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A B S T R A C T   

Children with auditory processing disorder (APD) experience hearing difficulties, particularly in the presence of 
competing sounds, despite having normal audiograms. There is considerable debate on whether APD symptoms 
originate from bottom-up (e.g., auditory sensory processing) and/or top-down processing (e.g., cognitive, lan-
guage, memory). A related issue is that little is known about whether functional brain network topology is 
altered in APD. Therefore, we used resting-state functional magnetic resonance imaging data to investigate the 
functional brain network organization of 57 children from 8 to 14 years old, diagnosed with APD (n = 28) and 
without hearing difficulties (healthy control, HC; n = 29). We applied complex network analysis using graph 
theory to assess the whole-brain integration and segregation of functional networks and brain hub architecture. 
Our results showed children with APD and HC have similar global network properties –i.e., an average of all 
brain regions– and modular organization. Still, the APD group showed different hub architecture in default 
mode-ventral attention, somatomotor and frontoparietal-dorsal attention modules. At the nodal level –i.e., 
single-brain regions–, we observed decreased participation coefficient (PC – a measure quantifying the diversity 
of between-network connectivity) in auditory cortical regions in APD, including bilateral superior temporal gyrus 
and left middle temporal gyrus. Beyond auditory regions, PC was also decreased in APD in bilateral posterior 
temporo-occipital cortices, left intraparietal sulcus, and right posterior insular cortex. Correlation analysis sug-
gested a positive association between PC in the left parahippocampal gyrus and the listening-in-spatialized-noise 
-sentences task where APD children were engaged in auditory perception. In conclusion, our findings provide 
evidence of altered brain network organization in children with APD, specific to auditory networks, and shed 
new light on the neural systems underlying children’s listening difficulties.   

1. Introduction 

Auditory Processing Disorder (APD) is an umbrella term for listening 
difficulties that result from a deficit in the neural processing of auditory 
stimuli or speech (Keith et al., 2019; Dawes & Bishop, 2010; American 
Speech-Language-Hearing Association (ASHA), 2005; Dillon & 
Cameron, 2021). It is estimated that 5.1% of school-aged children have 
difficulties understanding speech in competing background noise such 
as the classroom despite having no hearing loss based on their pure tone 
audiogram (Hind et al., 2011; Purdy et al., 2018). Keith et al. (2019) 

estimated that in New Zealand, where this study is conducted, the 
prevalence of APD in school-aged children is around 6.2% or higher. 
Classroom difficulties of children with APD include difficulty hearing in 
background noise, poor sound localization, inconsistency in answering 
questions, frequent requests for repetition, trouble understanding and 
complying with verbal instructions, and poor attention (American 
Academy of Audiology (AAA), 2010; de Wit et al., 2016; Chermak et al., 
2002). Some of these children also show deficits in their speech and 
language skills, including reading and writing (Sharma et al., 2009; 
Dawes & Bishop, 2010; Barker et al., 2017; Gokula et al., 2019). In the 
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past 40 years, children with these symptoms have been invited for 
further specialized testing at audiology clinics to investigate the possi-
bility of APD (AAA, 2010). Although there is no global consensus 
amongst audiologists and speech-language pathologists regarding 
diagnosing developmental APD (Moore et al., 2013), substantial efforts 
have been made to develop clinical guidelines for the assessment and 
treatment of children with APD (Iliadou et al., 2018; Wilson, 2018; 
ASHA, 2005; Keith et al., 2019). 

Complex auditory processing happens at all levels within the audi-
tory system; the ability to localize, discriminate, recognize auditory 
patterns, or discriminate temporal sound features could be impaired 
(Wilson, 2018; ASHA, 1996). This impairment in auditory perception is 
characterized as caused by deficiencies or developmental differences in 
the central auditory nervous system (CANS), through which auditory 
signals are transmitted via the cochlear nerves to the auditory cortices 
(British Society of Audiology (BSA), 2011; AAA, 2010; ASHA, 1996). 
Neural encoding of auditory signals is associated with complex, parallel 
and serial processing within auditory regions in CANS and other pro-
cessing in the higher-order cortical regions (AAA, 2010; Moore, 2012; 
Ponton et al., 1996). 

Due to the heterogeneity of behaviors and symptoms observed in 
children with APD (e.g., many presents with comorbid memory and 
attention deficits, for example), many different cortical areas, such as 
superior temporal, inferior parietal and inferior frontal areas involved in 
higher-order language and cognitive functions have been implicated 
(Moore, 2012; 2015; Poremba et al., 2003; Fritz et al., 2010). Symptoms 
of APD overlap with other sensory or cognitive neurodevelopmental 
disorders (Sharma et al., 2009; Dawes & Bishop, 2010; Moore et al., 
2013; AAA, 2010). APD can co-occur with reading and language deficits 
in children with diagnoses of specific language impairment (SLI), 
reading disorder/dyslexia, or autism spectrum disorder (ASD). The co- 
occurrence of comorbid disorders is estimated to be from 40% (Ahm-
med et al., 2014) to 56% (Gokula et al., 2019). However, this does not 
occur for all children (Jerger & Musiek, 2000; Sharma et al., 2009; 
Halliday et al., 2017; Mealings & Cameron, 2019; Dawes et al., 2009). 
Additionally, children with APD can display attention (Moore et al., 
2010; Gyldenkærne et al., 2014) and/or memory problems (Sharma 
et al., 2009; 2014), but many cases of APD who do not have memory or 
attention deficits. Thus, the overlap of cognitive, language and hearing 
difficulties in children with APD and other neurodevelopmental disor-
ders is controversial for researchers who have debated whether auditory 
sensory processing deficits cause the listening difficulties in children 
diagnosed with APD (bottom-up approach: related to the ear or CANS) 
or cognitive deficits (top-down approach: related to cognitive function 
deriving from multi-modal processing) (Moore, 2012; Moore & Hunter, 
2013; McFarland & Cacace, 2014; Dillon et al., 2012; Cacace & 
McFarland, 2013). According to the BSA (2011) position statement, 
“APD is characterized by a poor perception of both speech and 
non-speech sounds” (p.4) and “attention is a key element of auditory 
processing, and that poor attention makes a major contribution to APD” 
(p.6). Other clinical guidelines (AAA, 2010; ASHA, 2005) do not specify 
higher-order cognitive, communicative and language-related functions 
in their statements as contributing factors for listening difficulties in 
APD (de Wit et al., 2016). In this debate, Cacace and McFarland (2013) 
asserted that APD could not be considered a distinct disorder if modality 
specificity could not be demonstrated with certainty. Additionally, 
Moore and Hunter (2013) suggested APD could be distinguished from 
cognitive deficits based on modality specificity. Hence, the complex 
interactions between cognitive, language, reading, and auditory pro-
cessing abilities in the brain of children with APD are not entirely un-
derstood. The potential for neuroimaging research to address this 
controversy and help understand the top-down processing mechanisms 
in children with APD has been increasingly recognized (Moore & 
Hunter, 2013; Bartel-Friedrich et al., 2010; AAA, 2010; Pluta et al., 
2014; Stewart et al., 2021). 

