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ABSTRACT The connection between gestational diabetes mellitus (GDM) and the off-
spring’s development, such as obesity, is well established. Emerging evidence indicates that
the microbiota of the neonate's meconium is associated with maternal GDM status. To
explore whether the association between GDM and infant body mass index (BMI) in early
childhood is affected by the meconium microbiota, we recruited 120 mothers (60 healthy
women and 60 with GDM) and their newborns from the Women’s Hospital of Nanjing
Medical University. Meconium of 120 neonates was collected within a few hours after birth
and sequenced using 16S rRNA sequencing analysis. Children’s BMI was measured at
12 months of age. The results revealed that infants born to mothers with GDM had
increased BMI Z-scores at 12 months old and that the b-diversity of their meconium micro-
biota was reduced. Several genera were observed to be significantly different between the
GDM and control groups. The genus Burkholderia-Caballeronia-Paraburkholderia and an unti-
tled genus in the family Enterobacteriaceae enriched in neonates born to healthy mothers
were found to be negatively associated with infant BMI by using regression analysis. A
coabundance group depleted in the GDM group was correlated negatively with 12-month
BMI and mediated 21.65% of the association between GDM and infant BMI by mediation
analyses. This study provided evidence for the associations among maternal GDM, the me-
conium microbiota, and infant BMI. Maternal GDM was demonstrated to affect infant BMI,
mediated by the gut microbiome. Gut microbiome interventions might represent a novel
technique to decrease the risk of GDM-induced childhood obesity.

IMPORTANCE Using 16S rRNA sequencing analysis, regression analysis and mediation
analysis were used to explore whether maternal gestational diabetes mellitus (GDM)
changed the function and composition of the meconium microbiota and whether this
explained the GDM-induced alterations of infant body mass index (BMI). This study
showed that gut microbiome dysbiosis induced by maternal GDM might play an impor-
tant role in the increased infant BMI during the first 12 months of life. Therefore, gut
microbiome interventions might represent a novel technique to decrease the risk of
GDM-induced childhood obesity.
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Gestational diabetes mellitus (GDM), defined as the first recognized glucose intoler-
ance during pregnancy, is a common complication of pregnancy (1). Pregnancy

complicated with GDM suffers an increased risk of preeclampsia, preterm delivery, and
the development of type 2 diabetes later in life (2). Offspring born to mothers with GDM
are not only at an increased risk of immediate complications, such as macrosomia,
shoulder dystocia, neonatal hypoglycemia, and respiratory distress (3), but also have
an increased risk of developing long-term cardiovascular complications, metabolic
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syndrome, diabetes, and obesity (4, 5). Among these, childhood obesity has attracted
increased public attention.

Several observational studies have indicated that offspring born to mothers with GDM
have an increased risk of childhood obesity (5). In most studies, children born to mothers
with GDM had an increased risk of overweight or obesity at 5 years or older (6, 7).
Meanwhile, offspring born to mothers with GDM had higher body mass index (BMI) Z-scores
in childhood (3 to 15 years) (8). Studies performed in children at 3 years or older revealed
that environmental factors, such as exercise, lifestyle, or dietary habits, might have a major
effect on childhood obesity (9, 10). After minimization of the impact of such environmental
factors, a recent study in Turkey proposed that maternal GDM increased the risk of early
childhood obesity in children aged 1 to 3 years old (11).

The underlying physiological mechanism of childhood obesity caused by maternal
hyperglycemia remains unclear. According to a previous study, higher maternal glu-
cose levels might decrease their offspring's insulin sensitivity and increase b-cell
responsivity (12). Hyperleptinemia in women with GDM (13) might permanently reduce
leptin sensitivity in the infant hypothalamus, which could have long-term effects on
children’s energy balance and could be reflected in obesity (14).

