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A global resource for genomic predictions of
antimicrobial resistance and surveillance of
Salmonella Typhi at pathogenwatch
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Gordon Dougan3 & David M. Aanensen1,2✉

As whole-genome sequencing capacity becomes increasingly decentralized, there is a

growing opportunity for collaboration and the sharing of surveillance data within and between

countries to inform typhoid control policies. This vision requires free, community-driven tools

that facilitate access to genomic data for public health on a global scale. Here we present the

Pathogenwatch scheme for Salmonella enterica serovar Typhi (S. Typhi), a web application

enabling the rapid identification of genomic markers of antimicrobial resistance (AMR) and

contextualization with public genomic data. We show that the clustering of S. Typhi genomes

in Pathogenwatch is comparable to established bioinformatics methods, and that genomic

predictions of AMR are highly concordant with phenotypic susceptibility data. We demon-

strate the public health utility of Pathogenwatch with examples selected from >4,300 public

genomes available in the application. Pathogenwatch provides an intuitive entry point to

monitor of the emergence and spread of S. Typhi high risk clones.
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The ability to rapidly sequence microbial genomes facilitates
the tracking of pathogen evolution in real-time and with a
geographical context. Genomic surveillance provides the

opportunity to identify the emergence of genetic signatures
indicating antimicrobial resistance (AMR), or host adaptation,
facilitating early intervention and minimizing wider dissemina-
tion. Consequently, genomic data has the ability to transform the
way in which, we manage the emergence of microbes that pose a
direct threat to human health in real time.

Genomic data is being generated at a remarkable rate, but we
need to bridge the gap between genome science and public health
with tools that make these data broadly and rapidly accessible to
those who are not expert in genomics. To maximize the impact of
ongoing surveillance programs, these tools need to quickly
highlight high-risk clones by assigning isolates to distinct lineages
and identifying genetic elements associated with clinically rele-
vant features such as AMR or virulence. In this way, new isolates
can be examined against the backdrop of a population framework
that is continuously updated, and that enables both the con-
textualization of local outbreaks and the interpretation of global
patterns.

Salmonella Typhi (S. Typhi) causes typhoid (enteric) fever, a
disease that affects approximately 20–30 million people every
year1,2. The disease is predominant in low-income communities,
where public health infrastructure is poorly resourced. Similar to
other infections, typhoid treatment is compromised by the
emergence of S. Typhi with resistance to multiple antimicrobials,
including those currently used for treatment2. Whole genome
sequencing (WGS) has proven key to identify S. Typhi high-risk
clones by linking the population structure to the presence of
AMR elements. For example, the resurgence of multidrug resis-
tant (MDR) typhoid (defined as resistance to chloramphenicol,
ampicillin, and co-trimoxazole) has been explained in part by the
global spread of an MDR S. Typhi lineage known as haplotype
H58 or subclade 4.3.13,4, which is associated with both acquired
AMR genes and fluoroquinolone resistance mutations3,5.

WGS is increasingly being implemented in local and national
public health laboratories, and web applications can provide rapid
analysis and access to actionable information for infection control
in the context of a global population framework. Online resources
are available for the identification of acquired AMR mechanisms
in bacterial pathogens, including Salmonella spp.6,7, and for in
silico typing and visualization of genome variation and related-
ness based on WGS data8–12. Here, we describe Typhi Patho-
genwatch, a web application to support genomic epidemiology
and public health surveillance of S. Typhi. Typhi Pathogenwatch
rapidly places new genomes within the broader geographic and
population context, predicts their genotype according to estab-
lished nomenclatures4,8,13, and detects the presence of AMR
determinants and plasmid replicon genes to assess public health
risk. Results can be downloaded or shared via a web address
containing a unique collection identifier. Our approach allows the
rapid incremental addition of new data and can be used to
underpin the international surveillance of typhoid, MDR, and
other public health threats.

Results
Overview of Typhi pathogenwatch. We developed a public
health focused application for S. Typhi genomics that uses gen-
ome assemblies to perform three essential tasks for surveillance
and epidemiological investigations, i.e., (i) placing isolates into
lineages or clonal groups, (ii) identifying their closest relatives
and linking to their geographic distribution, and (iii) detecting the
presence of genes and mutations associated with AMR. The
application can be accessed at https://pathogen.watch/styphi,

where users can create an account to upload and analyse their
genomes (Fig. 1 and video14). User data remains private and
stored in their personal account. Pathogenwatch provides com-
patibility with typing information for MLST13, cgMLST8, in silico
serotyping (SISTR11), a SNP genotyping scheme (GenoTyphi4),
and plasmid replicon sequences15. The results for a single genome
are displayed in a genome report that can be downloaded as a
PDF. The results for a collection of genomes can be viewed online
and downloaded as trees and tables of genotypes, AMR predic-
tions, assembly metrics, and genetic variation. Results can also be
accessed at a later date and shared via a collection ID embedded
in a unique weblink, thus facilitating collaborative surveillance.