In the last decade, links between atypical functional connectivity in 

large-scale brain organization and neurodevelopmental disorders, such 
as autism, Tourette’s syndrome, or attention deficit hyperactivity dis-
order (ADHD), have been identified (Cocchi et al., 2012; Faridi et al., 
2022; Li et al., 2014; Openneer et al., 2020; Sadeghi et al., 2017; Zhang 
& Raichle, 2010). Resting-state functional Magnetic Resonance Imaging 
(rsfMRI) can be utilized to explore the functionally important aspects of 
whole-brain intrinsic networks without requiring the participant to 
perform a task (van den Heuvel & Pol, 2010), and hence this has been a 
fast-growing technique in brain imaging to study neurological brain 
disorders in at-risk developmental populations (Fornito & Bullmore, 
2010; Fornito et al., 2013; Rosazza & Minati, 2011). Using rsfMRI data, 
functional connectivity can be estimated between anatomically 
distributed regions by recording temporal correlations of spontaneous 
fluctuations in the Blood-Oxygenation-Level-Dependent (BOLD) signal 
(Biswal et al., 1997). In the APD literature, to our knowledge, there have 
been only three resting-state fMRI studies that investigated this intrinsic 
activity (Pluta et al., 2014; Stewart et al., 2021, Preprint; Hoyda et al., 
2021, Preprint). The earliest of these studies investigated 13 children 
with diagnosed APD (without other neurological signs) and 15 healthy 
control (HC) children (Pluta et al., 2014) using regional homogeneity 
(ReHo) to investigate changes in the pattern of the default mode 
network (DMN). Intrinsic connectivity within this network has been 
associated with attentional impairment (Bonnelle et al., 2011). The 
ReHo results indicated decreased functional activity in the superior 
frontal gyrus and posterior cingulate cortex/precuneus (Pluta et al., 
2014); these areas are involved in control and attention and implicate 
the role of DMN in these cognitive processes (Castellanos et al., 2008). 
Pluta et al. (2014) argued that modality-specific perceptual dysfunction 
could not differentiate between children with neurodevelopmental APD 
and those with attention deficits. More recent research involving 81 
children (n = 42 Listening difficulties/APD; n = 39 typically devel-
oping/TD) used a region of interest (ROIs) approach to assess how 
speech perception and listening networks (Phonology, Intelligibility, 
Semantics) are different in children with APD compared to TD (Stewart 
et al., 2021). These networks were based on differential activation of 
areas during contrasting listening and language processing tasks. Chil-
dren with APD had increased functional connectivity in the left inferior 
frontal gyrus (i.e., Broca’s area) and left posterior middle temporal 
gyrus; these regions are implicated in language production and 
comprehension and lexical and semantic processes (Hagoort, 2014; 
Acheson & Hagoort, 2013; Hickok & Poeppel, 2004). Stewart and col-
leagues (2021) also reported that in the Semantics network, children 
with APD had stronger functional connectivity in the right para-
hippocampal gyrus compared to auditory areas such as left Heschl’s 
gyrus, left middle temporal gyrus (MTG), right superior temporal gyrus 
(STG), and right planum temporale. Still, they had weaker connections 
in the left temporal fusiform cortex and right superior temporal gyrus. 
Stewart et al. (2021) concluded that atypical neurological aspects of 
APD are connected with language comprehension, consistent with the 
high rate of language disorder comorbidity in children with APD 
(Sharma et al., 2009; Dawes & Bishop, 2010; Barker et al., 2017). A 
follow-up study by the same research team investigating speech and 
higher-order functioning in the same group of children with APD (Hoyda 
et al., 2021) defined ROIs for speech perception, speech production, 
language comprehension, naming and executive networks based on the 
Neurosynths database (Yarkoni et al., 2011), and then looked for group 
differences in pairwise functional connectivity. Their results showed 
significantly decreased connectivity in the APD group compared to TD 
within the executive function network in the left caudate and left mid 
frontal gyrus suggesting a link between executive function and APD 
(Hoyda et al., 2021). These studies (Pluta et al., 2014; Stewart et al., 
2021; Hoyda et al., 2021) have investigated functional connectivity in 
children with APD based on predefined ROIs, but it is not clear yet how 
these ROIs and their interaction could contribute to altered brain 
network connectivity in APD. Thus, despite growth in the application of 
rsfMRI in neurodevelopmental research, the functional topological 
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organization of children with APD remains largely unknown. 
Recently, graph-theoretical approaches have been more widely used 

to analyze rsfMRI data to measure the macroscopic structural and 
functional attributes of brain networks (Bullmore & Sporns, 2009; 
Power et al., 2011). This approach, also known as network neuroscience, 
offers a mathematical framework for investigating the local and global 
properties of neural systems (Bassett & Sporns, 2017; Sporns, 2011) and 
is considered a promising tool for understanding brain networks and 
their behaviors (Fornito et al., 2016). The human brain can be concep-
tualized as a complex network topology (Watts & Strogatz, 1998; 
Sporns, 2011), which is optimally balanced in segregation (i.e., local 
connectivity) and integration (i.e., global connectivity) of information 
flow (Sporns, 2013). This complex topology displays scale-free, small- 
world (van den Heuvel et al., 2008; Bassett & Bullmore, 2006; Fornito 
et al., 2016), hierarchical modularity (Meunier et al., 2010), hub (Power 
et al., 2013), and rich-club (van den Heuvel & Sporns, 2011) architec-
tures. Hub architecture consists of important brain regions that interact 
with many other regions, facilitate functional integration, and play a key 
role in optimal information flow (Rubinov & Sporns, 2010). This crucial 
importance of hubs makes them vulnerable spots in brain networks; an 
alteration in brain hubs is one of the most consistent findings in network- 
based studies (Crossley et al., 2014; Meunier et al., 2009; Roger et al., 
2020; Rubinov & Bullmore, 2013). Thus investigating brain hub orga-
nization can provide new insights into the neural mechanisms under-
lying APD and may reveal differences in brain topologies. 

To the best of our knowledge, this is the first rsfMRI study that has 
applied graph-theoretical approaches to understand the large-scale 
brain organization of children with APD. The present study used 
rsfMRI and the complex network analysis method to examine the whole 
brain functional topology in children diagnosed with APD and children 
without complaints of listening difficulties (healthy controls, HC). This 
research generated functional brain connectomes to measure global and 
brain hub topology and examine brain network differences between 
APD and HC. Studies of children with developmental disorders generally 
do not show significant differences in all global properties of the brain 
(Armstrong et al., 2016; Sadeghi et al., 2017; Chen et al., 2019; Zhang 
et al., 2019), and hence more insights may be gained by examining 
regional brain topology. Based on these previous studies of children 
showing similarities in their global brain network organization, we hy-
pothesized that the APD and HC groups would not differ in their resting- 
state functional connectivity or global topological architecture (i.e., 
whole-brain averaged network topology). However, children with APD 
showed atypical regional brain topology, specifically in cortical tem-
poral regions associated with auditory function and hub organization. 

2. Methods 

Approval for this study was granted by The University of Auckland 
Human Participants Ethics committee (Date: 18/10/2019, Ref. 023546). 
Before the start of the study, children and their parents signed assent and 
consent forms as per the requirement of the Ethics committee. 

2.1. Participants 

A total of 66 children aged between 8 and 14 years participated in 
this study, but only 57 participants remained for the analysis; nine 
children were excluded from the further data analysis due to excessive 
head motions (n = 5), incidental findings (n = 1), and uncompleted 
scans (n = 3). Among the 57 included participants, 28 children were 
already diagnosed with APD (13 boys, Mage = 10.92, range 8.58–13.41), 
and 29 children were healthy controls (14 boys, Mage = 11.91, range 
9.75–14.08). All children with APD were recruited from SoundSkills 
clinic in Auckland, New Zealand (https://soundskills.co.nz). They were 
diagnosed formally with APD according to New Zealand guidelines for 
standardized testing APD test battery (Keith et al., 2019). Children in the 
HC control group were recruited via posted flyers and online 

advertisements. They were excluded if diagnosed with hearing loss, 
learning difficulties, and any neuropsychiatric conditions or taking 
medication known to affect the central nervous system. Four children in 
the HC group (14%) were not experiencing any learning difficulties but 
had diagnoses of ASD (n = 1), ADHD (n = 2), or dyslexia (n = 1). Twelve 
children with APD (42.8%) were also diagnosed with other comorbid 
developmental disorders such as dyslexia (n = 8), ADHD (n = 1), 
attention deficit disorder (ADD, n = 2) and developmental language 
disorder (DLD, n = 1). The comorbidities were allowed as these disor-
ders coexist with APD (Dawes & Bishop, 2010; O’Connor, 2012; Sharma 
et al., 2009). The sample size for the APD group was also heterogeneous 
in terms of diagnosis. It included a range of children who had been 
recently diagnosed (39%) or diagnosed more than a year before 
participating in the study (60%). About a third of children had been 
under treatment (32%). 