The gut microbiota comprises a complicated collection of microorganisms that
occupy the digestive tract of the host, which has important functions in host nutrition
absorption, immunity, and metabolism (15). Dysbiosis of the gut microbiome might
promote the development of GDM by regulating the host’s metabolism of various sub-
stances (16, 17). Interestingly, probiotics that might alter the composition of the gut
microbiota (18) were used to treat mothers with GDM, resulting in a significant reduc-
tion in insulin resistance (19). In a newborn, the meconium is first colonized by the
microbiota, derived mainly from the maternal gut, vagina, and skin (20), and codevel-
ops with the host from birth (21). A mother's health status might affect her own micro-
biota during pregnancy, and the effects might be transmitted vertically to the offspring
(22). GDM was found to be associated with the neonatal meconium microbiota and
could change the diversity and composition of the neonate's gut microbiota (23).
Adult obesity development is also highly affected by the gut microbiota (24). However,
whether GDM-induced dysbiosis of the neonatal meconium microbiota is associated
with children’s BMI remains unknown. Hence, our study aimed to explore whether
maternal GDM changed the composition of the meconium microbiota and whether
this explained the GDM-induced alterations of infant BMI.

RESULTS
Characteristics of study participants. Participants’ characteristics are shown in

Table 1. The mothers in the two groups had similar maternal ages, prepregnancy BMIs,
parities, passive smoking statuses, and drinking statuses. Significantly higher fasting
blood glucose and 1-h and 2-h post-oral glucose tolerance test (OGTT) glucose levels
were observed in the mothers with GDM at 24 to 28 weeks of gestation than in those
in the control group (P , 0.001). Moreover, the infant birth weight, BMI, and BMI Z-
score at 12 months of age were higher in the GDM group than in the control group
(P, 0.05).

Associations of GDM status, glucose levels, and BMI at 12 months of age. In the
GDM group, BMI Z-scores of infants at 12 months old were significantly increased
(Fig. 1a). After adjustment for potential covariates, including maternal age, maternal
prepregnancy BMI, and birth weight, GDM had the most significant influence on infant
BMI Z-scores among the influencing factors mentioned above (R2 = 8.17%, P = 0.01).
The offspring of the women with GDM had higher BMI Z-scores than the offspring of
the control group. At the same time, it can be observed that infant BMI has an increas-
ing trend with fasting blood glucose (unadjusted P = 0.02, adjusted P = 0.07), but no
significant correlation was observed between infant BMI and 1-h or 2-h OGTT glucose
values (Fig. 1c to e). Details of the linear models are shown in Fig. 1b and in Table S3 in
the supplemental material.
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Associations between GDM status and the meconiummicrobiota. At the phylum
level, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria represented the domi-
nant taxa across all samples (Fig. 2a). The GDM group showed a relative decrease in the
abundance of Proteobacteria. The observed features of the GDM group pointed to a
decreasing trend in a-diversity compared with those of the control group (Fig. 2b). We
compared the b-diversity indexes and found that infants born to women with GDM
tended to have a lower b-diversity index than infants born to healthy mothers (Fig. 2c).
Next, we used linear discriminant analysis effect size (LEfSe) to identify the key differential
taxa between the two groups. In total, 12 genera, 8 families, and 2 orders were found to
be significantly different between the two groups. At the genus level, we found that the
abundances of Enhydrobacter, Psychrobacter, Aerococcus, Faecalibacterium, Herbaspirillum,
Pelomonas, Burkholderia-Caballeronia-Paraburkholderia, and an untitled genus in the fam-
ily Enterobacteriaceae were significantly lower and the abundances of Xanthobacter,
Cytophaga, Serratia, and Actinomyces were significantly higher in meconium microbiota
of infants born to mothers with GDM than in those born to healthy controls (Fig. 2d;
Fig. S1 and Table S5).

