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Abstract

Understanding sensitive behaviors—those that are socially unacceptable or non-compliant

with rules or regulations—is essential for creating effective interventions. Sensitive behav-

iors are challenging to study, because participants are unlikely to disclose sensitive behav-

iors for fear of retribution or due to social undesirability. Methods for studying sensitive

behavior include randomized response techniques, which provide anonymity to interview-

ees who answer sensitive questions. A variation on this approach, the quantitative random-

ized response technique (QRRT), allows researchers to estimate the frequency or quantity

of sensitive behaviors. However, to date no studies have used QRRT to identify potential

drivers of non-compliant behavior because regression methodology has not been devel-

oped for the nonnegative count data produced by QRRT. We develop a Poisson regression

methodology for QRRT data, based on maximum likelihood estimation computed via the

expectation-maximization (EM) algorithm. The methodology can be implemented with rela-

tively minor modification of existing software for generalized linear models. We derive the

Fisher information matrix in this setting and use it to obtain the asymptotic variance-covari-

ance matrix of the regression parameter estimates. Simulation results demonstrate the

quality of the asymptotic approximations. The method is illustrated with a case study exam-

ining potential drivers of non-compliance with hunting regulations in Sierra Leone. The new

methodology allows assessment of the importance of potential drivers of different quantities

of non-compliant behavior, using a likelihood-based, information-theoretic approach. Free,

open-source software is provided to support QRRT regression.
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Introduction

Background and related work

Sensitive behaviors are those that are non-compliant with rules or regulations or are socially

unacceptable. Sensitive behaviors are relevant to a variety of fields, including health sciences

(e.g., abortion, illicit drug use, sexual activity), natural resource management (e.g., poaching of

flora and fauna), business (e.g., tax evasion, insider trading), and education (e.g., cheating on

exams). Although widespread, such behaviors are typically challenging to research, but under-

standing the behavior is paramount to creating effective interventions for the benefit of society

at large. Successful interventions often require knowledge of who is engaged in the sensitive

behavior, what the individuals are doing, where the sensitive behaviors take place, and why the

individuals are engaged in the sensitive behaviors [1]. However, methodological constraints

hamper collection of accurate data on such behaviors because participants are unlikely to dis-

close sensitive behaviors for fear of retribution or due to social undesirability.

Indirect survey methods allow researchers to gather information on sensitive behavior

without the threat of implicating respondents [1]. Indirect methods for studying sensitive

behavior include the randomized response technique (RRT; [2]), which provides anonymity to

interviewees who answer sensitive questions. The original RRT has been modified by research-

ers (e.g., [3–5]) and applied in many contexts to help understand sensitive behaviors. See Fox

and Tracy [6] or Chaudhuri and Mukerjee [7] for overviews of such methods and [8] for vali-

dation via a meta-analysis of randomized response studies. Use of RRT in surveys has been

shown to increase a respondent’s proclivity to respond to questions about the sensitive behav-

ior, as well as to increase the likelihood that a respondent provides accurate responses [8–11].

This method has shed light on sensitive behaviors in the fields of health sciences, natural

resource management, business, education and political sciences [8]

The standard RRT approach uses a randomizing device, such as a coin or die, to determine

the question a respondent answers. One or more questions are innocuous while another

focuses on the sensitive behavior. The interviewer has no way of knowing which question the

respondent is answering, thereby ensuring anonymity and increasing response rates and accu-

racy of responses provided. In this paper, we focus on nonnegative count data obtained via a

modification of the technique referred to as the quantitative randomized response technique

(QRRT) [5], which allows researchers to understand prevalence of a sensitive behavior in a

community or society (e.g., [10]), as well as estimates of the frequency or quantity of the sensi-

tive behavior (e.g., [4, 5]).

A major gap with the use of RRT has been in answering questions concerning drivers of

non-compliance—the “why” question [1]. This is an essential question to investigators as it is

typically critical when designing effective interventions to address non-compliance. Statisti-

cally, this corresponds to building and testing regression models for randomized response

data. Logistic regression models for binary randomized response data are treated in [12] by

recognizing the structure as a generalized linear model with a particular link function. Regres-

sion models are also developed in [12] for multi-category randomized response data, when the

vector-valued observation comes from multiple randomized response questions. Another

approach to inference with multiple sensitive questions is to sum the randomized responses;

[13] and [14] develop regression models for such sum scores, including one based on zero-

inflated Poisson regression. Some R packages [15, 16] have been developed to support this

regression methodology.