2.2. Procedure 

Children and their parents were invited to take part in two separate 
sessions on a single day to complete the hearing tests and the MRI scan. 
Most participants completed the entire procedure on the same day. All 
testing was conducted at the University of Auckland’s Clinics and the 
Centre for Advanced MRI (CAMRI), located at the Grafton Campus, 
Auckland, New Zealand. 

2.2.1. Session 1: Hearing assessment 
In this session, all participants underwent 30 min of hearing tests, 

including otoscopy, pure tone air conduction audiometry (PTA), and 
tympanometry to check hearing acuity and screen for middle ear disease 
and atypical ipsilateral middle ear muscle reflexes (Roup et al., 1998). 
Otoscopy results for all children were normal. PTA thresholds for every 
participant were no more than 20 dB HL at the octave frequencies from 
0.25 to 8 kHz in each ear, and tympanogram results in both ears were 
indicative of normal middle ear function (static admittance in range 0.2 
to 1.6 mmho, peak pressure between − 100 and +20 daPa). All children 
were also tested on the listening-in-spatialized-noise- sentences (LiSN-S; 
Cameron & Dillon, 2007; 2008) test, which is a tool for assessing the 
ability of individuals to understand sentences in the presence of 
competing speech presented from different directions and using the 
same or different talkers. LiSN-S scores are presented as z-scores 
compared to normative findings for a child of the same age (Cameron 
et al., 2011). The low-cue scores (speech reception threshold, SRT) 
reflect listening skills when no spatial or vocal cues are available to the 
listener to distinguish target sentences from the distractor stories. High- 
cue SRT scores assess listening when both vocal and spatial cues are 
available. Talker, Spatial, and Total Advantage scores are difference 
scores that reflect listeners’ ability to use differences in either the voices 
of the speakers, the physical location of the target and distractors, or 
both of these types of cues, respectively, to identify the sentences in the 
presence of competing speech. The advantage scores are difference 
scores that control for variations in overall speech perception abilities 
across participants and accurately reflect auditory processing within the 
central auditory system. Specific details of the LiSN-S test are explained 
in Besser et al. (2015) and Cameron et al. (2006). 

2.2.2. Session 2: MRI scan 
Participant preparation. To prepare the children for the MRI scan, a 

few different strategies were employed to reduce anxiety and movement 
during the scan session, as described in Wilke et al. (2018). Firstly, 
before the appointment, all participants’ parents or caregivers were 
encouraged to watch video clips to familiarize themselves with the MRI 
scan procedure. Secondly, children were instructed about all the pro-
cedures using a miniature Lego scanner during their hearing session 
(Fig. 1); this helped reduce children’s concerns about the scanning 
session. Finally, all children and their parents or caregivers were invited 
to attend a 20 min preparation session in the mock scanner before the 
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actual scan started. In this session, the instructions were explained again 
to the children to know what would happen in the actual scan session to 
have a successful session. Children were instructed and practiced how to 
stay still during the scan by playing a statue game in the mock scanner 
and showing them pictures illustrating how head motion can cause 
blurry brain images. To reduce the anxiety of children, parents or 
caregivers also were allowed to have the option to stay in the scan room 
with their children where they could see them – only a few parents chose 
this option. Children were allowed to bring their non-magnetic toys to 
the scan room. All participants were asked to use the restroom imme-
diately before the scan as recommended by Wilke et al. (2018). 

MRI scan. This study utilized a 20-channel head coil for recording 
brain activity in all sequences, which is larger than the widely used 32- 
channel head coil. The 20-channel head coil was more comfortable for 
the children and allowed better control of movement using padding to 
fixate the head (Greene et al., 2016) whilst accommodating the head-
phones needed for accessible communication. During the scan, children 
were asked to lay still, not fall asleep, and keep their eyes open. Children 
were given earplugs and headphones to minimize the loudness of the 
MRI noise. For the initial T1-image sequence (4 min; 36 s), children were 
required to watch an animation of their choice to keep them entertained, 
while for the rsfMRI sequence (7 min; 20 s), they were asked to stay still 
and stare at the cross presented on the screen. Children’s heads were 
stabilized with cushions to diminish head movements. At the end of the 
rsfMRI sequence, participants were asked to rate how awake they felt 
during the scan from 1 to 10, where 1 represents falling asleep and 10 is 
completely awake. 

2.3. MRI data acquisition 

MRI data were acquired on a 3T Siemens MAGNETOM Skyra scanner 
(Siemens, Erlangen, Germany) for a total duration of 785 s. The high- 
resolution structural T1-image was acquired for co-registration using a 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) 
sequence with 1 mm isotropic resolution (Field of view (FOV) = 256 
mm, 208 sagittal slices in a single slab, TR = 2000 ms, Echo time (TE) =
2.85 ms, Flip angle = 8 degrees, slice thickness = 1 mm, acquisition time 
286 sec). 

rsfMRI data were acquired using multi-echo/multi-band (ME/MB) 
echo-planar imaging (EPI) sequences, customized for the pediatric 
population (TR 1700 ms, TEs 15, 31.63, 48.26 ms, flip angle 83 deg, 
multi-band factor 2, GRAPPA PAT mode, 3.2 mm isotropic voxels, 3 mm 

slice thickness, Field of View 202 mm, and 46 slices with full brain 
coverage, acquisition time 440 sec) these sequences were adapted from 
Marusak et al.’s (2018) study. The Siemens embedded system auto-
matically discards the first ten time points of the BOLD data to achieve 
equilibrium, resulting in 250 volumes for the analysis. Following the 
rsfMRI sequence, the field map was acquired for fMRI spatial distortion 
correction using (69 sec) a double-echo spoiled gradient-echo sequence 
(TR = 520.0 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, voxel size: 
3.2×3.2×3.0, flip angle 60◦). 

2.4. Image preprocessing 

All anatomical and functional images were converted to Nifti file sets 
using dcm2niix software (version 11/11/2020) developed by Rorden 
Lab (Rorden et al., 2007) (https://github.com/rordenlab/dcm2niix), 
and all Nifti files were structured according to Brain Imaging Data 
structure (BIDS v1.8.2; Gorgolewski et al., 2017) (Fig. 2A). 

