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Abstract: Hyaluronic acid (HA) ophthalmic solution is widely used in dry eye treatment worldwide.
However, there are no reports comparing the dry eye treatment effects of high molecular weight HA
with low molecular weight HA. Sixty eight-week-old C57BL/6 mice were assigned to the following 6
groups and exposed to environmental dry eye stress (EDES) that mimics office work environment:
(1) 0.1% low molecular weight HA (LMWHA) eye drops, (2) 0.3% LMWHA eye drops, (3) 3%
diquafosol sodium (DQ) eye drops, (4) 0.15% high molecular weight HA (HMWHA) eye drops, (5) no
treatment with exposure to EDES (EDES+/Treatment−), and (6) no treatment without exposure to
EDES (EDES−/Treatment−). After EDES, the HMWHA group had significantly longer break-up
time (BUT) than the 0.1%, 0.3% LMWHA groups and the DQ group. After EDES, the HMWHA
group had significantly lower lissamine green staining scores than the LMWHA and DQ groups.
Subepithelial presumed dendritic cell density in the HMWHA group was significantly lower than
the EDES+/Treatment− group. After EDES exposure, Conjunctival Muc5AC mRNA expression in
the HMWHA group was significantly higher than the 0.1 and 0.3% LMWHA groups. Ophthalmic
HMWHA solution may have a better dry eye treatment effect than LMWHA or DQ solution, owing to
its anti-inflammatory effect.

Keywords: dry eye; high molecular weight hyaluronic acid; treatment; corneal subbasal dendritic
cell density; Muc5AC; ocular surface staining

1. Introduction

Large epidemiological studies have reported a dry eye prevalence of 10.1% for men and 20.1% for
women in office workers [1]. It is known that dry eye in office workers is accompanied by eyestrain
and visual function deterioration, which ultimately affects work productivity [2]. Therefore, treatment
and prevention of dry eye seems to be an important health problem for office workers. It has also
been reported that dry eyes can be worsened by wearing contact lenses in office workers. It has
been pointed out that dry eye in visual display terminal (VDT) workers is associated with lacrimal
gland dysfunction [3] or a decrease in MUC5AC concentration in tears [4]. This is in accordance with
a previous study which reported desiccating stress induced T cell-mediated inflammation of the cornea,
conjunctiva, and lacrimal gland, including decreased tear secretion and loss of conjunctival goblet cells
in mice [5,6].
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Tear film oriented therapy has been recommended as a treatment strategy for dry eye by
the Japanese Dry Eye and Asia Dry Eye Societies [7–10]. The concept is examining where the abnormality
in the tear film is and performing a stratified treatment based on the examination findings. Treatments
for the aqueous layer of the tear film include artificial tears, secretagogues, and punctal plugs. Artificial
tears have long been used in the treatment of dry eye and have the effect of improving the aqueous
layer by increasing the retention of water. In Japan, sodium hyaluronate ophthalmic solutions have for
many years been used to treat dry eye.

We have previously reported an environmental dry eye stress (EDES) model as an animal model
that mimics the visual display terminal work [11]. EDES is a mouse model of the modern office worker
environment, inducing dry eyes due to spatial and air conditioning stress. Animals when exposed to
EDES develop inflammation mediated loss of tear volume and secretory Muc5AC, instable tear film
resulting in decrease of tear break-up time (TBUT), and ocular surface damage.

Hyaluronic acid (HA) is a member of the family of glycosaminoglycans that is a major component
of the extracellular matrix, and plays an important role in organizing and maintaining tissues. It has
also been reported to be deeply involved in each stage of wound healing [12]. Therapeutic effect of HA
has previously been proven [13], and it has been widely used as a treatment for dry eyes. In animal
experiments, it has been reported that the effect on promoting wound healing in corneal erosions is
higher than that of vehicles [14]. Both low and high molecular weight HA eye drops are increasingly
being used in ophthalmology. It has been reported that the high molecular weight HA (HMWHA)
has anti-inflammatory and wound healing-promoting effects as compared to low molecular weight
HA (LMWHA) [15–18]. A previous clinical study has also shown that high-molecular-weight HA eye
drops can be used as an alternative to autologous serum eye drops for severe dry eyes [19].

The purpose of this study was to compare 0.15% HMWHA eye drops with 0.1 and 0.3% LMWHA
eye drops, as well as 3% diquafosol sodium (DQ) with respect to their effectiveness to prevent and treat
EDES induced dry eye disease in mice.