However, to the best of our knowledge, regression methodology has not been developed for

count data from QRRT [5]. We develop a methodology for Poisson regression with QRRT

data, based on maximum likelihood implemented via the EM algorithm [17]. We implement

Poisson regression with quantitative randomized response data
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the methodology in a freely-available R package, by adapting existing software for generalized

linear models. Further, we provide an asymptotic theory to support estimation and testing of

models. In particular, we derive the Fisher information matrix in this setting and use it to

obtain the asymptotic variance-covariance matrix of the regression parameter estimates. Simu-

lation results illustrate the quality of the asymptotic approximations. Using a case study of

non-compliance with natural resource regulations [18], we demonstrate our new statistical

approach to examine drivers of sensitive behavior.

Case study: Non-compliance with hunting regulations in Sierra Leone

To demonstrate the utility of this new analytical approach, we examine the relative effects of

different hypothesized drivers of non-compliant resource use activities inside the Western

Area Peninsula Forest Reserve (WAPFR) in Sierra Leone. WAPFR comprises 175 km2

located between the Atlantic Ocean to the west and south, the capital city of Freetown 5km

to the north, and a low-lying plain to the east. WAPFR is an important site for conservation

in Sierra Leone because of the biodiversity it protects, including numerous endemic and

highly threatened species, and also due to ecosystem services the reserve provides to 50 sur-

rounding communities, including the main water source for Freetown’s 1.5 million resi-

dents. Communities neighboring WAPFR are home to all 17 of the country’s ethnic groups,

which rely on gardening, small-scale businesses, sand extraction, fishing, and hunting for

subsistence. Resource extraction is strictly prohibited inside WAPFR, but illegal hunting is a

major threat [18–20].

The case study reported here was part of a larger examination of non-compliance in

WAPFR (see [18–20]). We randomly selected 842 households (sampling every other house-

hold on a street) in eight communities that had similar numbers of households (100–500

households each). Coauthor Abu Conteh, a citizen of Sierra Leone, carried out the field

research. Conteh surveyed heads of households in Krio (the lingua franca of Sierra Leone).

Survey questionnaires can be found in Conteh, 2010 [21] (Appendices IV a & b) and are repro-

duced in S2 File for convenient reference. Ninety-eight percent of households answered all

questions posed. We followed the standard research ethics procedures for the region at the

time the research was conducted. This included obtaining permission from community lead-

ers, and all respondents gave verbal consent (written consent was not used due to illiteracy

rates in some of the communities sampled) to participate in the research. We did not record

any information that could be used to identify individual respondents. Ethics approval to con-

duct the research was obtained from Victoria University of Wellington (Approval No. 15521).

We used the QRRT ([5, 22]) to estimate quantities of illegal hunting (see [18] for additional

details). We recorded information on hunting activities over a nine-month period anchored

by two widely known dates (New Years Day (January 1st) and Eid Ul Adha (October 1st) to

reduce recall bias.

We designed and constructed a sealed, transparent, round bottomed container to serve as

the randomizing device for QRRT. The container had a narrow neck that could only house

one ball at a time. We placed 25 orange and 25 green balls into the container. Green balls had

numbers from a known distribution painted on them [22]. Each respondent first turned their

back on the interviewer and shook the container. If green fell into the neck of the container,

the respondent read the number off the ball. If an orange ball fell into the neck, the respondent

provided a numerical answer to the sensitive question the interviewer had posed prior to initi-

ation of the exercise. The interviewer had no way of knowing whether the number stated by

the respondent was innocuous (i.e. the number from a green ball) or was referring to the sensi-

tive question (i.e. how many times per month on average did someone from the household

Poisson regression with quantitative randomized response data
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hunt inside the reserve with the use of traps during the nine-month study period?). By ensur-

ing anonymity in this way, QRRT encourages more truthful answers to questions regarding

sensitive behavior [22]. However, as we outline below, because the researcher knows the prob-

ability of a respondent choosing a green or orange ball, as well as the distribution of numbers

written on the green balls, estimates can be made of the quantities of sensitive behavior being

conducted by different sectors of the populations.

Compliance with natural resource use regulations may be driven by a wide variety of poten-

tial factors [23–27]. To demonstrate the new analytical approach for the analysis of QRRT

data, we compare the relative support for different hypothesized drivers of non-compliance

with conservation regulations in Sierra Leone using an information theoretic approach. Specif-

ically, we construct latent Poisson regression models that describe the effects on the amount of

illegal trapping in WAPFR of perceived enforcement of the regulations, perceived resource

rarity, access to alternative livelihoods, and other factors. We then fit and test these models

using our new QRRT regression methodology.