Clustering genomes into lineages with Pathogenwatch. The
pairwise genetic distance between isolates provides an operational
unit for genomic surveillance. Typhi Pathogenwatch clusters
genomes based on their genetic distance and displays their rela-
tionships in a collection tree. We benchmarked the Pathogen-
watch clustering method against established methods of SNP-
based tree inference, using three sets of published genomes. The
Pathogenwatch trees clustered diverse genomes according to
genotype assignments4 (Supplementary Fig. 1a), and detected
phylogeographic signal in a set of closely related genomes from a
clonal expansion of 4.3.1 within Africa3 (Supplementary Fig. 1b).
In addition, we found that the Typhi Pathogenwatch clustering
algorithm produced trees comparable to established methods
based on the tree space (visualizations of pairwise distances
between trees in two or three dimensions) and the tree topology
(Supplementary Fig. 2).

Contextualization with public data. A fundamental process for
interpreting genomic datasets is to identify the nearest neighbors
to the genome(s) under investigation. Pathogenwatch con-
textualizes the user-uploaded genomes with public genomes using
a population tree of 19 diverse genome references (Supplemen-
tary Fig. 3) to guide their SNP-based clustering into subsets of
closely related genomes (population subtrees). A previous inves-
tigation of a typhoid outbreak in Zambia identified clonal
diversity and two repertoires of AMR genes within outbreak
organisms, which belonged to haplotype H58 (genotype 4.3.1)16.
Using Pathogenwatch, the outbreak strains can be rapidly con-
textualized with public genomes, which revealed two different
clusters with close relationships to contemporary genomes from
neighboring countries Malawi and Tanzania (Fig. 2).

Users interested in exploring the public genomes without
creating their own collections can browse the public data as a
whole17 or view by published study18. As of November 2020,
Typhi Pathogenwatch included 4389 public genomes from 26
published articles (Supplementary Table 1). The genomes
spanned the years 1905–2019 and 77 different countries, with
the largest representation from 2000 onwards (n= 3795, 86.49%)
and from the Indian subcontinent (n= 1602, 36.50%), respec-
tively (Table 1 and Supplementary Fig. 4). Over half of the
genomes (n= 2500, 57.0%) belonged to the globally dominant
MDR genotype 4.3.1, although the five different genotypes
comprising 4.3.1 showed different temporal distributions and
relative abundance (Supplementary Fig. 5).

Genotypic predictions of antimicrobial resistance. Typhi
Pathogenwatch queries genome assemblies with BLAST19 and a
curated library of AMR genes and mutations (Supplementary
Table 2). The antibiotics table reports the presence of known
AMR determinants as resistance, only discriminating between
resistance and decreased susceptibility (intermediate) for cipro-
floxacin. To benchmark the Typhi Pathogenwatch predictions, we
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first compared the genotypic resistance genotypes to the available
drug susceptibility phenotypes (SIR interpretation) of 1316 gen-
omes. The sensitivity of the Pathogenwatch genotypic predictions
was at least 0.96 for all antibiotics with a computed value
(Table 2). The false negative (FN) calls for ampicillin (n= 4),
cephalosporins (n= 2), chloramphenicol (n= 6), and
sulfamethoxazole-trimethoprim (n= 7) were paralleled by the
original genome studies20–22, and by an alternative bioinformatics
method23. The 49 FN calls for ciprofloxacin were also in agree-
ment with the in silico analyses reported in the original genome
studies22,24, in which no QRDR mutations or qnr genes were

detected. Only mutations outside of the QRDR of parE (A364V,
n= 17) or gyrA (D538N, n= 2) were found in 20 genomes.

The specificity of the Pathogenwatch genotypic predictions was
at least 0.95 for most antimicrobials (Table 2), with the exception
of ciprofloxacin, for which a third of the ciprofloxacin susceptible
isolates were reported as insusceptible by Pathogenwatch. A
closer inspection of the 57 false positive (FP) results showed
that Pathogenwatch reported one (n= 55), two (n= 2), or three
(n= 1) mutations in the QRDR of gyrA, gyrB, and/or parC,
most frequently the single mutations gyrA_S83F (n= 25)
and gyrB_S464F (n= 16). For 54 of these samples, the same

Fig. 1 Workflow of the Typhi Pathogenwatch application. Input assemblies or sequence reads and metadata files can be uploaded via drag-and-drop onto
the Upload page. Once the analyses completed, the genomes are listed on the Genomes page with Pathogenwatch outputs for speciation and MLST.
Clicking on a genome name on the list pops up a Genome Report. The user can create collections of genomes. The Collection view displays the user
genomes clustered by genetic similarity on a tree, their location on a map, a timeline, as well as tables for metadata, typing and AMR. The Population view
displays the user genomes by their closest reference genome in the population tree. Clicking on one of the highlighted nodes (purple triangles) opens the
Population subtree view, which contextualizes the user genomes with the closest public genomes.
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mutations were reported in the original genome studies. For the
remaining three genomes, no mutations were reported in the
original studies, but we confirmed the presence of gyrB_S464F
(n= 2) or gyrB_S464Y (n= 1) in the assemblies using
Resfinder25.