2. Results

2.1. Aqueous Tear Secretion and Tear Film Stability

The amount of tear secretion and tear film stability were measured 3 days before EDES exposure,
on the day before EDES exposure, after 3 days of EDES exposure, and 4 days after termination of
EDES exposure.

Tear secretion volume significantly decreased in the 0.1% LMWHA, 0.3% LMWHA
and EDES+/Treatment− groups. In contrast, tear secretion volume in the DQ and HMWHA groups
did not show significant changes (Figure 1).

In the 0.1% LMWHA, 0.3% LMWHA, DQ, and EDES+/Treatment− groups, TBUT significantly
decreased after exposure to EDES (0.1% LMWHA group, 0.3% LMWHA group, DQ group: p < 0.001,
EDES+/Treatment− group: p = 0.012) (Figure 2). TBUT in the HMWHA group after EDES exposure
was significantly longer than in the 0.1% LMWHA, 0.3% LMWHA, DQ, EDES+/Treatment− groups
(vs. 0.1% LMWHA, p = 0.033; vs. 0.3% LMWHA, p = 0.042; vs. DQ, p = 0.044; vs. EDES+/Treatment−,
p = 0.028).

2.2. Changes in Vital Staining Score

The vital staining scores, including the fluorescein and the lissamine green staining scores, were
evaluated 3 days before EDES exposure, on the day before EDES exposure, after 3 days of EDES
exposure, and 4 days after termination of EDES exposure.

The mean fluorescein staining score significantly increased after exposure to EDES in the 0.1%
LMWHA, 0.3% LMWHA, DQ, HMWHA, and EDES+/Treatment− groups (Figure 3). The mean
fluorescein staining score of the HMWHA group after EDES was significantly lower than that in
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the 0.1% LMWHA (p = 0.025), the 0.3% LMWHA (p = 0.034), and the EDES+/Treatment− groups
(p = 0.016).
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Figure 2. Time-course changes of tear breakup time (BUT). In the 0.1% LMWHA, 0.3% LMWHA, DQ, 

and EDES+/Treatment− groups, tear BUT significantly decreased after exposure to EDES. In contrast, 

in the HMWHA and EDES−/Treatment− groups, there were no significant changes after exposure to 
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0.3% LMWHA, DQ, and EDES+/Treatment− groups. * and ** represent p < 0.05 and p < 0.001, 

Figure 1. Time-course changes of weight-adjusted tear volume. In the 0.1% LMWHA, 0.3% LMWHA,
and EDES+/Treatment− groups, tear volume significantly decreased after exposure to EDES. In contrast,
in the DQ, HMWHA, and EDES−/Treatment− groups, there were no significant changes after exposure
to EDES. ** represents p < 0.001. LMWHA, low molecular weight hyaluronic acid (HA); DQ, diquafosol
sodium; HMWHA, high molecular weight HA; EDES, environmental dry eye stress.
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Figure 2. Time-course changes of tear breakup time (BUT). In the 0.1% LMWHA, 0.3% LMWHA, DQ,
and EDES+/Treatment− groups, tear BUT significantly decreased after exposure to EDES. In contrast, in
the HMWHA and EDES−/Treatment− groups, there were no significant changes after exposure to EDES.
Tear BUT in the HMWHA after exposure to EDES was significantly longer than 0.1% LMWHA, 0.3%
LMWHA, DQ, and EDES+/Treatment− groups. * and ** represent p < 0.05 and p < 0.001, respectively.
LMWHA, low molecular weight hyaluronic acid (HA); DQ, diquafosol sodium; HMWHA, high
molecular weight HA; EDES, environmental dry eye stress.

The mean lissamine green staining score was significantly worse after EDES in the 0.1% LMWHA,
0.3% LMWHA, DQ, HMWHA, and EDES+/Treatment− groups (Figure 4). The mean lissamine green
staining score in the HMWHA group after EDES exposure was significantly lower than the 0.1%
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LMWHA (p = 0.044), 0.3% LMWHA (p = 0.012), DQ (p = 0.028), and EDES+/Treatment− groups
(p = 0.013).
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Figure 3. Time-course changes of fluorescein staining score. In the 0.1% LMWHA, 0.3% LMWHA, DQ,
HMWHA, and EDES+/Treatment− groups, the mean fluorescein staining score significantly increased
after exposure to EDES. The mean fluorescein staining score in the HMWHA after exposure to EDES
was significantly lower than 0.1%LMWHA, 0.3% LMWHA, and EDES+/Treatment− groups. * and **
represent p < 0.05 and p < 0.001, respectively. LMWHA, low molecular weight hyaluronic acid (HA);
DQ, diquafosol sodium; HMWHA, high molecular weight HA; EDES, environmental dry eye stress.
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Figure 4. Time-course changes of lissamine green staining score. In the 0.1% LMWHA, 0.3% LMWHA, DQ,
HMWHA, and EDES+/Treatment− groups, the mean lissamine green staining score significantly increased after
exposure to EDES. In contrast, in the EDES−/Treatment− group, there were no significant changes after exposure
to EDES. The mean lissamine green score in the HMWHA was significantly lower than 0.1% LMWHA, 0.3%
LMWHA, DQ, and EDES+/Treatment− groups after exposure to EDES. * and ** represent p < 0.05 and p < 0.001,
respectively. LMWHA, low molecular weight hyaluronic acid (HA); DQ, diquafosol sodium; HMWHA, high
molecular weight HA; EDES, environmental dry eye stress.
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2.3. In Vivo Confocal Microscopy Evaluations

