Importantly, not
only are these legs overall shaped differently from their
un-regenerated counterparts but key sensory organs, the
lyriforms, on these legs have different morphologies, too
(figure 2).
The modifications in the lyraform organs are a bit of a give
away because in these highly geometric organs the physical
form maps directly onto the signal output [25], suggesting
that the evolutionary tuning of anatomic details may involve
morphological computing via a matched filter set-up [23,24].
In short, it is not unreasonable to assume that here we have
an example of a highly adapted control system: the tuned
sensor modifies the information, which allows the central
processor (the animal’s brain) to run its normal controller pro-
gram to instruct the actuators. The ease-of-use robustness
would suggest that the feedback matching of the incoming
and outgoing signals is also done by the adapted sensors
[23]. Whatever the mechanism, Araneus spiders with
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Figure 3. Comparing the webs of real spider A. diadematus and cyber spider
Theseus v2. Both had either all legs normal lengths (control) and or had the
two front legs on one side regenerated to roughly half size (regenerated). A
sample web for each treatment is shown on the right. Both real and virtual
spiders were able to construct functional webs with regenerated (and thus
shortened) forelegs on one side of Araneus that affect the regularity of
the capture spiral negatively; as they also did on Theseus. While regularity
suffers, and a few other web parameters are also affected following leg
regeneration, the overall function of the webs seems to be rather robust
(for details, see [13]). This feature has implications for the validity of
using the concept of leg regeneration (and the related concept of morpho-
logical computing) in the web-building algorithm of our spider model. For
more details, see appendix A and [13].
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regenerated legs cannot only build highly functional webs
(figure 3) but also operate them very well indeed [13].

Comparison of natural webs with virtual webs built by
our cyber spider Theseus allows us to probe and test poss-
ible web algorithms and details of embedded decision
rules on the placement of threads (figure 4). In both cases,
the position of a fibre junction determines the position of
the next one and thus in sequence govern the emergence
of a fibre network and tension field, which in turn affects
(and perhaps even determines) the overall geometry of
the final web.

2.2. Spider web building encoded as a set of decision
rules

In evolution, some traits change faster than others with some
features being more variable and thus adaptable than others
[27]. Behaviour is an outlier among most inherited traits, in
that it shows exceptional flexibility in its expression [28,29].
Web spiders provide an outstanding example for this trait
because here fleeting behaviour is frozen in time and
recorded in structures that can be measured and probed in
great detail [30]. In technological terms, the spider operates
as an autonomous robot (without GPS and controller super-
vision) relying on an internal guidance system supported by
feedback from a self-built environment with emergent prop-
erties. A simple set of rules or behaviour patterns invokes
repeated local interactions with an environment that is
both modified and used as feedback for local orientation
(figure 4).

Clearly, the spider and its web provide an outstanding
example to study a number of concepts of importance to
robotics. On the one hand, there is the behaviour itself, i.e.
the exact makeup of the decision rules that the animal uses
to build its web as well as the evolution of the path-finding
rules used to orient in the emerging structure. On the other
hand, there is the question whether unravelling this kind of
behaviour might be useful for insights into designing
robust robots to operate in challenging and information-
deprived environments. Here, we note that regarding spatial
awareness, the real spider seems to be operating in a self-
centred domain, i.e. piloting and navigating in a coordination
system that is polar rather than Cartesian [8], which would be
of interest for technology transfer into specific technical
applications such as self-driving cars [31].
2.3. Analysis of Araneus web building
The garden cross spider A. diadematus readily adapts its orb
web architecture to environmental conditions with many
factors affecting web construction and consequently web
structure [32,33]. Thus, although the building behaviour
follows a fixed general schema, it clearly has ample scope
for special local adaptations. As a process, web-building
behaviour involves orientation (landmark piloting and
vector navigation) in three-dimensional space combined
with the sub-millimetre placement and manipulation of
micro-sized silken threads. Rules of orientation guide the
animal’s path, while rules of manipulation determine points
where threads are connected.

For unravelling the building algorithm, the regeneration
of lost legs permits detailed analysis of particular legs as
measuring devices. It emerges that, during web construction,
Araneus uses its first pair of legs to measure certain distances,
like the spacing of joints on a radial in the capture spiral. By
contrast, geometric dimensions do change when angles
(rather than distances) are measured by the shorter regener-
ated legs during handling and positioning of threads and
joint [13,22].

Although in the finished web we see only the threads
and joints, detailed studies of all the behaviour patterns
involved in web building allow us to infer from the posi-
tioning of the joints not only the path but also the rules of
placement [8,26] (figure 1). The process consists of a
sequence of behaviour patterns that rely on measuring geo-
metric parameters such as distances and angles, and
include path integration in a spider internal guidance
system using spatial information that is acquired both
locally and globally [8].

