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ABSTRACT

Tumor-associated antigens (TAAs) have been the
most actively employed targets in the clinical diagno-
sisand treatmentofhumancarcinoma,suchasPSA in
the diagnosis of prostate cancer and NY-ESO-1 in the

20 immunotherapy of melanoma and other cancers.
However, identification of TAAs has often been ham-
pered by the complicated and laborsome laboratory
procedures. In order to accelerate the process of
tumor antigen discovery, and thereby improve diag-

25 nosis and treatment of human carcinoma, we have
made an effort to establish a publicly available
HumanPotential TumorAssociatedAntigendatabase
(HPtaa) with potential TAAs identified by in silico
computing (http://www.hptaa.org). Tumor specificity

30 was chosen as the core of tumor antigen evaluation,
together with other relevant clues. Various platforms
of gene expression, including microarray, expressed
sequence tag and SAGE data, were processed and
integrated by several penalty algorithms. A total of

35 3518 potential TAAs have been included in the data-
base, which is freely available to academic users. As
far as we know, this database is the first one address-
ing human potential TAAs, and the first one integrat-
ing various kinds of expression platforms for one

40 purpose.

INTRODUCTION

Tumor-associated antigens (TAAs) have been the most
actively employed targets in the clinical diagnosis and treat-
ment of human carcinoma. TAAs are encoded by normal or

45mutated genes in the human genome whose products can elicit
humoral or cellular anti-tumor immunity. They can be clas-
sified as tissue restrictive and non-tissue restrictive antigens,
according to their expression pattern in normal tissues (NTs).
Tissue restrictive TAAs, including cancer-testis antigens (CT

50antigens), differentiation antigens and oncofetal antigens, have
deeply affected the clinical oncology. For example, PSA as a
differentiation antigen is indispensable in diagnosis and prog-
nosis evaluation of prostate cancer (1), AFP as an oncofetal
antigen has been widely used in the diagnosis of hepatocellular

55carcinoma (2), and NY-ESO-1 as a cancer-testis antigen has
been shown to induce broad integrated immune responses in
melanoma patients (3). As a result, identification of clinical
applicable TAAs is of great importance to cancer immunolo-
gists and clinicians.

60Traditionally, TAAs are identified through T cell epitope
cloning, serological analysis of cDNA expression libraries,
subtraction hybridization and differential display analysis (4).
Laboratory procedures, although successful, are extremely
laborious. Recently, immunoinformatics has emerged as an

65efficient way for the identification of TAAs. These in silico
methods were generally based on the fact that tumor-specific
expression patterns usually reflect heterogeneity of the gene
products, which, given that protein expression correlates with
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mRNA expression, is at the core of immunogenicity. Thus,
successful identification of novel TAAs through expression
database mining has not been reported occasionally (5–8).

It has been conventionally considered that different expres-
5 sion platforms cannot be integrated together because of the
difficulties of normalization. Based on the fact that individual
series of expression data can be used separately in the case
of tumor antigen identification, we believe that all kinds of
expression platforms can be integrated by gathering all

10 the individual results. Our own experience shows that
platform integration greatly increases the efficiency of TAA
identification.

In order to accelerate the process of tumor antigen discov-
ery, and thus improve diagnosis and treatment of human car-

15 cinoma, we decided to establish a publicly available database
for potential TAAs (pTAA) identified by in silico computing,
named Human Potential Tumor Associated Antigen database
(HPtaa). As mentioned above, tumor-specific expression pat-
tern not only correlates with immunogenicity, but also is the

20 prerequisite for clinical application. Thus, we chose tumor-
specific expression as the core of tumor antigen evaluation.
Other relevant clues were also considered; including coding
capacity, chromosomal location, subcellular location and the
knowledge of gene function. As far as we know, this database

25 is the first one addressing human potential TAAs, and the first
one integrating various kinds of expression platforms for one
purpose.

DATABASE CONSTRUCTION

Data source

30 The HPtaa database integrates various expression platforms,
including carefully chosen publicly available microarray
expression data, GEO SAGE data, expressed sequence tag
(EST) expression data together with other relevant databases
required for TAA discovery, such as CGAP (9), CCDS

35 (http://www.ncbi.nlm.nih.gov/projects/CCDS/), OMIM (10),
Uniprot (11) and the Gene Ontology database (12). Microarray
datasets were divided into normal tissue series and cancer
series. Normal tissue series include five famous datasets:
GNF (13,14), UCLA (http://microarray.genetics.ucla.edu/

40 geneexp/public/), GENENOTE (15), GeMDBJ (https://
www.gemdbj.jp/dgdb/) and GEOJP (http://www.genome.
rcast.u-tokyo.ac.jp/normal/). The cancer series include 45
datasets from 12 series, covering 14 major cancer types
(16–27). The EST (28) and SAGE data (29) covers 9 addi-

45 tional cancer types, resulting in HPtaa covering a total of
23 cancer types.