To benchmark the predictions of ciprofloxacin resistance/
decreased susceptibility, we then evaluated the ciprofloxacin
MICs of 889 S. Typhi isolates from nine previous studies against
the different combinations of resistance mechanisms identified by
Pathogenwatch. The isolates with one or two QRDR mutations
displayed mostly intermediate MICs against ciprofloxacin, and
support reporting as intermediate in Pathogenwatch (Fig. 3). The
MIC values of seven isolates carrying single mutations on gyrA
(S83F, S83Y) and gyrB (S464F), however, were below the
intermediate breakpoint, consistent with the lower specificity
reported for ciprofloxacin in Table 2. The highest ciprofloxacin
MIC values were observed for the combination of gyrA_S83F-
gyrA_D87N-parC_S80I mutations, reported as resistant by
Pathogenwatch26–28. However, the triple combination gyr-
A_S83F-gyrA_D87G-parC_E84K was represented by nine isolates
with MICs in both the resistant (n= 6) and the intermediate
(n= 3) ranges, and is reported by Pathogenwatch as intermediate.
Further susceptibility testing of isolates with this combination of
mutations is needed to refine genotypic predictions. Likewise,
several other mechanisms potentially conferring insusceptibility

Fig. 2 Pathogenwatch provides genomic context for outbreak investigations. a, b Genomes from an outbreak in Zambia (purple markers on tree and
map) are linked by genetic relatedness to genomes from neighboring countries Malawi and Tanzania (gray markers) forming two separate groups
containing 16 (a) and 4 (b) outbreak genomes, respectively. The number of pairwise differences (range) between outbreak and related genomes in the
Pathogenwatch score matrix are indicated on the bottom-right of the tree panel. c, d Differential distribution of trimethoprim resistance genes dfrA7 (c) and
dfrA14 (d) across the two clades containing outbreak genomes. The presence of the dfr genes is indicated in red on the tree and map. The data are available
at https://pathogen.watch/collection/g5pbucot6e58-hendriksen-et-al-2015.

Table 1 Characteristics of 4389 public genomes in
Pathogenwatch.

Year of isolation Number of genomes (%)

1905–1969 41 (0.9)
1970–1989 79 (1.8)
1990–1999 395 (9.0)
2000–2009 1187 (27.0)
2010–2019 2609 (59.4)
No date 78 (1.78)

Country of isolation (top 6) Number of genomes (%)

Bangladesh 637 (14.51)
United Kingdom 629 (14.33)
India 486 (11.07)
Nepal 318 (7.25)
Vietnam 220 (5.01)
Cambodia 209 (4.76)

Assembly Stats Median (range)

Number of contigs 51 (1–633)
Assembly length 4,747,975 (4,535,494–5,211,763)
N50 204,317 (19,527–4,806,333)
Non-ATCG 152 (0–48,002)
GC content (%) 52.0 (51.4–52.4)
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to ciprofloxacin were found in the public genomes but had no or
little associated MIC data, including seven additional triple
mutations (Supplementary Table 3 and Supplementary Fig. 6).

The user can overlay the AMR predictions on the tree and the
map views for one or multiple antibiotics, genes, or SNPs, thus
intuitively linking resistance with genome clustering and
geographic location. For example, the distribution of genomic
predictions of ciprofloxacin-resistant, MDR, or extremely drug
resistant (XDR) S. Typhi on the map and on the tree of 4389
public genomes highlights the lineages that represent a particular
challenge to treatment and their geographical distribution
(Supplementary Fig. 7).

MDR and XDR phenotypes have been associated with the
acquisition of plasmids in S. Typhi3,20. Pathogenwatch identifies
plasmid replicon sequences in the user genomes and reports them
on the genome report and on the typing table in the collection
view (Fig. 1). Pathogenwatch reported between one and four
plasmid replicon marker sequences in a third of the public
genomes (1571/4389, 35.79%, Supplementary Fig. 8a). The
cryptic plasmid pHCM2, which does not carry resistance genes29,
was the most common replicon detected amongst genomes in
which acquired resistance genes were not detected. The distribu-
tion of replicon genes showed that the combination of IncH1A
and IncH1B(R27) was prevalent in MDR genomes from South-
east Asia and East Africa belonging to clade 4.3.1, while the sameT
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Fig. 3 Genotypic predictions of antimicrobial resistance. Distribution of
minimum inhibitory concentration (MIC) values (mg L−1) for ciprofloxacin
in a collection of S. Typhi isolates with different combinations of genetic
mechanisms that are known to confer resistance to this antibiotic. Only
combinations observed in at least five genomes are shown. Dashed
horizontal lines on the violin plots mark the CLSI clinical breakpoint for
ciprofloxacin. Point colors inside violins represent the genotypic AMR
prediction by Pathogenwatch on each combination of mechanisms. Barplots
on the top show the abundance of genomes with each combination of
mechanisms. Bar colors represent the differences between the predicted
and the observed SIR (e.g., red for a predicted susceptible mechanism when
the observed phenotype is resistant). S susceptible, I intermediate, and R
resistant.
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combination with the addition of IncFIA(HI1) was more
prevalent in West Africa, and associated with clade 3.1
(Supplementary Fig. 8b–d). The IncH1A and IncH1B(R27)
sequences detect fragments of the repA2 and repA genes,
respectively, of the IncHI1 conjugative plasmid which has
historically been associated with the majority of MDR typhoid3.
IncFIA(HI1) detects fragments of the repE gene that is present in
a subset of IncHI1 plasmids, including the plasmid sequence type
PST2 variant common in S. Typhi 3.1 in West Africa, but lacking
from the PST6 variant that is widespread in S. Typhi 4.3.1 in East
Africa and Asia30.