Repeating experiments on different genotypes allowed us
to dissect the action and expression of the hidden rules (the
flow of information) that guide and control the behaviour,
which creates the phenotype of the web. Detailed analysis
of experimental perturbations of building spiders, ideally of
sufficiently different genotypes, then allowed us to link rule
action with parameters of the web-building algorithm and
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to test these hypothetical links in our computer model spider
Theseus.

2.4. Theseus cyber spider web building and web
evolution

Theseus is a virtual spider modelled on the common garden
spider A. diadematus. Theseus’ brain comprises a controller
with rules and an interpreter [13,19–21,26]. Each rule requires
a condition and responds with an action (figure 5). A web-
building simulation consists of a sequence of rule-cycles
whereby the interpreter tests the conditions for all rules,
selects rules that satisfy the present conditions and performs
the appropriate action(s). Importantly, small changes to the
rule set allow the study of their effect on the web, such as
the simulation of the famous drug effects [34] by tweaking
the interaction between the decision parameters angle and
distance to become unstable. Experiments conducted on
Araneus web building were simulated with Theseus allowing
us to test specific hypotheses and to probe into the way
local and global cues could be used to explore the role of
kinaesthetic and idiothetic factors.

Theseus AD was surprisingly informative during the
simulation and testing of a range of web-building decision
rules and variables. A variant version of the cyber spider,
Theseus EVO, enabled us to go one step further than testing
details of the algorithm for spiral construction in real spi-
ders. Theseus EVO allowed us to study evolutionary
processes via a generic set of web-building rules extracted
from observations of all stages of Araneus web construction
starting with the frame threads and ending with the capture
spiral. In this set-up, the rules were selected in sequences of
simulations to allow the behaviour and thus the web to
adapt in a virtual ecological niche (figure 6). Here, the
cyber web carried some of the costs of a real web, specifi-
cally the energetic costs (which are different) of the silks
for the radials (non-sticky) and for the capture spiral
(sticky) as well as the time spent laying down (which is
equal) those silks to create the web. In return, the web pro-
vides the spider with benefits embodied in our selection
arena from the energy provided by the size of the prey
and in some scenarios also the impact position in the web,
which affects the probability of capture by the spider. The
interaction of these two parameters determines the
cost–benefit balance.

To allow Theseus EVO to respond to its environment, we
employed the setting of an evolutionary (genetic) algorithm
(EA or GA), i.e. a computerized optimization process mod-
elled on the mechanisms of natural selection [35–37].
Fundamentally, an EA optimization procedure is based on
the principle of encoding the parameters of a fitness function
(the optimization problem) in such a way that they behave
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like genes in organisms, i.e. that they replicate, mutate,
recombine and submit to selection. The central goal both in
Nature and in an EA is for each unit (animal or bot) to
accumulate resources to produce as many offspring as poss-
ible. This has to be done in competition with other units
with the same goal, all aiming for more or less the same
resources at more or less the same time. Comparable to any
challenge, there are better or poorer solutions leading to the
establishment of a new concept in the wider population or
its eradication.

Natural evolution tends to be rather complex, although
the underlying processes of selection are simple. The fitness
of an individual, which can be defined by the number of sur-
viving and further reproducing offspring, is determined by
various factors. Among those are internal variables, such as
behaviour, anatomy and physiology, as well as
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environmental variables such as resources (food, water, shel-
ter), climate, predator presence, breeding opportunities, etc.
In an orb spider like Araneus, reproductive fitness is largely
determined by the number and quality of prey a spider
catches during its lifetime. The more prey a female catches
and eats, the larger her size and weight allowing for better
web defence against potential usurpers and also, most impor-
tantly, increasing the number of eggs she can ultimately lay
[38]. Thus, reproductive fitness depends on how well a web
is built for catching prey. Importantly, web construction has
to be not only competent but also efficient because, firstly,
silk is a costly and limited resource and, secondly, web build-
ing has to be fast as it exposes the spider to the sight of
predators and does not trap any prey unless it is finished
and functional [39].

The evolution of a spider’s web is a long and convoluted
process as amply demonstrated by studies and heated discus-
sions of orb spider phylogeny [11,12]. How much and what
kind of prey gets entangled in a web and can be caught by
a spider is partially determined by judicious placing of the
web in the habitat and then by chance encounters with
flying or jumping insects. Prey abundance, size and behav-
iour may vary depending on local environmental
conditions and some prey might have adapted to avoid the
web or escape from it. Our model allows us to simulate
such environmental factors having simplified the evolution-
ary process such that the fitness of the virtual spider
depends solely on its success of acquiring prey, given limited
resources (figure 7).
3. Discussion
Our combination of experiments on Araneus informing the
modelling with Theseus supports the general agreement
that the spider’s behaviour produces a web that is well
adapted, perhaps even optimized, for its function as an effi-
cient and effective trap. But the web is much more than a
particle filter and missile stop. It acts also, in parallel, as
an information platform for the spider by providing dedi-
cated, built-in sensor functionality that originates from the
web’s action as a self-tuning morphological computing
device. Enabled by the construction material, a range of
silks, which in turn belong to a class of material with arche-
typal soft matter properties, one might even argue that this
is soft robotics at its best. Selected parameters of web form
and function illustrate the spider web’s relevance to bio-
inspiration for future technology translation of potential
interest in soft robotics. As a particle filter, the web relies
on the self-tuning properties and electrostatic attraction of
aqueous droplets on the capture threads [40–42]. As a mis-
sile stopping net, the web re-purposes these droplets by
using their action as micro-size windlass fibre-reeling mech-
anisms [43]. As an information platform, the web transmits
displacements [42] as well as vibrations of movements
within the entire structure [44] with the vibrations, filtered
and tuned by the web structure, providing signals that
allow the spider to remotely monitor web activity as well
as web status [44,45].