Subbasal nerve density and presumed dendritic cell density were evaluated using the in vivo
confocal microscopy on the fourth day after EDES exposure was completed (Figure 5). In the 0.1%
LMWHA group (p = 0.023), 0.3% LMWHA group (p = 0.028), DQ group (p = 0.032), HMWHA group
(p = 0.046), and EDES+/Treatment− group (p < 0.001), the mean subbasal nerve density was significantly
higher than in the EDES+/Treatment− group. The mean dendritic cell density in the HMWHA
and EDES−/Treatment− groups was significantly lower (p = 0.033) than the EDES+/Treatment− group
(vs. HMWHA, p = 0.033; vs. EDES−/Treatment−, p = 0.027).
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Figure 5. Comparison of subepithelial nerve density and presumed dendritic cell density measured 

by in vivo confocal microscopy. (A) Representative confocal microscopy image showed marked 

decrease of subepithelial nerve in the EDES+/Treatment− group. (B) Representative confocal 

microscopy image showed marked increase of subepithelial dendritic cell infiltration in the 

EDES+/Treatment− group. (C) The mean subepithelial nerve density in the EDES+/Treatment− group 

was significantly lower than other groups. (D) The mean subepithelial dendritic cell density in the 

HMWHA and EDES−/Treatment− groups was significantly lower than the EDES+/Treatment− group. 

* and ** represent p < 0.05 and p < 0.001 when each group was compared with the EDES+/Treatment− 

group, respectively. Scale bar shows 100 µm. Black arrowheads show presumed dendritic cells. 

LMWHA, low molecular weight hyaluronic acid (HA); DQ, diquafosol sodium; HMWHA, high 

molecular weight HA; EDES, environmental dry eye stress. 

2.4. Conjunctival Muc5AC Alterations 

On the fourth day after EDES exposure, ocular tissues were collected, and Muc5AC 

immunostaining and mRNA expression analysis were performed (Figure 6). Immunostaining 

showed a decrease in staining in the EDES+/Treatment− group compared to the other groups, and 

stronger staining in the HMWHA group. The mean expression of Muc5AC in the HMWHA group 

was significantly higher than in the 0.1% LMWHA group (p = 0.011), the 0.3% LMWHA group (p = 

0.014), and the EDES+/Treatment− group (p = 0.022). The 0.1% LMWHA group (p <0.001), the 0.3% 

LMWHA group (p < 0.001), and the DQ group (p < 0.001) showed significantly lower values than the 

EDES−/Treatment− group. The DQ group showed a significantly higher value than the 0.1% LMWHA 

group (p = 0.037). 

Figure 5. Comparison of subepithelial nerve density and presumed dendritic cell density measured by
in vivo confocal microscopy. (A) Representative confocal microscopy image showed marked decrease
of subepithelial nerve in the EDES+/Treatment− group. (B) Representative confocal microscopy image
showed marked increase of subepithelial dendritic cell infiltration in the EDES+/Treatment− group.
(C) The mean subepithelial nerve density in the EDES+/Treatment− group was significantly lower than
other groups. (D) The mean subepithelial dendritic cell density in the HMWHA and EDES−/Treatment−
groups was significantly lower than the EDES+/Treatment− group. * and ** represent p < 0.05
and p < 0.001 when each group was compared with the EDES+/Treatment− group, respectively. Scale
bar shows 100 µm. Black arrowheads show presumed dendritic cells. LMWHA, low molecular
weight hyaluronic acid (HA); DQ, diquafosol sodium; HMWHA, high molecular weight HA; EDES,
environmental dry eye stress.