To gain a more comprehensive understanding of the differences between the two
groups in terms of their microbiota structures, the top 72 most abundant genera were
classified into five coabundance groups (CAGs) according to the correlations between
genera (Fig. 2e). The abundance of CAGs between the GDM and control groups was
tested by nonparametric Wilcoxon tests. CAG4 was identified as a significantly differential
CAG between the GDM and control groups (P = 0.03) (Fig. 2f). The relative abundance of

TABLE 1 Characteristics of the study participants

Variable

Value for:

P
GDM group
(n = 60)

Control group
(n = 60)

Maternala

Age (mean6 SD, yr) 28.96 3.66 28.56 3.96 0.551
Prepregnancy BMI (mean6 SD, kg/m2) 21.96 3.48 20.96 2.62 0.099
OGTT_FBG (mean6 SD, mmol/L) 4.506 0.70 4.066 0.37 ,0.001
OGTT_1 h (mean6 SD, mmol/L) 8.056 2.09 6.546 1.52 ,0.001
OGTT_2 h (mean6 SD, mmol/L) 6.936 1.58 5.876 1.08 ,0.001
Gestational age (mean6 SD, wk) 39.26 1.27 39.26 1.01 0.887
Parity [no. (%)] 1.000
Nulliparae 47 (78.3) 46 (76.7)
Multiparae 13 (21.7) 14 (23.3)

Passive smoking [no. (%)] 0.561
Never 42 (70.0) 38 (63.3)
Ever 18 (30.0) 22 (36.7)

Alcohol drinking [no. (%)] 0.439
Never 58 (96.7) 55 (91.7)
Ever 2 (3.33) 5 (8.33)

Neonatal
Delivery mode [no. (%)] 1.000
Cesarean 44 (73.3) 44 (73.3)
Vaginal 16 (26.7) 16 (26.7)

Sex [no. (%)] 1.000
Boy 35 (58.3) 36 (60.0)
Girl 25 (41.7) 24 (40.0)

Birth wt (mean6 SD, g) 3,476 (400) 3,361 (360) 0.111
Breastfeeding [no. (%)] 0.777
Exclusive breastfeeding 8 (13.3) 6 (10.0)
Mixed feeding 52 (86.7) 53 (88.3)

Formula feeding 0 (0.00) 1 (1.67)
Wt at 12 mo old (mean6 SD, kg) 10.4 (1.04) 10.1 (0.93) 0.048
Ht at 12 mo old (mean6 SD, cm) 76.6 (2.45) 76.8 (2.93) 0.782
BMI at 12 mo old (mean6 SD, kg/m2) 17.8 (1.24) 17.1 (1.27) 0.006
BMI Z-score at 12 mo old (mean6 SD) 0.77 (0.77) 0.31 (0.95) 0.004

aOGTT_FBG, OGTT fasting blood glucose value; OGTT_1 h, 1-h OGTT value; OGTT_2 h, 2-h OGTT value.
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the genera in each CAG is shown in Table S4. In the GDM group, CAG4 was reduced and
mostly comprised genera from the Burkholderiaceae and Enterobacteriaceae families within
the phylum Proteobacteria (Fig. S3). Then, we calculated the Spearman correlation for
each genus in the different CAGs separately in the GDM and control groups. The internal
correlations between the genera in the CAGs were different between the two groups
(Fig. 2g).

Relationships between BMI in infants at 12 months old and the meconium
microbiota. Lastly, we calculated the partial correlation coefficients between physical
characteristics (height, weight, and BMI Z-score) of infants at 12 months old and the rela-
tive abundance of each key taxon that differed between the two groups. Multivariate linear
models were used to test the significance of the correlations. Two genera enriched in the
control group correlated negatively with BMI in infants at 12 months old (Fig. S2). Among
these two genera, the untitled genus in the family Enterobacteriaceae correlated positively
with infant height, and another genus, Burkholderia-Caballeronia-Paraburkholderia, in the
family Burkholderiaceae correlated negatively with infant weight (Fig. 3a). The enrichments
of these two genera in the control group were tested using nonparametric Wilcoxon tests
and were identified to be statistically different (P = 0.02, P = 0.04) (Fig. 3b and c). A multi-
variate linear model was also used to verify the negative correlation between the relative
abundance of CAG4 and infant BMI at 12 months old (P = 0.05) (Fig. 3d). Mediation analysis
was then performed, which indicated that CAG4 mediated 21.65% of the GDM-BMI associ-
ation in infants at 12 months old (mediation effect of the b-estimate = 0.2165, 95% confi-
dence interval [CI], 0.05 to 0.57, P, 0.001) (Fig. 3e).