Quality control. The functional and anatomical data quality was 
assessed using MRIQC’s visual reports (Esteban et al., 2017). All data 
were visually checked for correct alignment to the corresponding T1w 
image and signal artifacts. Data were inspected for head motions based 
on quality control measures, including carpet plots (Power, 2017), 
framewise displacement (FD), DVARS (D referring to the temporal de-
rivative of time courses, VARS referring to RMS variance over voxels) 
(Power et al., 2012; 2014). Participants were excluded under a stringent 
regime described in Parkes et al. (2018) based on these criteria: For each 
participant, if any FD across the whole time points were greater than 5 
mm (n = 3); or if the participant’s mean FD was greater than 0.25 mm (n 
= 2). 

fMRIPrep workflow. Preprocessing of resting-state BOLD data and 
high-resolution T1-weighted (T1w) structural data was performed ac-
cording to the fMRIPrep v20.2.3 pipeline (Esteban et al., 2019), which is 
based on Nipype 1.6.1 (Gorgolewski et al., 2011). The following 
description is based on the boilerplate published by the fMRIPrep 
pipeline, and it is covered by a “no rights reserved” (CC0) license. In-
ternal operations of the fMRIPrep pipeline utilize a combination of 
software, including FSL v5.0.9 (Smith et al., 2004), ANTs v2.3.3 (Avants 
et al., 2009), Freesurfer v6.0.1 (Dale et al., 1999), AFNI v16.2.07 (Cox, 
1996), and Nilearn v0.6.2 (Abraham et al., 2014). 

Each T1w image was corrected for intensity non-uniformity with 
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs, 
and used as a T1w-reference throughout the workflow. The T1w- 
reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow, using the target template. Brain tissue 
segmentation of cerebrospinal fluid (CSF), white matter (WM), and grey 
matter (GM) was performed on the brain-extracted T1w using FSL’s fast 
(Zhang et al., 2001). Volume-based spatial normalization to 
MNIPediatricAsym:cohort-4: res-2 (MNI’s unbiased standard MRI tem-
plate for pediatric data from the 7.5 to 13.5 age range) was performed 
through nonlinear registration with antsRegistration (ANTs), using 
brain-extracted versions of both T1w reference and the T1w template. 

For each child’s functional data, first, all three echoes were slice-time 
corrected using AFNI’s 3dTshift (Cox & Hyde, 1997). Head-motion pa-
rameters for the BOLD reference are estimated using FSL’s mcflirt 
(Jenkinson et al., 2002). A B0-nonuniformity map (or field map) was 
also estimated based on a phase-difference map calculated with a dual- 
echo gradient-recall echo sequence. The field map was then co- 
registered to the target EPI reference run and converted to a displace-
ments field map with FSL’s Fugue and co-registered to the T1w reference 
with nine degrees of freedom using FSL’s FLIRT (FMRIB’s Linear Image 
Registration Tool) (Jenkinson & Smith, 2001) with the boundary-based 
registration (Greve & Fischl, 2009) cost-function. The BOLD time series 
were resampled onto their original, native space by applying a single 
composite transform to correct for head-motion and susceptibility dis-
tortions. Then, the T2* map was estimated according to Posse et al.’s 
(1999) method and used to optimally combine BOLD data across echoes 

Fig. 1. A picture of a miniature scanner model provided for this study from the 
Amazings team (https://www.amazings.eu/p/mri.html). This model was used 
to familiarize children with the scanning procedure to help reduce their anxiety 
before the MRI scan as recommended by Wilke and colleagues (2018). 
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using tedana’s t2smap (Kundu et al., 2012; 2015). The BOLD time series 
were then resampled into standard space (i.e., MNIPediatricAsym: 
cohort-4:res-2). Automatic removal of motion artifacts using indepen-
dent component analysis (ICA-AROMA; Pruim et al., 2015) was per-
formed on the functional data’s time series. As a result, the “aggressive” 
noise-regressors were collected and placed in the corresponding con-
founds file (i.e., *_desc-confounds_timeseries.tsv). Several confounding 
time series were calculated based on the preprocessed BOLD: FD (Jen-
kinson et al., 2002; Power et al., 2014), DVARS, and three region-wise 
global signals. FD and DVARS are calculated for each functional run, 
both using their implementations in Nipype (Gorgolewski et al., 2011). 
The three global signals are extracted within the CSF, the WM, and the 
whole-brain masks. For more details about the fMRIPrep pipeline, see 
https://fmriprep.org/en/latest/workflows.html. 

Denoising strategy. The unsmoothed output from fMRIPrep labeled 
by the suffix _space-MNIPediatricAsym_cohort-4_res-2_desc- 
preproc_bold.nii.gz was used for further processing. First, spatially 
normalized BOLD time courses were linearly detrended, and then in-
tensity normalization was applied to mode 1000 units. Then identified 
time series from WM, CSF, whole-brain global signals, and noise com-
ponents identified by ICA-AROMA were regressed from the BOLD data 
by the fsl_regfilt function with an aggressive denoising strategy (ICA- 

AROMA + 8P + 4GSR; Parkes et al., 2018). ICA-AROMA (Pruim et al., 
2015) utilizes FSL’s MELODIC tool (Beckmann et al., 2005) for decom-
posing BOLD data into spatially independent components (ICs) to 
categorize ICs as BOLD or non-BOLD signals. The advantage of using 
ICA-AROMA as described in the literature (Parkes et al., 2018; Ciric 
et al., 2018) is that this is the most effective pipeline for mitigating 
motion-related artifacts and reducing spurious connectivity (Power 
et al., 2012; Satterthwaite et al., 2012; van Dijk et al., 2012). It is also 
worth noting that the combination of multi-echo fMRI and ICA-AROMA 
can improve the quality of BOLD signals extracted from components and 
the functional connectivity between each pair of ROIs (Dipasquale et al., 
2017). Finally, in line with Parkes et al. (2018), the residual denoised 
BOLD data were bandpass filtered between 0.008 and 0.08 Hz using a 
Fourier transform (AFNI’s 3dBandpass). They were spatially smoothed 
with a 6 mm FWHM (full-width half-maximum) kernel. Furthermore, as 
Parkes and colleagues (2018) suggested, quality control functional 
connectivity benchmarks were also calculated to measure the efficacy of 
different denoising strategies. The results are presented in the Supple-
mentary data (See Fig. S1). 

Fig. 2. Schematic representations of study pipeline. First, all participants’ raw functional data were preprocessed and denoised (A) and then parcellated into 333 
ROIs using Gordon parcellation (B), corresponding time series were extracted and averaged within each ROI to calculate individual connectivity matrices (D), af-
terwards, each connectivity matrix was thresholded and graph theory of global and nodal measures were calculated (F) and then area under the curve at sparsity of 
10 to 40% was computed for statistical analysis with the permutation test (G). Also, the group-averaged matrices were calculated for each group at the network 
density of 10% (H) and using the Louvain algorithm modular architecture of each group was revealed (I) to identify hubs and their functional roles based on WMZ 
and PCnorm metrics (J). 
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2.5. Brain network construction 