2.4. Conjunctival Muc5AC Alterations

On the fourth day after EDES exposure, ocular tissues were collected, and Muc5AC
immunostaining and mRNA expression analysis were performed (Figure 6). Immunostaining showed
a decrease in staining in the EDES+/Treatment− group compared to the other groups, and stronger
staining in the HMWHA group. The mean expression of Muc5AC in the HMWHA group was
significantly higher than in the 0.1% LMWHA group (p = 0.011), the 0.3% LMWHA group (p = 0.014),
and the EDES+/Treatment− group (p = 0.022). The 0.1% LMWHA group (p <0.001), the 0.3%
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LMWHA group (p < 0.001), and the DQ group (p < 0.001) showed significantly lower values than
the EDES−/Treatment− group. The DQ group showed a significantly higher value than the 0.1%
LMWHA group (p = 0.037).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 15 
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Figure 6. Comparison of Muc5AC immunohistochemistry and mRNA expression in the conjunctiva.
(A) Representative immunohistochemistry image showed marked decrease of immunostaining in
the EDES+/Treatment− group. Fluorescein isothiocyanate (green) and 4’,6-Diamidino-2-phenylindole
(DAPI) (blue) were used for Muc5AC and nuclear staining respectively. (B) The Muc5AC mRNA
expression (∆Ct) in the EDES+/Treatment− group was significantly lower than the HMWHA, DQ,
and EDES−/Treatment− groups. In addition, the Muc5AC mRNA expression in the HMWHA group
was significantly higher than the 0.1% LMWHA, 0.3% LMWHA, and EDES+/Treatment− groups.
* and ** represent p < 0.05 and p < 0.001, respectively. LMWHA, low molecular weight hyaluronic
acid (HA); DQ, diquafosol sodium; HMWHA, high molecular weight HA; EDES, environmental dry
eye stress.

3. Discussion

In this study, we investigated the therapeutic effects of HMWHA eye drops, LMWHA eye drops
and DQ eye drops in an EDES-induced dry eye mouse model. One hypothesis of our study was that,
due to their pronounced viscoelasticity, HMWHA eye drops would stay longer on the ocular surface
and provide improved lubrication, both resulting in a reduced staining score. Another hypothesis
was that, due the larger chain length, the HMWHA molecules might have had a higher potential than
LMWHA molecules to entangle with and substitute gel forming Muc5AC chains, which might result in
improved tear film stability. Moreover, if the HMWHA were to provide a significant anti-inflammatory
effect on the ocular surface, this could result in the protection of the lacrimal glands and goblet cells
against T cell-mediated damage and be reflected in increased levels of tear volume and Muc5AC.

In the EDES+/Treatment− group, tear secretion decreased, TBUT shortened, and vital staining
score increased after EDES exposure. These results indicated that EDES model did cause dry eye.
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Tear secretion significantly decreased in the 0.1 and 0.3% LMWHA groups, but not in the DQ
and the HMWHA groups. Since diquafosol sodium induces secretion of aqueous fluid from
the conjunctiva via the P2Y2 receptors, it is possible that the tear secretion was maintained even after
EDES exposure in the DQ group. HMWHA eye drops may have a stronger effect of retaining water on
the ocular surface than thee LMWHA eye drops due to the high viscosity.

TBUT decreased in the LMWHA and DQ groups due to EDES exposure but not in the HMWHA
group. TBUT in the HMWHA group after EDES exposure was significantly longer than the LMWHA
and DQ groups. This suggests that, in the HMWHA group, in addition to maintenance of the tear
volume, high molecular weight HA may remain on the ocular surface for a long time and stabilize
the tear film for a longer time.

Vital staining scores by fluorescein and lissamine green stainings were performed to evaluate
the ocular surface abnormalities. In all treatment groups, the staining score was worsened by EDES
exposure. However, the mean fluorescein staining score in the HMWHA group after EDES exposure
was significantly lower than the 0.1 and 0.3% LMWHA groups. Similarly, the mean lissamine green
staining score in the HMWHA group after EDES exposure was significantly lower than the 0.1 and 0.3%
LMWHA and DQ groups. These results suggest that the HMWHA drops protect the corneal epithelium
more than other treatment groups by increasing the tear volume and prolonging the BUT. HA is a linear
sugar chain existing extracellularly, binds to various molecules on the cell surface, and is involved in
various processes of wound healing via signal transmission [20]. A previous study evaluating skin
wound healing in diabetic rats has reported that topical administration of HMWHA promoted wound
healing over LMWHA [21]. This suggests that HMWHA itself may have been effective in promoting
wound healing even in ocular surface abnormalities due to dry eye.