Methods

Probability model

Let Ti denote the true count of the sensitive behavior, let zi > 0 denote a known offset, and let

xi = (xi1, . . ., xip)0 denote a p-vector of known covariates for the ith individual, i = 1, . . ., n.

Assume that

Ti � independent Poisson ðziliÞ

ln ðliÞ ¼ x0iβ

where

P Ti ¼ t j li½ � ¼
e� ziliðziliÞ

t

t!
¼ piðt j βÞ ð1Þ

for t = 0, 1, 2, . . ., and β is a p-vector of unknown parameters.

The fTig
n
i¼1

are not observed directly, but are masked through QRRT [5] as described in

the Sierra Leone example. Let m be a known positive integer and let b(r) denote a completely

known probability mass function on the integers 0, 1, . . ., m, m + 1. Let N denote the total

number of balls and assume that Nb(0), Nb(1), . . ., Nb(m + 1) are all integers. Then Nb(0)

balls are marked 0, Nb(1) balls are marked 1, . . ., Nb(m) balls are marked m, and Nb(m + 1)

balls are blank. The ith interviewee selects a random integer Bi� b(r) by selecting one of

the balls. If Bi�m, the ball is numbered and the interviewee’s response is the ball number,

Ri = Bi. If Bi = m + 1, the ball is blank and the interviewee’s response is the true count, Ri = Ti.

Since no one but the interviewee knows the value of Bi, only the interviewee knows whether

the response is a true value Ti or a randomized response Bi, assuming Ti�m. This requires

some care in the choice of m, to ensure it is sufficiently large: any reported values larger

than m are known to be true counts. The higher the ratio of blank balls to marked balls,

bðmþ 1Þ=
Pm

r¼0
bðrÞ, the higher the expected number of true responses and the more power-

ful the inference, but the lower the guarantee of anonymity. The lower the ratio of blank to

marked, the lower the expected number of true responses, but the higher the guarantee of

anonymity; see [5]. While the choice of the distribution b(r) is up to the researcher, it would

be very difficult to optimize this choice without detailed information about the unknown dis-

tribution of true responses.

Poisson regression with quantitative randomized response data
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Poisson regression via EM algorithm

If the fTig
n
i¼1

were observed directly, inference could proceed via Poisson regression fitted by

maximum likelihood. Since only the realized values frig
n
i¼1

of the random variables fRig
n
i¼1

are

observed, we use the Expectation-Maximization (EM) algorithm [17] to maximize the likeli-

hood, by first augmenting with the unobserved values fBig
n
i¼1

.

If the fBig
n
i¼1

values were known, we would discard all but the true data values, for which

1fBi¼mþ1g ¼ 1, resulting in the complete-data log-likelihood

Xn

i¼1

1fBi¼mþ1gf� lnðri!Þ � zili þ ri ln zi þ ri ln lig: ð2Þ

The incomplete-data log-likelihood is the conditional expectation of (2) given the observed

data and the current estimate of β, denoted β(k):

Xn

i¼1

P
h

Bi ¼ mþ 1 j fRig ¼ frig; β
ðkÞ
i
f� lnðri!Þ � zili þ ri ln zi þ ri ln lig

¼
Xn

i¼1

o
ðkÞ
i

n
� lnðri!Þ � zie

x0iβ þ ri ln zi þ rix
0

iβ
o
;

ð3Þ

where the conditional probabilities fo
ðkÞ
i g

n

i¼1
are computed via Bayes’ rule as

o
ðkÞ
i ¼

pi

�
ri j β

ðkÞ
�

bðmþ 1Þ

bðriÞ1fri<mþ1g þ pi

�
ri j β

ðkÞ
�

bðmþ 1Þ
: ð4Þ

The EM algorithm then reduces to iterating the following steps across k to maximize the

likelihood and obtain the maximum likelihood estimator (MLE) bβ:

• E-step: compute weights from (4) under the current maximized model with parameters β(k).

• M-step: maximize the weighted log-likelihood (3) for Poisson regression.

Asymptotic distribution and variance estimation

In derivations not described here, we have verified the regularity conditions in chapter 2 of

Fahrmeir and Tutz [28], establishing that the MLE is asymptotically normally distributed as

n!1. Thus, in large samples,

bβ is approximately N ðβ;I � 1ðβÞÞ;

where β is the vector of true regression coefficients and I � 1ðβÞ is the inverse of the Fisher

information matrix. We derive the Fisher information matrix in the supplemental material, S1

Appendix. The asymptotic covariance matrix I � 1ðβÞ is then estimated by plugging in the

MLE, dVar ðbβÞ ¼ I � 1ðbβÞ.