Defining nodes and edges. A network is composed of nodes and 
edges where each node represents brain regions in a network, and edges 
represent the connections between all brain regions. In this study, nodes 
are defined based on anatomically or functionally parcellated cortical 
brain regions, and edges are estimated by statistical interdependence (i. 
e., correlations) in BOLD signals among pairwise brain regions (Friston 
et al., 1993). The number of nodes in the estimation of the brain network 
varies considerably for different parcellations methods. Because the 
application of different parcellations may result in different outcomes 
from the network analysis (Zalesky et al., 2010a), we used two different 
functional parcellations (i.e., Gordon and Schaefer parcellations) for 
defining nodes of the brain network (Gordon et al., 2016; Schaefer et al., 
2018). These parcellation schemes were chosen due to their homoge-
neity in defining cortical boundaries (Gordon et al., 2016; Schaefer 
et al., 2018), their neurobiological plausibility in the analysis of rsfMRI 
data (Hallquist & Hillary, 2018; Eickhoff et al., 2018) and their utili-
zation in other network neuroscience studies (Hagler et al., 2019; Feczko 
et al., 2018; Faskowitz et al., 2020). For each participant, preprocessed 
rsfMRI data were parcellated in sets of 333 ROIs produced from a pub-
lished data-driven parcellation method (Gordon et al., 2016) (See 
Fig. 2B). These 333 cortical regions were represented as nodes in the 
current study’s network topology. For validation, the functional data 
were also parcellated into 300 separated ROIs (Schaefer et al., 2018). 
This data-driven parcellation includes 300 brain regions defined based 
on 17 functionally parcellated networks from Yeo et al.’s (2011) study. 
Subsequently, the time series of all voxels within each region were 
averaged (Fig. 2C). Next, Pearson’s correlation r was computed based on 
the BOLD signal between all brain regions to determine pairwise func-
tional connectivity strength. This resulted in a subject-specific sym-
metric and undirected weighted connectivity matrix of size 333×333. 
Each pair-wise element represents Pearson’s correlation between the 
mean time courses between brain regions (Fig. 2D). Networks are typi-
cally thresholded (i.e., removal of non-significant network edges) and 
binarized, but this process is semi-arbitrary (van den Heuvel et al., 
2017). Studies have shown that the density and organization of brain 
networks vary between subjects, which may lead to systematic changes 
in results depending on the threshold chosen (Wen et al., 2011). Based 
on these methodological limitations, we use a matching approach of 
thresholding by using a range of network sparsity thresholds to ensure 
all subject-specific networks contain the same number of nodes and 
edges (Zhang et al., 2011; Achard et al., 2007; Langer et al., 2013). We 
computed connectivity matrices with a network density ranging from 1 
to 40% (with a 1% increment) to investigate the topological properties 
of the brain network. For the analysis, a minimum bound of 10% was 
selected to prevent graph fragmentation at a sparser threshold and an 
upper bound of 40% was chosen due to its liberal estimate of cerebral 
connectivity and its neurobiological plausibility for brain functional 
organization (Fornito et al., 2010; Zhang et al., 2011) (Fig. 2E). It also 
ensured that all brain networks indicated network properties of small- 
worldness for all densities (Fig. S3C). 

2.6. Graph theory analysis 

For investigating the topological aspects of the functional network, 
graph metrics of each individual’s network were calculated on the un-
directed weighted functional network. The graph theory computation 
was carried out by functions from the Brain Connectivity Toolbox (BCT v 
03/03/2019: https://sites.google.com/site/bctnet/) in MATLAB 
R2019b (https://mathworks.com/). 

Network integration and segregation (whole-brain averaged mea-
sures). Functional integration is defined as combining specialized in-
formation across nodes and showing how the network can share the 
information in the distributed nodes (Rubinov & Sporns, 2010). Mea-
sures of characteristic path length (CPL) and global efficiency (Eglob) 

were calculated to estimate network integration. A short path length 
indicates that each node can reach other nodes with few steps (i.e., the 
minimum number of edges connecting two connected brain regions), or 
a path composed of few edges; the average of the shortest path between 
all pairs of nodes is defined as CPL (Rubinov & Sporns, 2010). Eglob is 
also a measure that indicates the capacity of a network for transferring 
parallel information in each pair of nodes, and it is defined as the inverse 
of the shortest path length between nodes (Latora & Marchiori, 2001). 
Therefore CPL and Eglob are primary metrics to measure network inte-
gration (Achard et al., 2007). Functional segregation refers to the ability 
in the brain that specialized processing happens in the densely inter-
connected group of brain regions (Rubinov & Sporns, 2010). To estimate 
the local properties of brain networks, a range of metrics such as mean 
local efficiency (Eloc), clustering coefficient (CC), and modularity opti-
mization (Mod) were calculated. Eloc metric measures the network 
capability in transferring the information at the local level (i.e., node’s 
neighborhood). It is defined as the average inverse shortest path be-
tween two nodes (Rubinov & Sporns, 2010; Latora & Marchiori, 2001). 
CC is defined as the fraction of triangular connected nodes around the 
node of interest and indicates the degree to which neighbors tend to 
cluster with each other in the network (i.e., Cliquiness; Watts & Strogatz, 
1998), hence the mean CC is considered as a direct measure of brain 
segregation (Rubinov & Sporns 2010). Mod is a segregation measure 
that indicates the presence of densely interconnected nodes (i.e., mod-
ules) and indicates the size and composition of these modular structures 
(Girvan & Newman, 2002; Rubinov & Sporns, 2010). Small-worldness 
(SW) is an analogy based on the small-world phenomenon (Watts & 
Strogatz, 1998), indicating that a biological system such as the brain has 
a structure that is neither regular nor random (Latora & Marchiori, 
2001). This property is highly clustered like a regular lattice network but 
has a similar characteristic path length to a random network (Watts & 
Strogatz, 1998). Hence, the SW metric can present the segregation and 
integration of the network and shows a high global and local efficiency 
of a complex system (Pievani et al., 2011). To examine the SW property 
of each individual’s brain network, 100 random networks (BCT: ran-
domio_und.m) with the same topological properties of empirical net-
works and a wiring cost of 20 were generated based on the 
Maslov-Sneppen Null network model that preserves the degree distri-
bution of the original networks (Maslov & Sneppen, 2002) (See Fig. 2F). 

Hub detection. Important nodes or hubs participate in many in-
teractions within a network and play a key role in optimal information 
flow in the brain networks (Rubinov & Sporns, 2010; Stam, 2014; Power 
et al., 2013). As proposed by Guimera and Nunes Amaral (2005), hubs 
and their topological roles can be quantified by measures of within- 
module degree z-score (WMZ) and participation coefficient (PC). WMZ 
is a measure that estimates how strongly a node is connected to its 
module relative to other nodes within the same community (i.e., intra- 
modular connections). PC is an inter-modular degree that describes if 
nodes are distributed uniformly across many modules or are concen-
trated within a module. This metric reveals the modular segregation and 
intermodular integration of the network in the form of the provincial 
hub (nodes with high WMZ, low PC) and connector hubs (nodes with 
high WMZ and high PC) (Rubinov & Sporns, 2010; Fornito et al., 2016; 
Guimera & Nunes Amaral, 2005; Meunier et al., 2009). To perform hub 
detection, first, group-averaged matrices were calculated for each group 
at the top 10% of the connections because of the high rank of their 
correlation strength (Alavash et al., 2019) (Fig. 2H). Afterward, the 
Louvain community detection algorithm (BCT: community_louvain.m) 
was applied to reveal the modular brain structure (Blondel et al., 2008) 
due to its fast and reliable procedure in detecting communities (Betzel, 
2020). Since this algorithm is heuristic and stochastic, this process was 
repeated 1000 times to reach a consensus for determining community 
labels (BCT: consensus_und.m, Betzel, 2020) (Fig. 2I). Once all nodes 
were assigned to their modules, WMZ (BCT: module_degree_zscore.m) 
and PC were calculated. Recent work by Pedersen and colleagues (2020) 
has shown that to reduce the influence of intra-modular connectivity, 
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which may result in inaccurate inference in a network with different 
modular sizes and also maximize the identification of interconnected 
nodes, it is beneficial to normalize PC with randomly generated null 
networks (PCnorm; Pedersen et al., 2020). Hence in this study PCnorm was 
computed by participation_coef_norm.m (https://github.com/omidvarn 
ia/Dynamic_brain_connectivity_analysis/) function based on 1000 ran-
domizations which were previously shown as an adequate iteration for 
estimating stable PCnorm (Pedersen et al., 2020) (See Fig. 2J). Lastly, 
brain hubs and their role in networks were identified based on the 
criteria described according to an earlier study by Meunier and col-
leagues (2009) as follows: connector hub: WMZ > 1 and PCnorm > 0.5; 
provincial hub: WMZ > 1 and PCnorm < 0.5. 