Maximizing the utility of genomic data. Azithromycin is one of
the last oral treatment options for typhoid for which resistance is
currently uncommon, of particular importance in endemic areas
with high rates of fluoroquinolone-resistance and outbreaks of
XDR S. Typhi. A non-synonymous point mutation in the gene
encoding the efflux pump AcrB (R717Q) was recently singled out
as a molecular mechanism of resistance to azithromycin in S.
Typhi31. Pathogenwatch detected the acrB_R717Q mutation in a

collection of 12 Bangladeshi genomes of genotype 4.3.1.1 isolated
between 2013 and 2016 in which this mutation was first described
(Fig. 4). Notably, Pathogenwatch also detected the acrB_R717Q
mutation in three additional genomes, two from isolates recov-
ered in England in 2014 (no travel history available32), and one
from an isolate recovered in Samoa in 20073. The Samoan gen-
ome 10349_1_30_Sam072830_2007 was typed as genotype 3.5.4,
while the English genomes 65343 and 32480 (no travel infor-
mation available) belonged to genotypes 4.3.1.1 and 4.3.2.1,
respectively. Genome 65343 was closely related to the cluster of
12 genomes from Bangladesh where this mutation was first
described, while genome 32480 belonged to a small cluster of five
genomes from India or with travel history to India. Thus, rea-
nalysis of public data with Pathogenwatch showed that the
acrB_R717Q mutation has emerged in multiple genetic back-
grounds, in multiple locations, and as early as 2007.

Pathogenwatch applied to rapid risk assessment. Typhoid fever
is rare in countries with a good infrastructure for the provision of
clean water and sanitation, with most cases arising from travel to

Fig. 4 Pathogenwatch data reusability. Fifteen genomes carrying the acrB_R717Q mutation recently linked to azithromycin resistance in S. Typhi are
shown in red on the tree of 4389 public genomes and on the map. The presence of the mutation is also indicated by the red circles on the SNPs table.
Three of these genomes (tree labels) belong to isolates collected before the mutation was first described and are shown in more detail in the bottom
panels. The data are available at https://pathogen.watch/collection/07lsscrbhu2x-public-genomes.
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endemic areas33. Ceftriaxone-resistant typhoid fever was recently
reported in developed countries from patients with travel history
to Pakistan34–36. The isolates were associated to the recent out-
break of XDR S. Typhi in the Sindh province of Pakistan by the
epidemiological data, the antibiograms, and information derived
from WGS of the clinical isolate, such as presence of resistance
genes and mobile genetic elements. In some cases, the genomes
were contextualized with retrospective genomes by building a
phylogenetic tree using an existing bioinformatic pipeline34,35.

We exemplify how Pathogenwatch facilitates this analysis with
the genome from an isolate recovered in Canada (PHL5950,
accession RHPM00000000 [https://www.ncbi.nlm.nih.gov/
nuccore/RHPM00000000.1/]36). Pathogenwatch provides a prin-
table genome report (Supplementary Fig. 9) including genotyping
and in silico serotyping information, predicted resistance profile,
and the presence of resistance genes and mutations. In addition,
Pathogenwatch places the genome within the Pakistani XDR
outbreak (Fig. 5) and shows the close genetic relatedness (between
three and eight pairwise differences) of the isolates via the
downloadable score matrix.

Pathogenwatch as a tool for international collaboration in
typhoid surveillance. As WGS capacity becomes established in
typhoid endemic countries, there is a growing opportunity for
local genomic surveillance and for collaboration across borders.
This is underscored by the growing number of genomes from the
Indian Subcontinent (Supplementary Fig. 3), where epidemic
clone 4.3.1 (H58) and the nested clade of fluoroquinolone-
resistant triple mutants belonging to genotype 4.3.1.2 (H58 line-
age II) have been shown to have originated3,27. The triple mutants
were first reported in Nepal (isolated in 2013–2014) and linked to
isolates from India from 2008 to 201227 and are still circulating in
the region24,37. The public data integrated in Pathogenwatch
showed that, at the time of writing, this lineage is represented by
195 public genomes from seven countries (India, Bangladesh,
Nepal, Pakistan, Myanmar, Japan, and United Kingdom,