Hypothesis testing and model selection

The log-likelihood ‘ðβ; frig
n
i¼1
Þ derived in the supplemental material, S1 Appendix:, can be

used in hypothesis testing and model selection. First, let βfull be a vector of p parameters for a

full model that fits the data well. Let βreduced be a vector of q parameters for a nested (reduced)

model within the full model (that is, a model obtained by setting p − q of the parameters in βfull

Poisson regression with quantitative randomized response data
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equal to zero). To test the null hypothesis that the reduced model fits the data equally as well as

the full model, we compute the likelihood ratio test statistic

W ¼ � 2‘ bβreduced; frig
n
i¼1

� �
þ 2‘ bβfull; frig

n
i¼1

� �
; ð5Þ

where bβfull and bβreduced are the MLE’s for the full and reduced models, respectively. Standard

asymptotic theory shows that for n large, W has an approximate w2
p� q distribution, the chi-

squared distribution with p − q degrees of freedom. We reject the reduced model in favor of

the full model if the test statistic is large (e.g., [29]).

The maximized log-likelihood can also be used to compare models that need not be nested,

via Akaike’s information criterion (AIC, [30]). For a model with p parameters β,

AIC ¼ � 2‘ bβ; frig
n
i¼1

� �
þ 2p:

We use AIC to rank models for comparison, with small AIC being the best. Models are

competitive with one another if their AIC values differ by less than two.

Numerical implementation

Maximization of the weighted log-likelihood (3) for Poisson regression can be accomplished

with standard software, such as the R function glm, using case weights (4) obtained in the E-

step. We developed custom code for fitting of these models, and have made it available as an R
package called QRRT, freely downloadable from GitHub; see the supplemental material S1

Code for details.

We use multiple starting values and iterate each to convergence, assessed by checking the

value of the score vector derived in S1 Appendix. We then choose the set of converged parame-

ter estimates that yield the highest log-likelihood value. Standard errors (SE’s) for each esti-

mated parameter bb j are calculated from diagonal elements of the estimated Fisher information

matrix (S1 Appendix). The t-statistic is calculated as tj ¼
bb j=SEj and the corresponding p-

value is the probability that the absolute value of a standard normal random variable is greater

than or equal to |tj|; that is, the probability under the asymptotic distribution of obtaining a

statistic this extreme or more extreme under the null hypothesis that the true βj coefficient is

zero. The code returns AIC and the maximized log-likelihood, so that non-nested models can

be compared, and nested models can be tested.

Results

Monte Carlo results

We illustrate the methodology and the quality of the asymptotic approximations via a Monte

Carlo experiment using our R package QRRT. Details on reproducing results of this simulation

experiment are given in the supplemental material, S1 Code.

We consider a setting in which n = 400 true counts are generated independently as

Ti� Poisson(λi) with

ln li ¼ b0 þ b1xi1 þ b2xi2 þ b31fxi3¼Bg þ b41fxi3¼Cg þ b5xi1xi2; ð6Þ

where x1i and x2i are continuous predictors and x3i is a categorical predictor with levels “A”,

Poisson regression with quantitative randomized response data
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“B”, and “C”, and “A” is the baseline level. We set

ðb0; . . . ; b5Þ ¼ ð1:5; 1:0; � 0:5; 0:4; 0:3; 0:2Þ:

Next, we simulate fBig
n
i¼1

as independent and identically distributed from the same b(r) dis-

tribution as in Conteh [18], with m = 8 and

b 0ð Þ; b 1ð Þ; . . . ; b 8ð Þ; b 9ð Þð Þ ¼
1

50
ð6; 7; 4; 2; 2; 1; 1; 1; 1; 25Þ: ð7Þ

Observations are then Ri = Bi if Bi�m = 8 and Ri = Ti if Bi = m + 1 = 9.

For our Monte Carlo experiment, we fixed fðx1i; x2i; x3iÞg
400

i¼1
and, over 1000 independent

realizations, simulated {Ti} using the model (6) and {Bi} and {Ri} as described. We fitted each

of the 1000 simulated data sets both with the true model (6), and with the larger-than-neces-

sary model with all two-way interactions,

b0 þ b1xi1 þ b2xi2 þ b31fxi3¼Bg þ b41fxi3¼Cg þ b5xi1xi2

þb6x1i1fxi3¼Bg þ b7x1i1fxi3¼Cg þ b8x2i1fxi3¼Bg þ b9x2i1fxi3¼Cg;
ð8Þ

in which β6 = � � � = β9 = 0.