2.7. Statistical analysis 

Group characteristics and behavioral variables were tested with two- 
sample t-tests to analyze differences in age, head motion (mean FD), and 
LiSN-S results. Pearson chi-square tests were also used to compare 
handedness and gender distribution between groups. 

Differences in edge-wise functional connectivity. To assess the 
group differences across the entire connectome, we used the network- 
based statistics toolbox (NBS: https://sites.google.com/site/bctnet/ne 
twork-based-statistic-toolbox;Zalesky et al., 2010b). The NBS is a 
connectome-wide analysis approach that improves statistical power 
over common mass-univariate correction methods such as FDR by 
localizing the differences in connection strength at the component level 
(i.e., sub-network) while controlling for family-wise error (FWE) 
(Zalesky et al., 2010b; Fornito et al., 2016). In NBS, these subnetworks 
are constructed by applying an initial threshold to the data (p < 0.05, 
uncorrected). The observed subnetwork sizes were then compared with 
the empirical null distribution of maximal component sizes acquired by 
the permutation test (10000 times) (Fornito et al., 2016). This evalua-
tion of observed component sizes with regards to the null distribution of 
maximal sizes controls for the Family-wise error (FWE) for resulting 
inference on subnetworks (Fornito et al., 2016). First, all individuals’ 
connectivity matrices were Fisher’s R to Z transformed (Mudholkar, 
2014). Two-sample t-tests were then performed for each pairwise 
connection linking 333 brain regions to test group differences in func-
tional connectivity in either direction (two-tailed hypothesis test, Initial 
t threshold = 3.9856). Age was included as a covariate for these 
analyses. 

Differences in hub measures. To assess whether there are group 
differences in hub detection measures of PC, PCnorm, and WMZ, the area 
under the curve (AUC) across the sparsity range of 10 to 40% was 
calculated. The AUC was chosen because integrating network density 
costs could control the monotonic transformation of a weight set of the 
weighted graph (Ginestet et al., 2011) and it may improve the sensitivity 
in detecting the case-control group differences (Achard et al., 2007; 
Hosseini et al., 2012; van den Heuvel et al., 2017). Two-sample t-tests 
assuming unequal variances between APD and HC groups were carried 
out on the AUC of each network measure in the Permutation Analysis of 
Linear model software (PALM; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 
PALM/UserGuide). 

PALM uses a permutation test in a general linear model framework 
while controlling for false-positive errors under weak or unreasonable 
assumptions. The data are primarily exchangeable under the null hy-
pothesis (Winkler et al., 2014). To test the null hypothesis that the group 
means were all equal, for each network measure, all values randomly 
were assigned to all subjects and the mean differences were recomputed 
between two randomized groups. The randomization was repeated 20, 
000 times, and the 95% confidence interval was calculated and used as 
the critical value of significance testing (p < 0.05). The effect of age as a 
nuisance confound was also controlled during the randomization 
(demeaned). To control for multiple comparisons, all p values were 
corrected across ROIs and network measures (PALM: -corrmod, -fdr) 
using false discovery rate (FDR) correction (q < 0.05) (Benjamini & 

Hochberg, 1995) (See Fig. 2G). 
Relationship between hub measures and LiSN-S variables. Explor-

atory partial correlation analysis was performed to assess the association 
between nodal measures of PC, PCnorm and WMZ with LiSN-S results (z- 
scored) using a permutation test (20000 randomizations) in the PALM 
(Winkler et al., 2016), controlling the effect of age and group. All p 
values were corrected using FDR across ROIs and network measures to 
control for multiple comparisons. For this correlation analysis, three 
participants (HC = 1, APD = 2) were excluded due to missing behavioral 
data. 

Meta-analytic interpretation. Neurosynth (Yarkoni et al., 2011), a 
data-driven tool for functional meta-analysis, was utilized for data 
interpretation. The Neurosynth database contains more than 14,000 
functional neuroimage studies that allow the identification of associated 
cognitive terms with the brain activation pattern. Neurosynth extracted 
and visualized the top 20 cognitive terms (excluding redundant, 
anatomical terms) associated with significant ROIs as a word cloud in 
MATLAB R2019b. After identifying ROIs showing significant group 
differences, the Neurosynth database was searched for these ROIs to 
identify relevant cognitive terms. For each significant region, up to 20 
associated cognitive terms were selected and visualized for each ROI 
based on their meta-analytic co-activation scores (Pearson r, 
uncorrected). 

3. Results 

3.1. Demographics and spatialized listening scores 

Group comparisons of demographic variables, including motion (i.e., 
mean FD), handedness, and gender, showed no significant differences. 
However, APD and HC were significantly different in age (HC > APD). 
No correlation was found between age and graph measures. Partici-
pants’ head motion profile and the distribution of mean FD are shown in 
Table S1 and Fig. S2, respectively. Based on LiSN-S results, all HC in-
dividuals passed the test where their scores were within the normative 
range, but 35.7% of children diagnosed with APD (n = 10) failed the test 
where at least one of their scores was below the normative range. Group 
comparisons of LiSN-S scores only indicated significant differences in 
Talker Advantage scores (HC > APD), although Fig. 3 shows poorer 
advantage scores on average for the APD group. Further demographic 
details are depicted in Table 1. 

3.2. Edge-wise functional connectivity 

NBS assessed group differences in functional connectivity. The re-
sults showed no significant difference in edge-wise connectivity between 
APD and HC groups after controlling for multiple comparisons (FWE- 
corrected). 

3.3. Whole-brain averaged network measures 

Investigating network segregation indicated higher mean CC and 
mean Eloc in the APD group than HC. However, group comparisons 
revealed no statistical differences across the range of network density 
thresholds (1 to 40%). Fig. S3 presents results from Gordon parcellation 
with 333 functionally separated regions. Outcomes from other global 
measures are provided in supplementary materials. 

3.4. Module and hub roles in APD topological network 

Examining the modular organization of HC and APD groups showed 
similar modular structures at network density of 10% (Table 2, 
Fig. S3E). The modular community detection analysis showed five pre-
defined functional modules in both groups, including default mode- 
ventral attention (Fig. 4 Module I, Blue), somatomotor (Fig. 4 Module 
II, Red), limbic (Fig. 4 Module III, Orange), visual (Fig. 4 Module Ⅳ, 
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Purple), and frontoparietal-dorsal attention (Fig. 4 Module Ⅴ, Green) 
(Yeo et al., 2011). The most extensive module in both groups was default 
mode-ventral attention, with 86 ROIs in APD and 90 ROIs in HC groups, 
comprising the default mode (DM), cinguloparietal, and ventral atten-
tion regions. The smallest module in both groups was somatomotor with 
50 and 38 ROIs, respectively (See Table 2). The community detection 
was also performed for 10% to 40% network density for both APD and 
HC groups. Results regarding changes in the modular organization are 
shown in Fig. S4. Fig. 5 displays brain hubs and their role in the network 
(i.e., connector or provincial) based on WMZ and PCnorm. A major 

difference between the two groups was driven by the somatomotor 
module, where APD had ten provincial hubs compared to HC with four 
provincial hubs. Also, the APD group had several regions where nodes 
were identified as hubs, in contrast to HC, where these regions were not 
hubs, in the DM (ROIs #6, #162), somatomotor-hand (ROIs #2, #50, 
#57, #163), and dorsal attention (ROI #74) regions. More details about 
group differences in hub regions are presented in Table S3. 