Data processing

Each microarray dataset was processed individually to avoid
the problem of normalization. For datasets of NTs, we used

50 known cancer-testis antigens (30) as a training set to generate a
detection call matrix, and then tissue restriction score (TRS)
was computed for each probe. The tissue restriction threshold
for each dataset was determined according to the TRS interval
containing 90% CT antigens, and then the TRS of all the

55 normal tissue datasets were assembled by Unigene ID. The
tissue restriction penalty (TRP) was computed according to all

the probes’ TRS of each Unigene and their confidence evi-
denced by source sequences of probes and the amount of
samples in the corresponding dataset. See Supplementary

60Data for details of the algorithms.
Differential expression analysis and significance tests were

carried out separately for each cancer microarray datasets and
each cancer type of the EST and SAGE expression data. For
each significantly expressed probe, the cancer/normal ratio

65was computed and assembled by Unigene ID. An overexpres-
sion penalty (OP) for each cancer type was computed accord-
ing to the overexpression ratios and their confidence accessed
by source sequences of probes. The tumor specificity penalty
(TSP) was then computed as TSP ¼ TRP · OP. This algo-

70rithm is designed according to the assumption that tumor
specificity increases in proportion to OP and TRP. (Figure 1).

Database content

All genes with TSP > 115 were considered as tumor specific
and were included in the HPtaa database. This cutoff was set to

75obtain an optimal balance between database content and iden-
tification of known tumor antigens. The CGAP, GO, CCDS,
UniProt and OMIM databases were thereafter integrated to
annotate each pTAA, and all the original expression data
were picturized and linked to the corresponding pTAAs.

80Statistics

The HPtaa database contains 3518 potential TAAs for up to 23
human cancer types. To test the quality of the database, we
checked how many known tumor antigens it contains. We
found that 41 known CT antigens (50% of all known CT

85antigens) (30), 6 known differentiation antigens (33% of all
known differentiation antigens) (31) and 2 known oncofetal
antigens (100%, CEA and AFP) were successfully screened
out (see Supplementary Data for detailed information). Inter-
estingly, most of the CT antigens screened out with current

90algorithms generally have a high overexpression rate com-
pared with those not found. This shows that with our statistical
significance test, genes stably upregulated in cancerous tissues
are more likely to be picked out, which are also more valuable
than those occasionally overexpressed. Totally 3163 known

95genes and 355 uncharacterized genes were included in the
database, among which 1804 genes have publication reports,
2172 genes have CCDS annotation. The database contains 237
membrane proteins, 172 secretory proteins and 127 genes
mapped to the X chromosome. (See Data Retrieval below

100for the significance of these properties.)

DATA RETRIEVAL

The database provides an easy-to-use query interface. Users
can query interesting genes against HPtaa with a basic search,
or query for pTAAs with defined features through an advanced

105search. The cancer type choice allows users to choose pTAAs
of their cancer types of interest. Chromosome choice allows
users to choose whether the pTAAs should locate on the X or
on the Y chromosome, where CT antigens aggregate. The
coding capacity choice allows users to define the coding

110capacity of a pTAA, as coding genes are more likely to be
TAAs. It should be noted that novel genes often have unde-
termined coding capacity. Subcellular location choice allows
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users to choose membrane pTAAs or secretory pTAAs.
Membrane proteins are more valuable in the clinical treatment
of carcinoma, while secretory proteins are of more interest to
diagnostics. The mRNA choice allows users to choose pTAA

5 with an mRNA sequence, which is easy to identify. OMIM
choice allows users to choose whether pTAAs have publica-
tion supported functional annotations. Genes with no OMIM
ID usually have no cancer-related reports. ‘ESTs from NT’
choice allows users to choose the number of ESTs from non-

10 germinal and non-fetal NTs clustered to each pTAA.
The result page of a database search contains three impor-

tant parameters for evaluating a pTAA, i.e. the TRP, OP and
TSP, as outlined above. When trying to identify highly tumor-
specific genes, the three values should be considered together.