For each simulated realization and both fits, we recorded the vector of estimated coeffi-

cients and the inverse Fisher information evaluated at the estimated parameters. We then com-

pared the average regression coefficient vector over the 1000 Monte Carlo replicates to the

vector of true coefficients, to assess the quality of the point estimation, and the empirical

covariance matrix over the 1000 Monte Carlo replicates to the asymptotic covariance matrix

given by the inverse Fisher information at the true values, to assess the quality of the variance

approximation. Further, we compared the average estimated inverse Fisher information to the

empirical covariance matrix, to assess the quality of the variance estimators.

Results are given in Table 1 and show that the asymptotic approximations are excellent. For

both the true additive model and the larger interaction model, the MLE’s are approximately

unbiased, their variances are well-approximated by diagonal elements of inverse Fisher infor-

mation, and the estimated variances obtained by plugging MLE’s into inverse Fisher informa-

tion are nearly unbiased for the true variances.

Table 1. Simulation results. True coefficients, estimated parameters, Monte Carlo standard error, inverse Fisher information matrix evaluated at estimated parameters

and inverse Fisher information matrix at the true value. All parameters are calculated based on 1000 Monte Carlo replicates with sample size equals to 400.

True

β
True Model Interaction Model

bβ Monte Carlo S.E. Average estimated S.E. Inverse Fisher

at true value

bβ Monte Carlo S.E. Average estimated S.E. Inverse Fisher at

true value

β0 1.5 1.4951 0.0815 0.0791 0.0789 1.4899 0.1489 0.1464 0.1456

β1 1.0 1.0037 0.0690 0.0676 0.0675 1.0067 0.1446 0.1405 0.1400

β2 -0.5 -0.5005 0.0651 0.0646 0.0645 -0.5008 0.0750 0.0733 0.0728

β3 0.4 0.3987 0.0514 0.0508 0.0507 0.3998 0.1874 0.1818 0.1808

β4 0.3 0.3007 0.0523 0.0501 0.0500 0.3031 0.1846 0.1818 0.1808

β5 0.2 0.2003 0.0626 0.0623 0.0622 0.2006 0.0648 0.0631 0.0632

β6 0.0000 0.1800 0.1720 0.1715

β7 -0.0014 0.1776 0.1734 0.1726

β8 -0.0002 0.0523 0.0512 0.0510

β9 -0.0008 0.0539 0.0517 0.0520

https://doi.org/10.1371/journal.pone.0204433.t001
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Finally, for each simulated realization we tested the null hypothesis that the true model (6)

suffices,

H0 : b6 ¼ � � � ¼ b9 ¼ 0;

against the alternative that the larger, two-way model (8) is necessary. These hypotheses were

compared via a likelihood ratio test, computed as

� 2 ln ðlikelihood of true modelÞþ 2 ln ðlikelihood of full two � way modelÞ ð9Þ

and compared to the χ2 distribution with 4 degrees of freedom, rejecting H0 for large values of

the test statistic. Since the null hypothesis is true in each simulated realization, the p-values

should theoretically follow a uniform distribution. The empirical results (not shown here) are

consistent with the uniform distribution. In particular, the empirical proportion of rejections

is 0.047 at the 0.05 significance level and 0.092 at the 0.10 significance level.

Application to poaching in Sierra Leone

We applied our method to responses to the question “how many times per month on average

did someone from the household hunt inside the reserve with the use of traps during the nine-

month study period?” Instrumental models of compliance [23, 25, 31] posit that compliance is

primarily driven by factors external to the individual, including the probability of being caught

and convicted. To test for the effects of perceived enforcement we asked respondents if they

knew that a protected area existed neighboring their community, if reserve personnel

restricted the activities allowed inside the protected area, if reserve personnel patrolled the

reserve, if the personnel were efficient in their enforcement duties, if conservation personnel

were quick to apprehend those engaged in non-compliant activities in the reserve, and if those

caught were punished.

Non-compliance may also be influenced by other perceived costs and benefits of a particu-

lar behavior. For example, if resources are rare, the efforts needed to obtain them may out-

weigh any benefits received. To test the effect of perceived rarity, we asked respondents about

the rarity of targeted species. Similarly, we tested for the effect of household size (the number

of people living in the household), as larger households may require more resources, which

would increase the likelihood of violating hunting regulations while searching for food.

In addition, alternative livelihoods may reduce the need for subsistence-based hunting

practices [32]. We stratified our sample based on access to alternative livelihoods.