Fig. 6a3,22,26,32,37–40) and from as early as 2006 (Japan, with travel
history to India, Fig. 6b38). Linking the tree and the map high-
lights distinct clusters of genomes that show evidence of trans-
mission across borders, for example between India–Pakistan and
India–Nepal (Fig. 6c, d). In addition, Pathogenwatch confirmed
the presence of resistance genes dfrA15, sul1, and tetA(A) and the
IncN replicon in three genomes from the United Kingdom (two
with travel history to India)26 and, additionally, in two related
genomes from Japan with travel history to Nepal and India
(Fig. 6b). Altogether, these observations suggest that this lineage
circulating in South Asia and linked to treatment failure with
fluoroquinolones can acquire plasmids with additional AMR
genes, with the concomitant risk of the clonal expansion of a
lineage that poses additional challenges to treatment.

Discussion
Our understanding of the S. Typhi population structure, includ-
ing MDR organisms has improved dramatically since the intro-
duction of WGS providing a much needed level of discrimination
for a human-adapted pathogen that exhibits very limited genetic
variability. Progress towards the widespread implementation of
WGS for epidemiological investigations and integrated routine
surveillance within public health settings needs to be accom-
panied by i) surveillance programs in endemic regions; ii)
implementation of WGS at laboratories in endemic regions; iii)
analysis of WGS data with fast, robust, and scalable tools that
deliver information for public health action; iv) dissemination of
WGS data through networks of collaborating reference labora-
tories at national, international and global scales; and v) provision
of WGS data and associated metadata through continuously
growing databases that are amenable to interaction and
interpretation41. Here, we introduced Typhi Pathogenwatch, a
web application for genomic surveillance and epidemiology of S.
Typhi, which enhances the utility of public WGS data and
associated metadata by integration into an interactive resource
that users can browse or query with their own genomes.

Fig. 5 Rapid risk assessment of typhoid fever cases in non-endemic regions. Pathogenwatch places genome PHL5950 from an isolate recovered in
Canada and with travel history to Pakistan within the XDR-outbreak in Pakistan. Red markers on the tree and table indicate XDR isolates. The data are
available at https://pathogen.watch/collection/11lsok8nrzts-wong-et-al-2018-idcases-15e00492.
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Fig. 6 Pathogenwatch to for collaborative international surveillance of S. Typhi. a Pathogenwatch highlights 195 ciprofloxacin-resistant triple mutants on
the public data tree and map by simultaneously selecting the mutations gyrA_S83F, gyrA_D87N, and parC_S80I on the SNPs table (red markers). b Detailed
visualization of the triple mutants showing the temporal distribution of the genomes on the timeline. Purple arrowhead: four genomes with sul1, dfrA15, tetA
(A) and the IncN replicon from the UK and Japan. Selecting individual clades on the tree shows distinct clades that span neighboring countries India-
Pakistan (c) and India-Nepal (d). The data are available at https://pathogen.watch/collection/07lsscrbhu2x-public-genomes.
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We demonstrated that genomic predictions of AMR in
Pathogenwatch were highly concordant with the resistance phe-
notype. A previous study of 332 S. Typhi isolates analysed in a
single reference laboratory reported only 0.03% discordant
results28 versus 3.66% from our data. Similarly, AMRFinder7 and
Resfinder 4.06 reported ≥98.0% overall concordance, but for two
large collections of non-typhoidal Salmonella genomes. A lim-
itation of our study is that it amalgamated published susceptibility
data from thirteen different publications conducted in eight dif-
ferent countries. The availability of consistent laboratory anti-
microbial susceptibility testing data is key for the periodic
benchmarking and refinement of genomic predictions of AMR42,
as made evident by the different mechanisms and combinations
thereof identified for ciprofloxacin. Phenotypic resistance data
consistently collected and reported could also be included in the
Pathogenwatch metadata table. The unique combination of
phenotypic and genotypic resistance with location, time, and
population structure could aid the investigations of emerging
resistance and discovery of novel resistance mechanisms.

The growing collection of public genomes is updated each time
that a novel AMR mechanism is added to the curated Patho-
genwatch AMR library. This can potentially reveal the presence of
a newly identified gene or mutation in historic isolates, thus
maximizing data reusability from which new insights into novel
AMR mechanisms can be derived. The utility of maintaining a
regularly updated archive of WGS data that can be rapidly
“mined” for the presence of newly discovered AMR determinants
was elegantly illustrated before by the retrospective discovery of
the colistin resistance gene mcr-1 in S. enterica and Escherichia
coli genomes from Public Health England43. With Pathogenwatch
the entire Typhi community can access the updated AMR pre-
dictions, thus democratizing the reusability of the genomic data.

Contextualizing new genomes with existing data has become a
routine part of genomic epidemiology, as it can complement
epidemiological investigations to place the new genomes in or out
of an outbreak, link to past outbreaks, and determine if the
success of a resistant phenotype is the result of a single clonal
expansion or multiple independent introductions44. Analyzing
new genomes in the context of global genomes involves the
retrieval, storage, and bioinformatic analysis of large amounts of
sequence data and linked metadata, which is time-consuming and
largely unfeasible for hospitals or public-health agencies with
limited computing infrastructure. We demonstrated how Patho-
genwatch circumvents this obstacle using the public genomes to
exemplify outbreak investigations in endemic areas and patient
management in non-endemic countries with travel history to
endemic areas.