Results from the group analysis based on the nodal measure of PC 
revealed a significant group difference in the region of DMN. This was 
observed in the right STG in node #331 (DMN, p = 0.0333, t = 3.985, 
FDR corrected). Fig. 6 illustrates the result for the PC measure (AUC 
10–40%) of 333 functionally separated brain regions. The red color in-
dicates an elevation of the PC metric in the HC group (APD < HC). A 
similar analysis was carried out based on the Schaefer parcellation (17 
functional networks, 300 ROIs) to assess the robustness of this result. 
The outcome from this analysis exhibited differences in the following 
networks (All p < 0.05, FDR-corrected): left and right STG (ROIs #147, 
#294, respectively), left MTG (ROI #124), left and right posterior 
temporo-occipital (ROIs #56, #298), left intraparietal sulcus (ROI #93) 
as well as right posterior insular cortex (ROI #216). There is an overlap 
of regions #331 and #294 from the Gordon and Schaefer parcellations, 
respectively. More details regarding the results from the Schaefer par-
cellation are provided in Table S4. No significant differences between 
the groups were observed in the nodal measures of PCnorm and WMZ 
using the Schaefer parcellation. The comprehensive comparison be-
tween Gordon and Schaefer parcellations based on results from PC 
measure are depicted in Fig. S5 and Table S5. 

3.5. Association between brain hub measures and LiSN-S variables 

Partial correlation analysis indicated a significant positive correla-
tion between PC (AUC 10–40%) and LiSN-S Spatial advantage in the 
APD group (Pearson r = 0.6710, q < 0.05, FDR corrected), in the left 
retrosplenial-temporal (RT) areas (parahippocampal gyrus – node 

Fig. 3. Distribution of LiSN-S z-scores (Total advantage, Spatial advantage, Talker advantage, High-cue, Low-cue) between APD and HC groups. More information 
regarding LiSN-S data dispersion is shown in Table S2. 

Table 1 
Demographic and group characteristics.   

APD (n = 28) HC (n = 29) Test 
Statistic 

p value 

Age (years) 10.92 ± 1.55 11.91 ± 1.39 2.546a  0.014 
Gender (male/female) 13/15 14/15 0.020b  0.889 
Handedness (right/ 

left) 
23/5 26/2 1.631b  0.202 

Mean FD (mm) 0.10 ± 0.03 0.11 ± 0.04 0.962a  0.340  

LiSN-S (n = 26) (n = 28)   
Total advantage 0.53 ± 1.04 0.47 ± 0.98 − 0.216a  0.830 
Spatial advantage − 0.25 ±

1.56 
0.25 ± 1.06 1.398a  0.168 

Talker advantage − 0.76 ±
0.98 

− 0.25 ±
0.82 

2.052a  0.045 

High cue 0.28 ± 1.08 0.48 ± 0.89 0.746a  0.459 
Low cue − 0.35 ±

1.12 
0.07 ± 0.98 1.507a  0.138 

Note: Data are presented as n or mean ± standard deviation. HC – healthy 
control, APD – auditory processing disorder, FD – framewise displacement, LiSN- 
S – Listening in Spatialized Noise-Sentences Test. Between-group differences 
were tested with two-sample t-testsa and Pearson chi-square testsb. 
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number 130 in the Gordon parcellation). The scatterplot and brain 
surface visualization of the relationship between PC and the Spatial 
advantage score are shown in Fig. 7. There was no significant correlation 
between other LiSN-S scores and PC, PCnorm and WMZ measures in 
either group. 

4. Discussion 

This is, to our knowledge, the first study to investigate the topolog-
ical brain network function of children diagnosed with APD by using 
rsfMRI. In line with our hypothesis, our findings suggest that children 
diagnosed with APD demonstrate similar global network topology (i.e., 
integration and segregation) and edge-based connectivity (i.e., network- 

Table 2 
Summary of modular properties and identified hub regions.  

Module APD Nodes Hubs Hub regions HC Nodes Hubs Hub regions 

Default mode-ventral attention  86 C = 11 L 1,6,62,116,127,150  90 C = 11 L 1,62,80,116,126,127,146,150 
R 290,322,323 
L 25,145 
R 292 

P = 0 R 162,231,290,292,322 P = 3  

Somatomotor  50 C = 0 L 2,31,36,50,57  38 C = 1 L 195 
L 31 
R 190, 194, 214 

P = 10 R 163,190,191,194,214 P = 4  

Limbic  76 C = 9 L 22,27,76,81  75 C = 11 L 22,76,81, 82,103,111 
P = 5 R 185,223,238,246,274 P = 3 R 223,238,245,246,274 

L 101 
R 234,268 

L 101,103,111 
R 268,269  

Visual  60 C = 0 L 5,8,15,131,137  62 C = 1 L 5 
L 8,15,131,137 
R 169,175,176,177,293,298,308 

P = 14 R166,169,175,176,177,293,298,308,310 P = 11  

Frontoparietal-dorsal attention  61 C = 6 L 51,106  68 C = 11 L 51,52,87,100,106 
R 236,251,252,253,262,273 
L 211 
R 261 

P = 4 R 211,236,262,275 P = 2 
L 52,74 
R 261,273 

Note: Regions are listed as ROIs. The list of region’s labels can be found in Table S3. L – left hemisphere, R – right hemisphere, C – connector hub, P – provincial hub. 

Fig. 4. Modular organization of functional brain networks in APD and HC groups. Brain modular organization was constructed on group-averaged matrices (density 
10%) using Gordon parcellation (333 ROIs). For each group, five different modules were identified, including default mode-ventral attention (blue), somatomotor 
(red), limbic (orange), visual (purple) and frontoparietal-dorsal attention (green). Nodes of larger size indicate hubs within each module. The figure is shown in 
sagittal and axial views and created by BrainNet Viewer (Xia et al., 2013). Abbreviation: L – left hemisphere, R – right hemisphere. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Brain hubs and their roles in APD and HC groups. (A): Within module degree z-score (WMZ) and normalized participation coefficient (PCnorm) are shown for 
regional nodes in both groups. Nodes with high WMZ (WMZ > 1, yellow dots) are considered to be hubs. Hub nodes with high PC (PC > 0.5, red dots) are connector 
hubs and those with low PCnorm (PCnorm < 0.5, blue dots) are provincial hubs. (B): Corresponding connector and provincial hubs are also presented on the brain 
surfaces in sagittal (Left and Right) and axial views constructed by BrainNet Viewer. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Regional differences in the PC measure between APD and HC participants (10–40% density). (A) indicates the significant difference based on the Gordon 
parcellation (333 ROIs) in area 331 (p < 0.05, FDR corrected), whereas (B) shows the significant differences based on the Shaefer parcellation (300 ROIs) in the 
following areas: 56, 93, 124, 147, 216, 294 and 298 (p < 0.05, FDR corrected). The group differences shown in red depict APD < HC. Images are created in BrainNet 
Viewer. L, Left hemisphere; R, right hemisphere. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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based statistics), to HC. However, we observed significantly decreased 
between-module connectivity in APD compared to HC (using the PC 
metric) in cortical auditory brain areas and nodes within the default 
mode network. Furthermore, partial correlation revealed a positive 
correlation between the LiSN-S behavioral measures of Spatial advan-
tage and between-module connectivity of the parahippocampal gyrus. 

4.1. Hub organization in APD 

Network hubs are topologically more central than other brain re-
gions. They are highly interconnected within and between networks, 
playing an influential role in brain network functions (van den Heuvel & 
Sporns, 2013). An essential characteristic of a healthy brain is the rich 
club of interconnected hubs; depending on the location of hubs in the 
brain community, hubs can have different connectivity ranges (van den 
Heuvel & Sporns, 2011). Hubs within a community or module are only 
connected to regions in that module (i.e., provincial hubs), and those 
connecting multiple modules are highly connected outside of the com-
munities (i.e., connector hubs). Brain hubs are typically vulnerable in 
neurological disorders (Stam, 2014; Power et al., 2013; Crossley et al., 
2014; Fornito et al., 2015). In the current study, the default mode- 
ventral attention module was the most densely interconnected compo-
nent in the brain across children diagnosed with APD and typically 
developing children. As opposed to the HC group, all detected hub nodes 
in the default mode-ventral attention module were identified as 
connector hubs. 