FIG 1 (a) Box plots showing BMI Z-scores of 12-month-old infants born to women with GDM and healthy controls. The central horizontal lines represent
the medians, the top and bottom of the boxes are the 25th and 75th percentiles, and the points represent the BMI Z-scores of each sample. Maternal age,
maternal prepregnancy BMI, and birth weight were adjusted as potential covariates. (b) Error bars showing the regression coefficients (b) of linear models
of BMI Z-scores against GDM, fasting blood glucose (FBG) values, 1-h OGTT glucose values, and 2-h OGTT glucose values. The length of the bars indicates
the 95% confidence interval. (b to e) Red indicates estimates adjusted for maternal prepregnancy BMI, maternal age, and birth weight, and blue indicates
unadjusted linear models of BMI Z-scores at 12 months old against FBG values, 1-h OGTT glucose values, and 2-h OGTT glucose values.
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FIG 2 (a) Relative abundance of dominant phyla in the meconium microbiota in the GDM and control groups. (b) Indexes of a-diversity of the meconium
microbiome in the GDM and control groups. (c) Indexes of b-diversity of the meconium microbiome in the GDM and control groups. (d) Difference
dominant taxa were identified by LEfSe (LDA . 2.0) in the meconium microbiome between the two groups. (e) The top 72 most abundant genera were
clustered into five groups according to hierarchical Ward clustering and the Spearman correlation coefficient. Kendall correlations between each genus are
shown in the heat map. The most abundant genera in each CAG are as follows: CAG1 (genera Escherichia-Shigella, Streptococcus, and Staphylococcus), CAG2
(genera from Bacillaceae and Brevibacillaceae), CAG3 (genera within Pseudomonadales), CAG4 (genera from Burkholderiaceae and Enterobacteriaceae), CAG5
(Bacteroides). (f) The abundance of each CAG in the GDM and control groups. Differences were detected using nonparametric Wilcoxon tests. The
abundance of CAG4 was depleted in the GDM group (P = 0.03). (g) Enrichment of the genera in the GDM and control groups is shown separately in two
network diagrams. The sizes of the nodes represent the average relative abundance of each genus. The colors of the nodes represent the different phyla to
which the genera belong. Spearman correlations between nodes are indicated by lines (Benjamini-Hochberg false discovery rate [FDR]-corrected P
value , 0.01). Red lines indicate positive correlations; blue lines indicate negative correlations.
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DISCUSSION

In the present study, associations between maternal GDM, the microbiota of meco-
nium, and infant BMI were explored. Our results suggested that maternal GDM was
associated with the increased infant BMI at 12 months of age, influenced by alterations
of the meconium microbiota. Based on the above findings, gut microbiome interven-
tions might become a novel technique to reduce the risk of GDM-induced childhood
obesity.

According to a previous study (11), no significant association was found between
maternal GDM and childhood obesity at 12 months of age but appeared from 2 years old
and became more pronounced with age (8). Therefore, we decided to compare children's
BMIs rather than obesity rates to assess the growth and development of the 1-year-old
infants in this study. In addition to GDM, maternal obesity and high birth weight of chil-
dren are also important factors affecting childhood obesity. Indeed, maternal obesity is
considered an even more prominent risk factor than GDM (25) and might be a mediator
between mother and child obesity (11). Thus, we adopted maternal prepregnancy BMI,
maternal age, and neonate birth weight into our multivariate linear model and found that

FIG 3 (a) Heat map of partial correlation coefficients between infant physical characteristics and the relative abundance of each dominant taxon that
differed between the two groups. The statistical significance was calculated using a multivariate linear model (***, P , 0.001; *, P , 0.05; 1, P , 0.1)
Partial correlation coefficients and multivariate linear models were subjected to adjustment for birth weight, maternal prepregnancy BMI, and maternal age.
(b and c) Relative abundance of the untitled genus in the family Enterobacteriaceae and the genus Burkholderia-Caballeronia-Paraburkholderia. These two
genera correlated negatively with infant BMI at 12 months of age. (d) Linear model verifying the negative correlation between the relative abundance of
CAG4 (log2 fold change) and infant BMI at 12 months of age (P = 0.05). (e) CAG4 mediated 21.65% of GDM-BMI association at 12 months of age
(mediation effect of the b estimate = 0.2165, 95% CI, 0.05 to 0.57, P , 0.001). IE: indirect effect; DE: direct effect.
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maternal GDM is an independent factor that increases infant BMI at 12 months of age. An
increasing trend of infant BMI Z-scores with fasting blood glucose was also observed.
These results were consistent with the development trend of GDM-induced childhood obe-
sity in previous studies (5, 11, 26, 27) and revealed that the effects of GDM on child growth
can be observed from a very early age.