The interpretation of the genomic context relies heavily on the
completeness of the public collection used for contextualization
and of its metadata. The International Typhoid Consortium
collected and sequenced around 40% of the global genomes
available in Pathogenwatch for comparison3,4, but local, national,
and international genomic surveillance programs are needed for
the real-time management of emerging lineages that pose a direct
threat to human health45. Pathogenwatch does not currently
support automated updates or submissions, which instead
requires retrieval and curation of genome data and associated
metadata. For example, as of November 2020 Pathogenwatch
comprises 4234 of 4389 (96.5%) S. Typhi genomes with at least
both year and country of isolation, while the same applies to 3473
of 7743 (44.9%) genomes on Enterobase12, 3936 of 5618 (70.1%)
genomes on GenomeTrakr (14), and 2085 of 3100 (67.3%) gen-
omes on PATRIC9. Pathogenwatch also displays patient travel
information when available. While automated updates are needed
to ensure the most up-to-date collection of genomes, the provi-
sion of genomes with available metadata maximizes the value that

can be derived from the genomes. The metadata linked to the
public genomes in Pathogenwatch can be expanded and retro-
spectively updated following recommendations of the expert
community, and buy-in from international surveillance networks
to make the metadata available.

Pathogenwatch can facilitate collaborative surveillance in
endemic areas via data integration and shared collections for the
early detection and containment of high-risk clones. Collections
can be set to off-line mode to work while disconnected from the
internet, which may be advantageous in settings with unreliable
internet connections. Despite recent efforts to promote data
openness46,47, several challenges to sharing genomic data and
linked metadata remain in both the academic and public-health
settings41. User-uploaded genomes, their metadata, and derived
collections remain private in the Pathogenwatch user account,
unless the user specifically shares them via a collection URL.
Users can also integrate private and potentially confidential
metadata into the display without uploading it to the Pathogen-
watch servers. This private metadata will not be shared even if the
collection is set to be shared via web link48.

Recent improvements in our understanding of the disease
burden and the dissemination of AMR in S. Typhi, and the
development of new typhoid conjugate vaccines have bolstered
efforts to employ routine vaccination for the containment of
typhoid fever49. Routine surveillance coupled with WGS can
inform decisions on suitable settings for the introduction of
vaccination programs and on the evolution of pathogens in
response to them50,51. Pathogenwatch should be linked to routine
genomic surveillance around typhoid vaccination initiatives to
monitor the population dynamics in response to the deployment
of new vaccines. The consistent provision of patient demographic
data in the metadata would be of particular utility in this context.

Rapid, timely access to information on local patterns of AMR
may inform treatment regimens, which could ultimately lead to a
reduction in morbidity and mortality associated with enteric
fever52. Typhi Pathogenwatch combines accurate genomic pre-
dictions of AMR with broad geographic and population context
within an easy-to-use interface delivered for the community and
accessible to users of all bioinformatics skills levels to support
ongoing typhoid surveillance programs. The modular architecture
of Pathogenwatch allows new functionalities to be added to cater
to the community needs.

Methods
The Pathogenwatch application. The Pathogenwatch user interface is a React53

single-page application with styling based on Material Design Lite v1.3.054.
Phylocanvas55 is used for phylogenetic trees, Leaflet v1.4.056 is used for maps, and
Sigma v1.2.157 is used for networks. The Pathogenwatch back-end, written in
Node.js, consists of an API service for the user interface and four “Runner” services
to perform analysis: species prediction, single-genome analyses, tree-building, and
core genome multilocus sequence typing (cgMLST) clustering. Runner services
spawn Docker containers for queued tasks, streaming a FASTA file or prior ana-
lysis through standard input and storing JSON data from standard output. Data
storage and task queuing/synchronization are performed by a MongoDB cluster.

S. Typhi genome assemblies. Genome assemblies can be uploaded by the user in
FASTA format or assembled de novo from high-throughput short read data with
the Pathogenwatch pipeline58, as described in the Pathogenwatch documentation59.

Genomes from published studies with geographical localization metadata and
short read data on the European Nucleotide Archive (ENA) are available as public
data and accessible to all users for browsing and for contextualization of their own
datasets. As of November 2020, 4389 public S. Typhi genomes from 26 studies were
available (Supplementary Table 1). Genomes were assembled de novo with a
previously described assembly pipeline60. Briefly, FASTQ files were used to create
multiple assemblies using VelvetOptimiser v2.2.5 and Velvet v1.261 and/or SPAdes
v3.9.058 and a range of k-mer sizes of 66–90% of the read length (in increments of
4). An assembly improvement step was applied to the assembly with the best N50
and contigs were scaffolded using SSPACE v2.0 and sequence gaps filled using
GapFiller v1.11. Assemblies were evaluated based on their metrics and the
Pathogenwatch core genome stats (number of contigs, assembly length, N50,
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non-ATCG characters, GC content, number of core matches). Seventeen public
and published genomes were excluded as the assemblies either contained more
than 700 contigs, more than 50,000 non-ATCG characters, a GC content below the
smallest GC content or above than the largest GC content of the S. enterica subsp
enterica genomes in RefSeq, or a total length that is <10% smaller than the smallest
genome or >10% larger than the largest S. enterica subsp enterica genome in
RefSeq, For five isolates, we used genome assemblies deposited in GenBank that
met the same quality criteria. The metadata and assembly stats and method of the
public genomes is available on (Supplementary Data 1).