Instrumental for the function of the web is its adaptability,
which relies on its origin, i.e. the properties emerging from
long sequences of inherited but adaptable behaviour actions,
as discussed earlier. Behaviour has the benefit of being much
more flexible than morphology with rapid-response sensor
and actuator feedback loops aiding the controller. Focusing
on a natural construction behaviour with a clear-cut cost–
benefit function allowed us to discover, enable and explore
a construction algorithm for an optimized net morphology
that is indeed very soft, i.e. easily stretches and distorts
during both manufacture and operation.

While the cost–benefit analysis of time/material
expenses versus energy income (prey size/density) is a
very real one for spider and robot alike, other parameters
of the web engineering and architecture were not included
in this study. Nevertheless, we propose that our study lays
the groundwork for developing, testing and optimizing
novel bioinspired behaviour algorithms for the control of
engineered robots in a wide range of environments and
applications. Of specific interest to the emergent field of
soft robotics will be the intimate interaction of the hard-
shelled arthropod animal with integrated soft sensors
and the super-soft visco-elastic silk web material. Students
of stigmergy will find inspiration in the functional complexity
emerging from rule-of-thumb iterations. A good under-
standing of such complex and typically nonlinear
interaction appears to be inspiring novel developments in
robotics [46,47].

Thus, the analysis of spider web building provides the
engineer and roboticist with a fine example for the concept
of stigmergy [48] where complex, virtually intelligent
structures can be created without direct interaction, com-
munication, control or overarching planning. In computer
engineering, the concept of stigmergy serves as inspiration
for applications in wide-ranging areas of animal and
human behaviour wherever an action configures the follow-
ing action by the intermediary of the trace it leaves [49].
Examples for the phenomenon range from ant nest construc-
tion [48,50] and biofilm self-organization [51] to robot swarm
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4. Conclusion: reduction to practice
It will be interesting to further examine the possible appli-
cations of the combination of a real robot spider controlled
by a bioinspired (i.e. soft robotic) brain and extending its
phenotype into a housing using a soft-material web construc-
tion. With that in mind, we include in the electronic
supplementary material links to the outcome of our research
for downloading as apps and we are open to discussing and
sharing code. One practical use of our study in robotics appli-
cations might be the construction and deployment of
extensive net structures [55], for example, to catch space
junk [56] where a new web tailored to requirement can be
built on the spot using a spider-inspired robot and where
silk might very well be the material of choice [57]. Another
use could be the capture and analysis of airborne pollutants
where the robot would take down the web daily for ingestion
and analysis in analogy to a spider who recycles the web
protein while also harvesting tiny insects as well as, unfortu-
nately in some cases, pollutants [58]. A third use might be the
use of temporary and energetically inexpensive scaffolds for
lifting and shifting operations [46]. Indeed, this particular
application could be extended to exploration and work in a
denied environment where a single or swarm robot uses its
web not only as a navigation and operational platform but
also as an information network and energy provider—just
like its inspiration, the spider, does.

Data accessibility. Electronic supplementary material supporting this
article is available through download at http://users.ox.ac.uk/∼
abrg/apps/ pointing to the outcome of our research for download-
ing applications with the additional comment that we are always
open for joint fundamental research using our technology and
also for joint software development.
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Appendix A. Effect of prey size and position in
the webs of Theseus
The size of dots represents the size of the virtual flies. Araneus
spiders build vertical webs and are better at catching prey in
the lower (south) regions of a web partly because of gravity
and partly because they already sit at the hub facing down.
This behaviour can be modelled in Theseus and the various
effects are shown in the figure where a slightly higher
value is given to flies stuck to southern threads. Note that
the spider responds over generations by expanding the
southern regions of the web which leads to up–down
asymmetries.

The coloured stripe at the bottom of each image rep-
resents the setting of the genome with each position being a
gene and the colour indicating its value—with red at maxi-
mum and blue at minimum, and grey that the genes were
inactive and unused by this set of rules.
b) large prey escapes from spiral if not attacked swiftly

d) small prey escapes from spiral if not attacked swiftly

http://users.ox.ac.uk/~abrg/apps/
http://users.ox.ac.uk/~abrg/apps/
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