When the corneal subepithelial nerves were observed using confocal microscopy, the EDES
+/Treatment− group showed a significant decrease in nerve density compared to all other groups. This
is consistent with a previous report and indicates that the EDES model is a promising model for dry eye
studies [11]. Contrary to expectations, there were no significant differences between the four eye drop
groups. The reason for this discrepancy was believed to be due to large variations between individuals
and the duration of exposure to EDES being as short as 3 days. It is necessary to conduct other studies
using eye drops for a longer period of time in the future.

In addition to the observation of the subepithelial nerve plexus, the subepithelial density of
presumably dendritic cells was also examined. Interestingly, the dendritic cell density in the HMWHA
group was significantly lower than that of the EDES+/Treatment− group. On the other hand, the other
treatment groups showed no differences compared with the EDES+/Treatment− group. It is known
that HMWHA and LMWHA have different effects on inflammation due to differences in molecular
weight. LMWHA elicits a pro-inflammatory response, increasing expression of various inflammatory
cytokines and protein production [22–24]. This response is primarily activated through CD44, but
other receptors, such as Toll-like receptors (TLRs), are also involved in hyaluronan signaling [25].
Specifically, LMWHA activates TLR2 and TLR4 to initiate Myeloid differentiation primary response 88
(MYD88)/NFκB signaling and induces the production of proinflammatory cytokines and chemokines,
such as IL-6 and TGFβ [25–28]. On the other hand, HMWHA forms a large polymer, thus exhibiting
anti-inflammatory and immunosuppressive properties. It has been reported that TLR4, TLR2, MyD88,
and NFκB expression and protein synthesis were significantly reduced in synovial cells of osteoarthritis
model mice [29]. It is possible that HMWHA masks TLR2 and TLR4 via its polymerized structure and,
subsequently, prevents stimulation of these receptors [30].

Tear film instability is deeply involved in the core mechanism of dry eye [9,10]. In dry eye
disease due to the VDT work, evaporation of tears is increased because of a decrease in the blink
frequency, and lacrimal dysfunction causes a decrease in tear secretion [3]. Subsequently, increased
friction on the ocular surface and ocular surface damage cause a decreased expression in secretory
mucin MUC5AC and membrane mucin, resulting in the tear film instability. It is presumed that
HMWHA exerts a therapeutic effect on dry eye due to two factors. One is the anti-inflammatory
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property due to the above-mentioned molecular biological effect, and the other is water retention
property. The water retention property also secondarily suppresses inflammation on the ocular surface
by reducing friction between the eyelid and the ocular surface and reducing the ocular surface damage.
When HMWHA eye drop treatment is applied to the concept of Tear Film Oriented Therapy as
suggested by the Asia Dry Eye Society, HMWHA is thought to improve the mucin layer and improve
the epithelial layer. LMWHA enhances IFNγ induction in mouse articular chondrocyte cultures
stimulated with lipopolysaccharide, but HMWHA has no effect on it [29]. Previous reports suggest that
dry eye increases IFNγ in conjunctival tissues, resulting in decreased goblet cell density and decreased
Muc5AC expression [31]. The higher expression of Muc5AC mRNA in the HMWHA group than in
the LMWHA group in this study may be due to the IFNγ-mediated action of HMWHA. Figure 7
summarizes the suggested mechanism of HMWHA eye drops in the treatment of dry eye disease.
In the future, it will be necessary to elucidate the detailed molecular biological mechanism of HMWHA
in dry eye disease.
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Figure 7. Suggested mechanisms of HMWHA eye drops in the treatment of dry eye disease. HMWHA
eye drops have two main functions. One is the retention of aqueous and secretory mucin in the aqueous
layer. This effect reduces friction between the eyelids and the ocular surface and, consequently, reduces
the ocular surface damage and inflammation. The tear film stability is enhanced by the reduction
of ocular surface damage and the retention of aqueous and secretory mucin in the aqueous layer.
The second function is the anti-inflammatory effect, which can maintain secretory mucin Muc5AC
expression. This action also increases the stability of the tear film. The parts surrounded by red
boundaries are those mechanisms proved by the current research, and the other parts are speculative
mechanisms which need to be clarified in future studies. HMWHA, high molecular weight hyaluronic
acid (HA).

HA is also closely associated with superoxide dismutase (SOD), which has a role in improving
inflammation during wound healing [32]. SOD is also present in mitochondria and is an important
antioxidant defense mechanism. Extracellular SOD has a polycation matrix binding domain that binds
to HA and partially inhibits inflammation by preventing superoxide-mediated fragmentation of HA.
In addition, HA also protects tissues from ROS damage by acting as a scavenger against ROS and free
radicals generated by the inflammatory response. Even in EDES model mice, the oxidative stress
response in the corneal tissues may be different depending on the eye drops, and further studies are
needed in the future.