Pathogenwatch typing of S. Typhi genomes. For both user-uploaded and public
genomes, Pathogenwatch outputs a taxonomy assignment, a map of their locations,
and assembly quality metrics. The taxonomy assignment is the best match to a
microbial version of the RefSeq genome database release 78, as computed with
Mash v2.162 (k= 21, s= 400)63.

Pathogenwatch also provides compatibility with Salmonella serotyping
(SISTR11), multi-locus sequence typing (MLST13), core-genome MLST (cgMLST8)
and S. Typhi single-nucleotide polymorphism (SNP)-based genotyping
(GenoTyphi4), as detailed in the documentation64. The MLST and cgMLST
schemes are periodically downloaded from Enterobase65,66, and samples are typed
as described in the documentation67,68. Exact allele matches are reported using
their allele ID. Multiple allele hits for a gene are reported if present. Inexact allele
matches and novel STs are reported by hashing the matching allele sequence and
the gene IDs, respectively.

Pathogenwatch implements SISTR (Salmonella In Silico Typing Resource11),
which produces serovar predictions from WGS assemblies by determination of
antigen gene and cgMLST gene alleles using blastn v2.2.31+. Pathogenwatch uses
the cgmlst_subspecies and serovar fields from the SISTR JSON output to specify
the serovar.

Pathogenwatch uses an implementation of GenoTyphi4,24 designed to work
with assemblies to assign S. Typhi genomes to a regularly updated predefined set of
clades and subclades based on a curated set of SNPs. The blastn v2.2.30 program is
used to align the query loci and identify positions of diagnostic SNPs, which are
then processed according to the rules of the GenoTyphi scheme69. The genotype
assignment and the number of diagnostic SNPs identified on the assemblies are
reported.

The plasmid replicon marker sequences are detected in the user and public
genome assemblies with Inctyper, which uses the PlasmidFinder Enterobacteriaceae
database15, as detailed in the documentation70.

The Pathogenwatch S. Typhi core genome library. Pathogenwatch supports
SNP-based neighbor joining trees of S. Typhi both for user genomes (collection
trees) and public genomes (population tree and subtrees). The trees are inferred
using a curated core gene library of 3284 S. Typhi genes71 generated from a pan-
genome analysis of 26 complete or high-quality draft genomes (Supplementary
Table 4) with Roary v3.2.072 and identity threshold of 95%. The core gene families
were realigned using MAFFT v7.2.2.073, and filtered or trimmed according to the
quality of the alignments. The gene with the fewest average pairwise SNP differ-
ences to the other family members was selected as the representative for each
family. We then selected 19 reference genomes (Supplementary Table 4) belonging
to different genotypes according to the population structure previously described4.
The gene families were searched against each of the 19 reference genomes and
filtered according to the following rules: a) only universal families with complete
coverage of the representative were kept; b) all paralogues were removed; c)
overlapping gene families were merged into a single, contiguous pseudo-sequence.
A BLAST19 core library was then built with the representative genes, and a profile
of variant sites determined for the core genes present in each reference genome.
Each of the 4389 public genomes was then clustered with its closest reference
genome based on this profile of variant sites, thus constituting each of the 19
population subtrees that Pathogenwatch employs to contextualize user-uploaded
genomes.

Pathogenwatch genome clustering of S. Typhi. The relationships between
genomes are represented with trees (dendrograms) based on the genetic distance
computed from substitution mutations in the core gene library, as described in
detail in the documentation74. User-provided assemblies are queried against the S.
Typhi core gene library with blastn v2.2.3019 using an identity threshold of 90%.
The core gene set of each query assembly is compared to the reference genome core
that has the most variant sites in common. An overall relative substitution rate is
determined, and loci that contain more variants than expected assuming a Poisson
distribution are filtered out. Pairwise distances between assemblies (including user-
provided and reference) are scored via a distance scoring algorithm that compares
all variant positions from all pairs of core gene sets, SNPs are counted (generating a
downloadable pairwise difference matrix) and normalized by the relative propor-
tion of the core present (generating a downloadable pairwise score matrix). The
pairwise score matrix is then used to infer a midpoint-rooted neighbor-joining tree
using the Phangorn v2.4.075 and Ape v5.176 R packages. Trees are computed for
the user assemblies only (collection tree), and for the user assemblies and public

assemblies assigned to the same reference genome (public data subtrees), all of
which are downloadable in Newick format.