Urban centers can both drive more illegal hunting by providing markets for bushmeat, or

wage labor in urban areas may reduce illegal hunting by offering alternative livelihoods [32–

35]. Therefore, we surveyed communities with both high and low access to the main urban

center of Freetown. Similarly, we might predict less illegal hunting in locations with better

ocean access, due to the presence of alternative marine-based livelihoods [36]; and therefore

we surveyed communities with both direct and no access to the ocean. Sierra Leone’s civil

war (1992–2002) displaced millions of people. Many of the displaced settled in communities

near Freetown. Communities surrounding WAPFR vary widely in terms of the proportion

of residents that arrived as internally displaced people during Sierra Leone’s civil war. Many

of the internally displaced do not have access to suitable land for agriculture or other alterna-

tive livelihoods to meet basic needs, which can lead to increases in resource extraction rates

from the reserve. We surveyed communities with either no internally displaced people or

substantial populations of internally displaced people. We then included community

dummy variables in our models to examine the effect of context, including access to alterna-

tive livelihoods.
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The normative view argues that compliance is more internally driven by perceived behav-

ioral norms [23, 36–38]. Here we explore the effects of descriptive norms, which involve a per-

son’s perceptions of the prevalence of a behavior [39]. Based on descriptive norms, we would

hypothesize that people will be more likely to violate regulations if they believe many of their

peers are also non-compliant. To test for these normative effects we asked respondents if peo-

ple from their community hunted inside the reserve, and if they thought people from outside

the community hunted in the reserve.

Finally, hunting requires specialized knowledge of the local ecosystem and of target species.

Ecological knowledge can accumulate over time as hunters compile more first-hand experi-

ence, and several ethnobiological studies have found residence time to be positively correlated

with increased natural resource use [40, 41]. To the contrary, formal education has often been

significantly linked to lower levels of ecological knowledge and subsistence resource use [42–

45]. Based on these prior findings, we tested for the effects of both formal education level and

local residence time in our models.

Summarizing, the set of hypothesized drivers and corresponding covariates is given in

Table 2. Among these covariates, all of the Yes-No-Don’t Know variables were converted to

Yes indicators, and all agreement scales (1 = Strongly Agree, . . ., 5 = Strongly Disagree) were

converted to Agreement (Agree or Strongly Agree) indicators. The data set was then restricted

to records with non-missing values for all of the above variables, to ensure comparability

across fitted models. There are n = 662 complete records in this data set. These data are avail-

able in the supplemental material, S1 Dataset, with variables described in the data dictionary,

S1 File.

We fitted a series of models corresponding to the hypothesized drivers in Table 2. Each of

the models included an intercept. All covariates for a hypothesized driver were either simulta-

neously included or excluded from a model; for example, all six covariates corresponding to

perceived enforcement were either in or out of a given model. Hence, with seven drivers there

were 27 = 128 possible additive models for consideration, with the largest model including the

intercept and all seven drivers, and the smallest (null) model including only the intercept.

We used our code to fit all of these models, plus three sets of additional models, each with

128 subset models: (1) all subsets of the seven drivers, with alternative livelihoods replaced by

(alternative livelihoods)2, meaning the three community variables plus all three of their two-

way interactions; (2) all subsets of the seven drivers, but with the six variables of perceived

enforcement replaced by the single variable “Efficient Conservation: perceived efficiency of

conservation personnel”; (3) all subsets of the seven drivers, but with both alternative liveli-

hoods replaced by (alternative livelihoods)2 and perceived enforcement replaced by Efficient

Table 2. Drivers and covariates. Hypothesized drivers of non-compliant behavior and corresponding measured

covariates in the Sierra Leone dataset.

Driver Covariates

perceived

enforcement

knowledge of protected area, no perceived restriction on extraction, perceived efficiency of

conservation personnel, perceived patrols, perceived rapid detention, perceived punishment

perceived rarity

household size

alternative

livelihoods

rural, seaside, displaced

descriptive norms residents hunted, outsiders hunted

residence time

formal education

https://doi.org/10.1371/journal.pone.0204433.t002
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Conservation. We computed AIC for all of these subset models and determined minimum

AIC within each model class (see Table 3). Based on these computations, we restricted atten-

tion to the model class Efficient Conservation + (alternative livelihoods)2.

Within this model class, we computed ΔAIC as AIC minus minimum AIC, and focused on

the nine optimal models with ΔAIC< 2 (see Table 4). We found support for some hypotheses

we tested and not for others in this set. In addition, none of the individual hypothesized factors

alone explains the variation in frequencies of illegal hunting. The ΔAIC value of models con-

taining just individual factors are between 31.231 and 118.455. Instead, all optimal models con-

tained a combination of different factors.