The diversity of the microbiota was reportedly decreased in both stool samples from
mothers with GDM and meconium samples from infants born to women with GDM (16, 17,
23). Herein, the a-diversity indexes were compared with the b-diversity indexes, which
showed that infants born to women with GDM had lower unweighted UniFrac values than
infants born to healthy mothers. Moreover, the a-diversity index (observed features) displayed
a decreasing trend in the meconiummicrobiota of infants born to mothers with GDM. In addi-
tion, different numbers of genera were identified between the GDM and control groups. The
number of genera belonging to the phylum Proteobacteria decreased the most in the GDM
group, which was reportedly enriched in the meconium of infants born to nondiabetic moth-
ers (23). We also classified the meconium microbiome into five CAGs, which correlated highly
and might have similar functions. Among them, in the GDM group, CAG4, which mostly com-
prised genera from the families Burkholderiaceae and Enterobacteriaceae, decreased. Several
species in the family Burkholderiaceaewere reported to play major roles in the control of appe-
tite and metabolism by encoding acyl coenzyme A (CoA) binding protein (ACBP) (28, 29). At
the same time, the family Enterobacteriaceae was found to be enriched after diet intervention-
induced BMI reduction (30). An untitled genus in the family Enterobacteriaceae was the most
abundant genus in CAG4, and the function of the whole group might be similar to that of the
dominant genus. Correlations between the genera in CAGs were found to be very different
between the two groups, possibly verifying that maternal GDM affects the interactions
between genera in the meconiummicrobiota.

In our study, various shifts in neonatal gut microbiota caused by maternal GDM correlated
with infant BMI at 12 months of age. The genus Burkholderia-Caballeronia-Paraburkholderia
and an untitled genus in the family Enterobacteriaceae correlated negatively with infant BMI at
12 months of age. The genus Burkholderia-Caballeronia-Paraburkholderia was reported to be
associated with the bile acid cycle (31) and correlated with an individual's BMI in a study of
cholangiocarcinoma (32). Besides, the coabundance group decreased in the GDM group and
correlated negatively with infant BMI. The family Burkholderiaceae, one of the most abundant
families in the coabundance group, was reported to be associated with BMI and insulin resist-
ance mediated by the glutamate/glutamine ratio in plasma (33). The group also played an im-
portant role in mediating the association between GDM and infant BMI. These new findings
revealed a potential functional role of the gut microbiota in GDM-induced increases in infant
BMI. In previous studies, microbe-derived metabolites were proven to be involved in the pro-
cess by which gut microbiota affects infant BMI (34). Also, offspring born to mothers with
GDM may inherit their mothers’ high-energy-providing microbiota and alter their own carbo-
hydrate and nucleotide metabolism (23). These results not only support our new findings but
can help us explain the underlying mechanism by which maternal GDM affects offspring de-
velopment mediated by gut microbiota. In addition to infant BMI, the untitled genus in the
family Enterobacteriaceae was found to be associated with infant height at 1 year of age.
However, there was no independent relationship between infant height and GDM, and we
could not find any relevant studies to prove the existence of such a relationship. Therefore,
the practical significance of the correlation between Enterobacteriaceae and offspring’s height
remains to be further explored.