We benchmarked the Pathogenwatch clustering method against other methods
of SNP-based tree inference with three subsets of published genomes: Dataset I)
118 genomes spanning the population diversity of S. Typhi defined by GenoTyphi
(Supplementary Data 2); Dataset II) 138 closely related genomes, from a recent
clonal expansion of the multidrug-resistant haplotype H58 within Africa
(Supplementary Data 3); and Dataset III) 43 strains from clade 3.2 including CT18,
the first completed S. Typhi genome, which remains reference of choice for most
population genomics studies (Supplementary Data 4). For each subset a tree was
generated with four different methods: 1) Pathogenwatch; 2) maximum likelihood
(ML) with RAxML v8.2.877 on SNPs extracted from an alignment of concatenated
core genes generated using Roary v3.6.072; 3) neighbor joining (NJ) with FastTree
v2.1.878 using the option –noml on the same alignment as 2); and 4) ML with
RAxML v8.2.8 on SNPs extracted from a previously published CT18-guided
alignment3. Five hundred bootstrap replicates were computed for the ML trees
(methods 2 and 4). We compared the topology of the trees thus generated using the
treescape function from the Treescape v1.10.18 R package (now available as
Treespace79) with the Kendall-Colijn distance and lambda parameter set to 0. The
topology of the Pathogenwatch tree from dataset III was compared to the tree from
method 4 using the Tanglegram algorithm of Dendroscope v3.580. The tree files
used in the tree comparisons are provided in the ref. 81.

Genomes can also be clustered in Typhi Pathogenwatch based on their cgMLST
profile using single linkage clustering. Distance scores are calculated between each
pair of samples by identifying the genes which have been found in both samples
and by counting the number of differences in the alleles. The SLINK algorithm82 is
used to quickly group genomes into clusters at a given threshold. For a given
genome, users are able to see how many other genomes it is clustered with at a
range of distance thresholds, view the structure of the cluster as a network graph,
and view the metadata and analysis for sequences in that cluster.

Genomic predictions of antimicrobial resistance. The Pathogenwatch AMR
prediction module queries the genome assemblies with blastn v2.2.3019 for the
presence of genes and single point mutations known to confer resistance in S.
Typhi to ampicillin (AMP), chloramphenicol (CHL), broad-spectrum cephalos-
porins (CEP), ciprofloxacin (CIP), sulfamethoxazole (SMX), trimethoprim (TMP),
the combination antibiotic co-trimoxazole (sulfamethoxazole-trimethoprim, SXT),
tetracycline (TCY), azithromycin (AZM), colistin (CST), and meropenem (MEM)
(Supplementary Table 283), as detailed in the documentation84.

The Pathogenwatch AMR prediction module also provides a prediction of AMR
phenotype inferred from the combination of identified mechanisms. To benchmark
the genotypic resistance predictions, we used a set of 1316 genomes from 16
published studies (Supplementary Table 1) with drug susceptibility interpretation
available for at least one of the 12 antibiotics reported by Typhi Pathogenwatch,
grouping the Resistant and Intermediate classifications as insusceptible. For each
antibiotic, the sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) for detection of known resistance determinants, and their
95% confidence intervals (CI) were calculated with the epi.tests function of the epiR
v1.0-14 package85. False negative (FN) and false positive (FP) results were further
investigated with alternative methods by querying the genome assemblies with
Resfinder v3.2.125 and/or by mapping and local assembly of the sequence reads to
the Bacterial Antimicrobial Resistance Reference Gene Database (Bioproject
PRJNA313047) with ARIBA v2.14.423.

Seven studies reported ciprofloxacin MICs for a total of 889 S. Typhi strains
(Supplementary Table 1). We compared the Typhi Pathogenwatch ciprofloxacin
resistance predictions for the different combinations of genetic AMR determinants
against the MIC values re-interpreted with the ciprofloxacin breakpoints for
Salmonella spp. from CLSI M100 30th edition (susceptible MIC ≤ 0.06 mg L−1;
intermediate MIC= 0.12 to 0.5 mg L−1; resistant MIC ≥1 mg L−186) with a script
that is available at ref. 81.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genome assemblies and linked metadata analysed in this study are available from:
https://pathogen.watch/collection/07lsscrbhu2x-public-genomes, https://pathogen.
watch/collection/g5pbucot6e58-hendriksen-et-al-2015, and https://pathogen.watch/
collection/11lsok8nrzts-wong-et-al-2018-idcases-15e00492. The raw sequence data is
available from the European Nucleotide Archive via the accessions provided in
Supplementary Data 1, and also found in the metadata table of https://pathogen.watch/
collection/07lsscrbhu2x-public-genomes.

Code availability
The tree comparison and AMR benchmarking input files and script are available from
https://gitlab.com/cgps/pathogenwatch/publications/-/tree/master/styphi. The
Pathogenwatch web application is available at https://pathogen.watch/ and works best on
Chromium-based web browsers.
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