Many office workers show short BUT-type of dry eyes. It has been reported that the level of
MUC5AC in tears of short-BUT office workers is lower than the office workers without dry eyes,
and that patients with strong subjective symptoms have lower Mc5AC levels than patients with weak
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subjective symptoms [4]. In this study, immunostaining and RT-PCR in the EDES+/Treatment− group
confirmed a decrease in Muc5AC protein and mRNA expression. Conjunctival tissues in the HMWHA
group showed the highest mRNA expression of Muc5AC after EDES exposure among the four eye drop
groups, indicating that HMWHA eye drop group was least susceptible to EDES. Although the detailed
mechanism is unknown, it was speculated that healthy conjunctival epithelium was maintained by
the anti-inflammatory effects of HMWHA and by the promotion of epithelial repair.

This study has several limitations. First of all, eye drop instillation was performed twice a day
based on previous studies in canines [33]. As a result, it was shown that HMWHA shows a long lasting
effect with a low frequency of eye drops. HMWHA eye drops may be suitable not only for humans
but also for the treatment of dry eye in animals in which eye drops cannot be instilled many times
a day. However, in clinical use in Japan, HA ophthalmic solution is prescribed 5 to 6 times a day,
and diquafosol sodium ophthalmic solution is prescribed 6 times a day as the standard treatment.
Therefore, the effects of LMWHA and DQ may be changed by increasing the number of instillations.
It is also necessary to perform studies with a higher frequency of instillations in the future. Finally, in
this study, in order to avoid the influence of sex hormones, the experiments were performed only with
the male mice. Dry eye is often more prevalent in women, and studies with female mice will also be
needed in the future.

The standard deviation in each group was relatively high especially in relation to the vital staining
scores. The reason for this may be the problem inherent to the evaluation of the vital staining scores
in mice in general and in the current environmental dry eye stress model. In our experience, it was
confirmed that unpredictable events, such as quarrel between mice and itching behavior after eye
drop instillations, increased after stress, which might have led to an increase in standard deviation
of the vital staining scores. Further studies are needed to confirm our results with different dry eye
models in the future, including the Cu/Zn superoxide dismutase 1 (SOD1) knock out mice which have
been shown to be good models of age related dry eye disease [34] or the Non Obese Diabetes (NOD)
mice which were shown to be good models for severe forms of dry eye disease, such as Sjogren’s
syndrome [35].

In the current study, HMWHA eye drops showed higher therapeutic effect on dry eyes than other
eye drops in the EDES dry eye model mice. However, in actual clinical practices, the duration of
VDT work may become longer, or the effects of severe air conditioning may be added. In addition,
although all eye drops used in the study are preservative-free, it is necessary to examine the tolerability,
including the side effects of eye drops in future studies.

In Japan, office workers with dry eyes are instructed to use eye drops before VDT work to
improve the ocular surface inflammation and epithelial damage. For this reason, in this experimental
protocol, topical treatment using eye drops was performed for 3 days before EDES exposure. Strictly
speaking, the present results reflect both the dry eye preventive effect and the therapeutic effect of eye
drops. In the future, studies which evaluate only the therapeutic effects will be essential and provide
invaluable information.

4. Materials and Methods

4.1. Animals and Experimental Procedure

Sixty 10-week-old C57BL/6 male mice were randomly divided into 6 groups of 10 mice per group.
Instillations were started twice a day three days before EDES (day 0–2). Sample size calculations were
carried out using the G*Power software (Heinrich Heine, Düsseldorf University, Düsseldorf, Germany)
by specifying input parameters including the standard deviation, effect size, and type 1 error [36].
The eyes were similarly instilled for three days during the exposure to EDES (day 3–5) and for four
days thereafter (day 6–9); the mice were euthanized, and the tissues were collected on the fifth day
after EDES (day 10). The mice were divided into six groups, as follows: (1) 0.1% low molecular weight
HA ophthalmic solution (0.1% hyalein mini, Santen, Osaka, Japan); (2) 0.3% low molecular weight
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HA ophthalmic solution (0.3% hyalein mini, Santen); (3) 3% diquafosol sodium ophthalmic solution
(Diquas, Santen); (4) 0.15% high molecular weight HA ophthalmic solution (Comfort Shield, i.com
medical, München, Germany); (5) exposure to EDES without treatment; and (6) no exposure to EDES
without treatment. Experiment flow was shown in Figure 8.
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Figure 8. Experiment flow. Eye drops treatment was started 3 days before exposure to EDES (day 0–2)
and continued for another 3 days during exposure to EDES (day 3–5). Evaluations of vital staining,
tear secretion, and tear breakup time were performed at four time points. On the fifth day after EDES
exposure (day 10), in vivo confocal microscopy was performed; after euthanasia, the conjunctival tissue
was collected. The photo shows mice exposed to environmental dry eye stress. EDES, environmental
dry eye stress.