There are some strengths in our study. First, we combined maternal information with
neonatal status at birth and long-term follow-up. This allowed us to explore potential trans-
generation effects of GDM on childhood obesity. Second, we identified two protective gen-
era and a coabundance group that are directly associated with infant BMI, which provided
a theoretical foundation for further research on the use of probiotics for the early preven-
tion and treatment of childhood obesity. However, there are several limitations to this
study. The first one is that this study was a single-center study with a limited sample size.
However, the participants included in this study were selected through a meticulous
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screening process, and we used the propensity score matching method to reduce the bias
caused by confounding variables, which ensured the reliability and accuracy of the results.
The second limitation is the resolution of 16S rRNA amplicon sequencing. It has been pro-
posed in several studies that interactions between host and microbes generally occur in
species- or subspecies-level variants (35, 36). Nonetheless, 16S rRNA amplicon sequencing is
technically mature and affordable for large-scale study. Based on our results, high-resolu-
tion shotgun metagenomic sequencing could be used to further identify the microbial spe-
cies specific to infants born to mothers with GDM and to determine the interactions
between gut microbes and childhood obesity, as well as to further explore the relationship
between gut microbiome and infant BMI through functional profiling of microbial com-
munities (37).

Conclusions. In the present study, we provided evidence for associations between
maternal GDM, the meconium microbiota, and infant BMI. We found that gut micro-
biome dysbiosis induced by maternal GDM might play an important potential role in
the increased infant BMI during the first 12 months of life. People are paying more
attention to childhood obesity and related metabolic diseases; therefore, gut micro-
biome interventions might represent a novel technique to decrease the risk of GDM-
induced childhood obesity. Further investigations using larger-sized samples and more
precise sequencing methods are required to clarify the associations between GDM-
induced obesity and the gut microbiome and the effectiveness and feasibility of inter-
vening in the gut microbiota.

MATERIALS ANDMETHODS
Study design and participants. We recruited the participants for this study from the Women’s

Hospital of Nanjing Medical University (Nanjing, Jiangsu Province, China). Basic information regarding
the participants, such as age, maternity history, family history of diabetes, and prepregnancy BMI, were
collected using a demographic questionnaire. All participants were offered a standardized 75-g oral glu-
cose tolerance test (OGTT) at gestational week 24 to 28. The criteria of the International Association of
the Diabetes and Pregnancy Study Group (IADPSG) were used to diagnose GDM (38). A diagnosis of
GDM must meet more than one of the following criteria: a 1-h OGTT glucose value greater than or equal
to 10.0 mmol/L, a 2-h OGTT glucose value greater than or equal to 8.5 mmol/L, or a fasting blood glu-
cose (FBG) value greater than or equal to 5.1 mmol/L. The hospital's electronic medical records were
used to extract the following information: infant birth weight, mode of delivery, sex, and gestational
age. Finally, the study included 60 women with GDM and 60 healthy controls who were matched using
propensity score matching (ratio = 1:1) for their medical history, prepregnancy BMI, and maternal age.
We excluded women reported being pregnant with twins or having chronic diseases requiring medica-
tion, substance or alcohol abuse, antibiotic usage within 3 months, preexisting diabetes, or a family his-
tory of diabetes. Detailed information is displayed in Table S1 in the supplemental material.

All participants provided written informed consent for themselves and the neonates. The study was
approved by the Ethics Committee of Nanjing Medical University (IRB no. [2016]009).

Infant BMI. When the children were 1 year old, they were subjected to routine physical measure-
ments. Children’s length (to the nearest 0.1 cm using a stadiometer) and weight (to the nearest 0.1 kg
using an electronic scale) were measured. The World Health Organization reference (39) was used to cal-
culate sex- and age-specific BMI Z-scores. The formula for Z-score is shown as Z = (x 2 m)/s , (where x is
infant BMI, m is the sex- and age-specific population mean, and s is the sex- and age-specific population
standard deviation [SD]) (40).