15 TRP defines the degree of restrictive expression of a given
gene across human NTs and its confidence. The higher the
TRP, the more restrictive is the expression of a given gene
across NTs. OP defines whether the expression of a given gene
is significantly upregulated in cancerous tissues compared

20 with corresponding NTs. The value of OP does not merely
reflect the differential expression ratio, but combines the ratio
with other clues indicating overexpression. The higher the OP
value, the higher is the likelihood of overexpression. TSP
gives an overall view of the tumor specificity. The higher

25 the TSP, the higher is the degree of tumor-specific expression.
Users will find that for a given pTAA/gene the OP and TSP

values varies between different cancer types. The reason

behind this is that individual researchers will usually need
tumor-specific genes that are overexpressed in the particular

30cancer type they study. Cancer type specific OP and TSP
values may accommodate for this requirement.

DISCUSSION

How to make your choice

The HPtaa database aims directly at clinical diagnosis and
35treatment of human carcinoma, and users should thus choose

pTAAs according to their purpose. If a user wants to find
tumor markers for the cancer types he/she studies, the secret-
ory pTAAs with the highest cancer type specific TSP and OP
values should be favored irrespective of the TRP value. The

40rationality of this lies in the fact that tumor markers usually
have less tissue-restrictive expression, and the expression in
cancerous tissue needs to be extremely high to favor about
detection. We recommend users to examine the figure of dif-
ferential expression ratio to evaluate the details and degree of

45overexpression (Figure 2).
If users want to find pTAAs with therapeutic value, the

pTAAs with highest TRP should be selected, as higher TRP
values are likely to imply lesser side effects. We recommend
users to examine in detail the figure of normal tissue expres-

50sion in the detail page, as pTAA with extremely low detection
value across NTs may best serve the therapeutic purposes. By

Figure 1. The flow chart of data procession of HPtaa database.
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Figure 2. Mean differential expression ratio of PSA across various cancer types. When upregulated significantly in cancerous tissues, the value was computed as
‘cancer/normal’; when downregulated significantly the value was computed as ‘– (normal/cancer)’. The y-axis shows the names of the cancer datasets and source
sequences of the probes in a given dataset. Red color represents upregulation and blue color downregulation.
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restricting the number of ESTs from NT, users can further
screen out tissue-restrictive genes also evidenced by EST
data. With respect to subcellular location, membrane
pTAAs are best targets for monoclonal antibody treatment,

5 while intracellular pTAAs constitute a good repertoire of
peptide vaccination targets.

Evaluating potential TAA

The expression patterns of CT antigens were usually evaluated
by endpoint RT–PCR. As RT–PCR is generally more sensitive

10 than other methods, tissue restrictive genes in the database
may appear less tissue restrictive when analyzed by RT–
PCR with 35 cycles. In our experience, the coincidence of
HPtaa defined tumor specificity with RT–PCR result should
be �10%. As a result, we recommend real-time PCR or north-

15 ern blot instead of end point PCR in evaluating the expression
difference between cancerous tissues and NTs of human body.

Functional considerations

As more and more TAAs have been found to be related to
carcinogenesis, the functional aspects of tumor antigens have

20 gradually aroused immunologists’ attention. As pTAAs are
virtually tumor-specific genes, together with the fact that
many organ-specific genes are found to be related to the func-
tion of the organs they are specifically expressed, it is not
surprising to find that these genes also contribute to the pro-

25 liferation or metastasis of human carcinomas. In evidence of
this, users can find many genes known to be related to car-
cinogenesis in our database. To help with users interested in
functional aspects of cancer-specific genes, we provide an
annotation of gene ontology and motif for each gene in the

30 detail page.
Users may find that some genes with high-TSP are actually

immune system-specific genes. We suspect that the upregu-
lation of these genes may originate from tumor infiltration
activity of immune cells. However, as it has been shown

35 that tumor cells overexpress genes encoding antibodies with
unknown specificity (32), we cannot exclude the possibility
that other unrecognized mechanisms may explain the high-
TSP scores of these genes.

FUTURE DIRECTION

40 The development of penalty algorithms for the HPtaa database
has been guided by practical experience. Further experimental
validation will be carried out to evaluate their efficacy, and to
facilitate refining of the algorithms. As large-scale expression
data accumulate fast, more expression data will be integrated

45 to improve gene and cancer type coverage. A classification
system will be established to address the expression privilege
of pTAAs in NTs, as in the case of tumor antigens.

Citing HPtaa

Users are requested to cite this article and quote the HPtaa
50 home page URL (http://www.hptaa.org).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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