All studies were performed in accordance with the Association for Research in Vision
and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research.
The Animal Experimentation Ethics Committee of the Keio University School of Medicine approved
the current research procedures (08067).

4.2. Application of Environmental Dry Eye Stress

All mice were exposed to EDES for five hours per day (9:00 a.m. to 2:00 p.m.) for three days.
The implementation of EDES is described in detail in our previous study [11]. Briefly, the mice were
isolated in singular equal-sized small compartments and exposed to a stable, continuous airflow (4 m/s)
produced by an 18-cm-diameter electric fan. The fan was set 5 cm away from the mice, mean relative
humidity in the room was set to 25 ± 5%, and mean room temperature was fixed at 23 ± 2 ◦C.

4.3. Aqueous Tear Secretion Quantity and Tear Film Stability Assessment

For the tear volume measurement, a cotton thread test was performed based on the previous
report [34]. The measurement of tear volume was performed under anesthesia. A cotton thread
(Zone-Quick, Showa Yakuhin Kako Co., Ltd., Tokyo, Japan) was inserted into the lateral canthus of
the mouse, and the wet length of the cotton thread was measured after 15 s. Then, the value was
corrected with the weight of the mouse, and the tear volume was calculated.

TBUT measurement was performed before measurement of the vital staining score. First, under
anesthesia, 1 µL of 2% fluorescein staining solution was instilled, and excess solution was removed
from lateral canthus. Thereafter, the BUT was measured. The measurement was performed three times,
and the average value was adopted.
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4.4. Ocular Surface Vital Staining Assessment

For evaluation of the fluorescein staining score, a 2µL of 2% fluorescein staining solution was
instilled using a micropipette, and the excess liquid was absorbed from the lateral canthus. Thereafter,
ocular surface was observed using a portable slit lamp microscope to score staining points. Next,
the fluorescein stain was washed away with 5 µL of physiological saline, and 2 µL of 2% lissamine green
stain was similarly applied by eye drops and stained. For both the fluorescein staining and the lissamine
green staining scores, only the corneal portion was scored from 0 to 5 points using the Oxford scale.
Vital staining photographs were recorded in JPEG format using a microscope connected to a digital
camera with the same settings maintained for all mice.

4.5. In Vivo Laser Scanning Confocal Microscopic Examination and Image Analysis

The observation of the corneal nerves of the mice was performed by using in vivo confocal
microscopy (IVCM) and the Heidelberg Retina Tomograph II-Rostock Cornea Module (Heidelberg
Engineering GmbH, Dossenheim, Germany) in the same manner as previously reported [11,37].
Prior to testing, mice were anesthetized by intraperitoneal administration of pentobarbital (40 mg/kg).
After anesthesia was sufficiently induced, a carbomer 2% gel (Comfort gel, Bosch & Lomb, Berlin,
Germany) was placed on the cornea, and the examination was performed so that the cornea was
not dried or damaged. High resolution real-time images were obtained by IVCM which consists of
384 × 384 pixels covering an area of 400 × 400 µm (horizontal × vertical) with a lateral resolution
of 1 µm/pixel.

Scanning was performed from the corneal epithelial side, and the subepithelial nerve plexus was
photographed. The examination time was within 5 min per eye and 6 to 8 areas were photographed.
Consisting of 100 images per sequence, about 600–800 confocal images were taken per eye. All sequences
were stored as JPEG format images, among which eight non-overlapping representative images were
selected per eye. Based on past reports [11,37], two researchers independently measured nerve density
and dendritic cell density. For the current study, subbasal nerve fiber density (NFD) and dendritic cell
density were evaluated.

(1) NFD was evaluated by measuring the total length of the corneal subbasal nerve fiber in
the frame (160,000 µm2), as defined in a previous study [18]. After semi-automatic marking of
the corneal subbasal nerve in each frame, NFD was automatically measured by the NeuronJ plug-in
for ImageJ software (National Institutes of Health, Bethesda, MD, USA). Four different representative
images of each cornea were analyzed and subbasal NFD was measured in pixels. The average NFD
for each cornea was calculated by averaging these sums. Data were reported as density (µm/mm2) ±
standard deviation (SD).