Sample collection, DNA extraction, and 16S rRNA sequencing. We collected the first-pass meco-
nium samples (approximately 200 mg) from 120 infants born to the participants on sterilized diapers
within a few hours after birth and stored the samples at 280°C until DNA extraction. Genomic DNA was
extracted using a QIAamp fast DNA stool minikit (Qiagen, Hilden, Germany) in a sterile environment. The
16S rRNA V3 hypervariable region was PCR amplified using primers 338F (59-ACTCCTACGGGAGGC
AGCAG-39) and 806R (59-GGACTACHVGGGTWTCTAAT-39). Gel electrophoresis was used to check the
amplicons, which were purified using an Agencourt AMPure XP kit (Beckman Coulter, Brea, CA, USA). A
Qubit 2.0 fluorometer (Thermo Scientific, Waltham, MA, USA) and an Agilent Bioanalyzer 2100 system
(Santa Clara, CAS, USA) were used to perform quality testing on the amplification products constituting
the 16S V3 library. Finally, the Illumina MiSeq platform (San Diego, CA, USA) was used to sequence the
library to generate 2 � 250 bp paired-end reads.

Sequencing data processing. Quality control and follow-up analyses of the raw sequencing reads
of the 16S rRNA genes were conducted using QIIME2 V.2021.8 (41). The 120 samples generated
10,545,284 of 16S rRNA clean reads (mean reads per sample = 85,155; SD = 43,761). Using the DADA2
pipeline (version 1.6) (42), these sequences were identified as amplicon sequence variants (ASVs). The
SILVA database (version 138.1) was used to annotate the taxonomic information (Table S2) (43). The
QIIME2 pipeline was used to calculate the a-diversity metrics (Shannon index, Simpson index, observed
features, and chao1 index) and the b-diversity index (unweighted UniFrac distance). The lowest
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sequence depth to which all samples were rarefied was 37,402. Genera with a median proportional
abundance of,0.01% across all samples were removed.

Microbiome CAG network. After removal of the genera whose sum of relative abundances was less
than 0.1, coabundance groups (CAGs) were constructed for the remaining top 72 most abundant gen-
era. These genera had a total abundance of 97.5%. The Kendall correlation-defined coabundant groups
were visualized as a Spearman correlation distance metric by hierarchical Ward clustering in the Made4
package (44). The adonis function in the vegan package (45) was used to determine the number of clus-
ters, based on the number of significant differences in the pairwise adonis test scores among the original
Kendall correlation-defined groups. The expression level of each CAG was specified as the sum of rela-
tive abundances of the genera classified to this CAG. The abundance of CAGs between the GDM and
control groups was tested by nonparametric Wilcoxon tests. Cytoscape 3.7.1 (46) was used to separately
visualize the Spearman correlation of the genera in the different CAGs in the GDM group and control
group (Data Set S1).

Statistical analysis. To describe the basic characteristics of the participants, the mean6 SD was used to
show continuous variables and numbers (percentages) were used to show categorical variables. Student's t test
and chi-square tests were used to compare the differences between the GDM group and the control group.
Multivariate linear models were used to test the associations of GDM, glucose levels, and BMI at 12 months of
age and the associations between meconium microbiota relative abundance and infant physical characteristics
at 12 months of age. To exclude the influence, potential covariates were included in the adjusted models.
Outliers were excluded using the boxplot.stats function in the grDevices package in the models shown in
Fig. 1c to e and Fig. 3d. The calculation formulas of Tukey's box plot method (1.5 times the interquartile range
[IQR]) (47) in this function are shown as follows: lower limit = P25 2 (1.5 � IQR); upper limit = P75 1 (1.5 �
IQR). (P25: 25th percentile; P75: 75th percentile) Ultimately, 6 samples were removed, and the remaining 114
samples were used to build the models. Differences in a-diversity, b-diversity, and the relative abundance of
specific bacterial genera between the two groups were tested using nonparametric Wilcoxon tests. The linear
discriminant analysis (LDA) effect size (LEfSE) (logarithmic LDA scores . 2.0) (48) was used to identify the key
bacterial taxa that differed between the two groups at the genus level. Partial correlation coefficients were cal-
culated using the pcor function in the ggm package (49). To determine whether the meconium microbiota
exerted a mediation function in the association between GDM and the offspring’s BMI at 1 year old, mediation
analysis was carried out using the mediation package in R (50). All statistical analyses were conducted in R
v4.1.1 (51) (Data Set S1).

Data availability. All sequence data have been deposited in NCBI under the accession numbers
shown in Data Set S2b.
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