Other likelihood-based criteria could be applied, such as the Bayesian Information Crite-

rion (BIC) [46]. AIC and BIC both allow for model selection in large model spaces, but using

different approaches: AIC efficiently selects a good approximating model in the model space,

while BIC consistently estimates the true model if a true model is in fact in the model space.

We computed BIC for all 128 models in the same model class as considered for Table 4. As

expected, BIC tends to prefer smaller models, but model 6 and model 1 in Table 4 are the first

and second model selected based on BIC.

All optimal models included a large, negative coefficient for perceived enforcement, indi-

cating that higher levels of enforcement may serve as a critical deterrent against illegal hunting

in WAPFR (Table 4), as has been found in a wide variety of other protected areas. This

Table 3. Minimum AIC for four different model classes. Minimum AIC over all 128 subset models in each model

class. All models are fitted to randomized responses based on the EM algorithm with 20 different random starting val-

ues to avoid convergence to local modes.

Model Class Minimum AIC

Efficient Conservation + alternative livelihoods 2728.699

Efficient Conservation + (alternative livelihoods)2 2680.613

perceived enforcement + alternative livelihoods 2729.034

perceived enforcement + (alternative livelihoods)2 2688.773

https://doi.org/10.1371/journal.pone.0204433.t003

Table 4. Top models with ΔAIC less than 2 for Efficient Conservation + (alternative livelihoods)2. ΔAIC, maximum likelihood estimates for models fitted to random-

ized responses. All model fits are based on the EM algorithm with 20 different random starting values to avoid convergence to local modes.

1 2 3 4 5 6 7 8 9

(Intercept) -0.469 -0.338 -0.460 -0.338 -0.589 -0.319 -0.342 -0.454 -0.451

EfficientConservation -3.261 -3.316 -3.127 -2.716 -3.213 -2.879 -3.200 -3.248 -3.264

AnimalsRare -0.218 -0.201 -0.212

HouseholdSize -0.002

HighDisplace 0.691 0.671 0.670 0.668 0.713 0.685 0.656 0.688 0.690

Rural 1.404 1.489 1.500 1.664 1.414 1.559 1.559 1.395 1.505

Seaside 1.814 1.762 1.842 1.915 1.790 1.900 1.802 1.810 1.743

Rural:HighDisplace -0.288 -0.308 -0.354 -0.493 -0.315 -0.397 -0.355 -0.275 -0.340

Seaside:HighDisplace -0.887 -0.781 -0.886 -0.909 -0.854 -0.909 -0.800 -0.877 -0.751

Seaside:Rural -2.361 -2.408 -2.382 -2.434 -2.329 -2.457 -2.424 -2.357 -2.381

OutsidersHunted -0.283 -0.366 -0.273

ResidentsHunted 0.282 0.342 0.280

Residencetime 0.007 0.008 0.006 0.007 0.007 0.007 0.008

Education.level 0.038 0.036

AIC 2680.613 2681.220 2681.764 2681.868 2681.916 2682.067 2682.500 2682.591 2682.601

ΔAIC 0 0.607 1.151 1.255 1.303 1.454 1.887 1.978 1.988

https://doi.org/10.1371/journal.pone.0204433.t004
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outcome has clear policy and management implications; however, the potential to increase

enforcement may be limited in Sierra Leone. The country faces many fiscal challenges, and

conservation capacity in WAPFR has yet to recover to levels seen prior to the civil war [20].

Three of the nine optimal models also point to the importance of normative influences on

the amount of non-compliance (Table 4). We found that community members were more

likely to engage in illegal hunting when they believed their neighbors in the same community

were also doing so (positive coefficients in Table 4). Norms have been shown to influence

compliance with conservation regulations and to shape natural resource use patterns across a

broad range of contexts from recreational fishing in New Zealand [23] to rangeland manage-

ment in Mongolia [47]. Management interventions can influence norms, but care must be

taken as the introduction of new rules and regulations can undermine long-standing norms

and drive greater non-compliance [48]. One promising approach is community-based social

marketing, which can use social norms as the center piece of persuasive behavior-change com-

munication campaigns [49].

We also found that, contrary to initial hypotheses, respondents were less likely to hunt ille-

gally if they perceived outsiders were hunting in the reserve (negative coefficients in Table 4).