(2) The density of presumably dendritic cell was also examined from the pictures in the scanned
image. Dendritic cells are sometimes difficult to distinguish from keratocytes in the corneal stroma.
Therefore, when counting dendritic cells, we chose the scanned images from the subbasal area and basal
epithelial layer at a position shallower than the corneal stroma. If it was difficult to distinguish from
the cell morphology whether a cell was a dendritic cell or not, so we judged the cells to be dendritic
cells by checking the scan with slightly different focal depths above and below the cell to see the entire
cell shape. Presumed dendritic cell density was evaluated using six representative images.

4.6. Collection of Cornea and Conjunctival Tissues

The mice were euthanized after the experiments were completed, and the eyes including the eyelids
were excised, stored, and frozen in an optimal cutting temperature (OCT, Sakura Finetek, Tokyo, Japan)
compound and used for immunostaining. For real-time RT-PCR, conjunctival tissues were trimmed
from the eye ball using fine scissors and immediately immersed in RNA later (Applied Biosystems,
Carlsbad, CA, USA).
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4.7. Immunohistochemistry for Conjunctival Muc5AC

Mouse eyeballs stored in OCT compound were sliced to a thickness of 12 µm and mounted on
glass slides. Slides were dried at room temperature for 30 min. The samples were fixed with 4%
paraformaldehyde for 20 min at room temperature and then washed 3 times with Phosphate-buffered
saline (PBS) for 5 min. Blocking was performed with 5% normal donkey serum in PBS for 1 h at room
temperature. Thereafter, 100 µL of a primary antibody (anti-Mac5AC mouse monoclonal antibody:
ab3649, Abcam, Cambridge, MA, USA) (1:100) was reacted at 4 ◦C. overnight. Mouse IgG Isotype was
used as a control. After the reaction with the primary antibody, the slides were washed three times
with PBS. The secondary antibody (FITC-affinity pure donkey anti-mouse IgG: 715-695-150, Jackson
Laboratory, Bar Harbor, ME, USA) (1:200) was reacted at room temperature for 1 h. After washing
with PBS, nuclear staining with 4’,6-diamidino-2-phenylindole (DAPI) (19178-91, Nacalai Tesque,
Kyoto, Japan) (1:2000) was performed at room temperature for 5 min. After washing with PBS,
the samples were sealed and observed with a microscope.

4.8. Quantitative Real-Time PCR for Conjunctival Muc5AC

Mouse conjunctival tissues were preserved overnight at freezer (−80 ◦C) in RNAlater
(Applied Biosystems, Waltham, MA, USA) after prompt excision. Tissues were then transferred
into Isogen reagent (Nippon Gene Co., Tokyo, Japan) and homogenized well. Total RNA
was extracted, cleaned up, and treated with DNase using the RNeasy mini kit (Qiagen Inc.,
Valencia, CA, USA). cDNA synthesis was performed using the ReverTra Ace qPCR RT kit
(TOYOBO, Tokyo, Japan). SYBR Greene based quantitative real-time PCR was performed
using the Step-OnePlus system (Applied Biosystems, Waltham, MA, USA) with THUNDERBIRD
SYBR qPCR Mix (TOYOBO, Tokyo, Japan). Mouse glyceraldehyde-3-phosphate dehydrogenase
(sense: 5’-TGACGTGCCGCCTGGAGAAA-3’, antisense: 5’-GACTTCCCGTAGAACCCGATGTGA-3’),
Muc5ac (sense: 5’-AAAGACACCAGTAGTCACTCAGCAA-3’, antisense: 5’-ACCAAACTGTGA
CTGAAGGGTC-3’) primers were used as template. Data were normalized to glyceraldehyde-3
-phosphate dehydrogenase.

4.9. Statistical Analysis

To assess the effects of time-course changes in each group, a one-way repeated measures ANOVA
was performed to analyze tear quantity, vital staining scores, and corneal subbasal nerve parameters
at different time points in each group. To compare the values at the same time-points between different
groups, one-way ANOVA was applied. Tukey’s test was then performed as a multiple comparisons
test (post-hoc test). A p-value less than 5% was considered to be a statistically significant.

5. Conclusions

The HMWHA ophthalmic solution had a higher therapeutic effect in EDES induced dry eye model
mice than the LMWHA and DQ ophthalmic solution, possibly due to the anti-inflammatory effects
and maintenance of the secreted mucin Muc5AC.
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