One possible reason for this apparent contradiction is that the effects of descriptive norms are

moderated by group identity. Specifically, when an individual perceives a group to be more

similar to themselves, the individual may identify more closely with the group, and this may

increase the influence of descriptive norms on the individual’s behavior [50]. In other words,

individuals should be more likely to participate in a behavior that is common among a group

they identify with (in this case their home community) than a behavior common in a less simi-

lar group (in this case outsiders). This could explain why the perceived behaviors of outsiders

would have less effect on the amount of non-compliance than the behaviors of community

members. However, we found that the effect of outsiders was as strong as that of community

members, but in the opposite direction: perceptions of hunting by outsiders correlates with

less hunting by respondents and perceptions of hunting by community members correlates

with more hunting. The effect of outsider’s behaviors may instead be explained by the history

of the region. During the war, combatants frequented the forest inside the reserve, and local

people may still harbor memories that associate the forest with zones of active combat [19].

Therefore, increased activity of outsiders in the reserve may provide local people with ample

reason to avoid the area.

All nine optimal models also included community variables (Table 4). As described

above, we had included community as a variable in our models as a proxy for access to alter-

native livelihoods. Some of the results support the idea that increased availability of alterna-

tive livelihoods can reduce resource use and non-compliance with conservation regulations.

For example, rural communities, with less access to labor markets in urban centers, tended

to hunt more in the reserve (positive coefficients in Table 4). In addition, communities

with a greater proportion of displaced people also hunted more. However, contrary to our

hypotheses, we found more hunting to occur in seaside communities, despite their access to

additional marine resources. Also, examining interaction effects among community types,

further confounds the relationship between access to alternative livelihoods and frequency of

hunting. For example, we would expect rural communities with many displaced people to

have high rates of hunting, however, all of our optimal models found that these communities

had lower rates of hunting (negative coefficient in Table 4 for interaction between rural and

displaced). Overall, we see a significant difference in hunting rates among communities, but

these differences cannot be explained by access to alternative livelihoods. Instead, other

aspects of the local context not measured here must be driving these differences in hunting

rates among communities.
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Seven of the nine optimal models also contained residence time. The small coefficients

(Table 4) indicate the smaller effect the variable had on the outcome. In all cases the longer a

household had lived in a community, the greater the likelihood they had participated in illegal

hunting. This corroborates prior findings of increases in the use of forest resources with longer

residence times, which may be linked to the accumulation of ecological knowledge over time

[40]. Three of the optimal models included perceived rarity, and supported the prediction that

residents were less likely to participate in illegal hunting when they perceived animals to be

rare in the reserve. Only two models included education, but contrary to prior studies [42–45]

our results indicate that increases in formal education are associated with greater amounts of

illegal hunting. However, some studies in Africa have found similar results using indirect ques-

tioning methods [51, 52]. In addition to the value of using an indirect questioning method

such as QRRT, our finding might be explained by the links between hunting and bushmeat

markets in the nearby capital of Freetown. Higher levels of education may assist some families

in integrating with these markets, but further research is needed to confirm this possible link

between education and hunting. Finally, only one model in the optimal set contained house-

hold size. The coefficient for the variable was small and surprisingly indicated that larger

households would be slightly less likely to hunt illegally in the reserve. Although this finding is

in contrast to theory, similar results have been recorded in Gabon in the case of hunting for

bushmeat [53].

Although our models allow us to compare the relative importance of possible drivers of ille-

gal hunting, the models still only explained a relatively small proportion of the variance in

hunting rates. This is not surprising given that our aim was to use this case to demonstrate a

new methodological approach and we did not attempt to measure all possible determinants of

non-compliance. For this case, future research might include variables or models not tested

here, but for which strong theoretical foundations exist. Possibilities for additional theories to

test that have been found to be good predictions of conservation-related behavior in past stud-

ies include the theory of planned behavior, which posits that attitudes and perceived behavioral

control, along with social norms all influence behavioral intentions [54], Bamberg and Moser’s

[55] framework of pro-environmental behavior, and models of legitimacy, which include both

measures of participation in decision-making as well as perceptions of the fairness of rules and

enforcement outcomes [56, 57].

Conclusion

The methods we present here provide a methodological blueprint for examining possible driv-

ers of sensitive behaviors. Researchers across multiple disciplines are interested in understand-

ing sensitive behaviors, and policy makers and program managers seek more effective means

to reduce the frequency of a wide variety of sensitive behaviors. QRRT provides a means for

gathering data on the frequency of sensitive behaviors while protecting respondent anonymity.

The new analytical approach and tools we present here will allow researchers to explore drivers

of a wide variety of sensitive behaviors using QRRT data.
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