Previously research suggests that DMN and Frontoparietal network 
(FPN) are part of control-default and cross-control connector hubs 
subsystems (Gordon et al., 2018; 2020) and these connector hubs allow 
flexible control of cognition and behaviors (Bertolero et al., 2017; 

Gratton et al., 2018). The FPN is also believed to apply top-down reg-
ulatory control over DMN and lower-level systems via connector hubs 
(Dosenbach et al., 2008; Marek & Dosenbach, 2018; Gratton et al., 2018; 
Cole et al., 2013). The relationship between the DMN and language 
networks has been investigated to determine interactions of linguistic 
processing with internally-oriented functions of DMN (Power et al., 
2011; Gordon et al., 2020). The major presence of connector hubs in the 
APD group within the default mode-ventral attention module could 
suggest the rich connectivity between subnetworks in DMN, FPN and 
language networks; these subnetworks were reported by Gordon and 
colleagues (2020) in healthy young adults. A recent review paper by 
Oldham and colleagues (2022) has shown that, in the human brain, 
connections between hubs start to form from the developmental stage. 
This formation continues until brain maturation (Oldham et al., 2022; 
Oldham & Fornito, 2019). Our results revealed differences in the num-
ber of provincial hubs in somatomotor, limbic, visual and frontoparietal- 
dorsal attention modules in the APD group compared to HC individuals. 
The presence of more provincial hubs in the APD group, who were aged 
8 to 14 years, suggests that the reformation in information processing 
could be due to hub localization and segregation within a module and 
could emerge early in childhood. 

4.2. Regional group differences in PC 

Our regional hub analysis found that children with APD had less PC 
(i.e., between-module connectivity) than HC in the right STG (Fig. 6 – 
ROI #331). To investigate the relationship between the right STG region 
and its role in cognitive functioning, we utilized the Neurosynth meta- 
analytic tool. The complete list of associated cognitive areas is illus-
trated in Fig. 8A and B in a word cloud form. The role of the right STG in 

Fig. 7. Significant association between PC measure and LiSN-S score (i.e., Spatial advantage) in auditory processing disorder (APD) group. (A) The scatter plot 
presents this relationship for 26 participants in the APD group; the solid line represents a regression fit (Fitted curve) to the data, and the shaded area indicates two- 
sided 95% confidence intervals (CI) visualized by the GRETNA plot (J. Wang et al., 2015). (B) Brain Surfaces showing parahippocampal gyrus part of the 
retrosplenial-temporal network (RT; ROI #130) in the Gordon parcellation presented in sagittal, medial and ventral views created by BrainNet Viewer (Xia et al., 
2013). (C) Word cloud of cognitive terms associated with RT region obtained from Neurosynth database (Yarkoni et al., 2011). The size of each cognitive term 
corresponds to the association of meta-analytical maps created by Neurosynth. 
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Listening, Speech and Music perception, processing of sound, and lan-
guage comprehension is well established (Moerel et al., 2012; Adank 
et al., 2015; Trost et al., 2012; Klein & Zatorre, 2011; Kriegstein & 
Giraud, 2004; Beaucousin et al., 2007). Additionally, our complimen-
tary results based on the Schaefer cortical atlas (Fig. 6 and Fig. 8B) were 
aligned with the Gordon parcellation. These findings showed not only an 
alteration in the right STG (ROI #294) but also indicated bilateral 
cortical dysconnectivity in the Left STG (ROI #147) and left MTG (ROI 
#124). These regions in the bilateral supratemporal regions form part of 
the auditory cortex, supporting hearing and speech processing (Zatorre 
et al., 2002; Pandya, 1995). In our research, the bilateral auditory 
cortices, including STG, were identified as provincial non-hub (PCnorm 
< 0.5, WMZ < 1; provincial hub is a hub with greater intra-modular 
connectivity) regions in DMN and were categorized as part of the 
default mode-ventral attention module in both groups. Human brain 
processing of speech and music occurs predominantly in the left and 
right auditory regions (Tervaniemi & Hugdahl, 2003; Zatorre et al., 
2002). Speech perception is associated with activity in both left and 
right auditory cortices, however, left auditory regions are more 

specialized for phonemic and language processing (Binder et al., 2000; 
Binder et al., 2008; Katz, 2016). Poor phonological processing and dif-
ficulty discriminating rapid spectro-temporal characteristics of pho-
nemes are deficits in children with APD and dyslexia (Keith et al., 2019; 
Burns, 2013). Stewart and colleagues (2021), using contrasting senten-
ces involving intonation, phonetics, prosody and intelligibility in their 
task-based fMRI, found that linguistically meaningful units activated 
bilateral MTG/STG and other auditory areas (Stewart et al., 2021; 
Moore et al., 2020). Group differences were found for semantic and 
intelligibility networks. In their rsfMRI ROI-ROI analysis, Hoyda and 
colleagues (2021) also found decreased functional connectivity bilat-
erally and within the left hemisphere in the STG region. 

Evidence from different studies suggests that the DMN contributes to 
many cognitive functions, including mental exploration of social and 
emotional content, remembering the past (e.g., autobiographical mem-
ory), perspective taking of the belief, desire and intention (e.g., Theory 
of mind), and planning the future (Raichle et al., 2001; Buckner et al., 
2008). DMN studies have primarily associated this network with auto-
biographical memory involving internally-oriented thoughts, higher- 

Fig. 8. Association of meta-analytic topics with regional group differences in the PC measure. The surface templates of between-group differences in PC metrics are 
depicted based on Gordon (333 ROIs) (A) and Schaefer (300 ROIs) parcellations (B). Cortical regions and their association with meta-analytic terms obtained from 
the Neurosynth database are shown in word clouds. Each word cloud contains the top 20 relevant cognitive terms across a wide range of terms (1334 terms). Colors 
correspond to a different brain region and the size of each word indicates the frequency of reports in the literature (Meta-analytic coactivation score). More details 
about the selection criteria for cognitive terms are shown in Table S6. L: left hemisphere, R: right hemisphere. 
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order cognitive functioning and self-referential processes (Kim, 2012; 
Philippi et al., 2015). Autobiographical memory is also associated with 
activation in MTG/STG, temporal poles, dorsal frontal, and RT cortex 
(Fink et al., 1996; Piefke et al., 2003). The links between DMN and 
auditory processing are less clear. The relationship between DMN and 
the right STG has not been previously reported in the hearing research 
literature. However, in earlier hearing-related research, differences in 
DMN activation have been reported in participants with and without 
auditory complaints. For example, a neuroimaging study of children 
diagnosed with APD found decreased cortical activity in DMN regions in 
the posterior cingulate cortex and precuneus based on ReHe analysis 
(Pluta et al., 2014). Pluta and colleagues (2014) suggested that dysre-
gulation of DMN is due to failure in attention. A different study of elderly 
patients with tinnitus (phantom sound perception) and hearing loss also 
reported decreased connectivity in bilateral precuneus regions, indi-
cating DMN dysfunction associated with internal noise/phantom noise 
effects (Schmidt et al., 2013). Another study involving adults with 
tinnitus also reported DMN disorganization in the anterior cingulate 
cortex and left precuneus, implying a potential role of DMN in chronic 
tinnitus (Chen et al., 2018). 

Memory is an essential factor for cognition that is strongly linked 
with speech understanding in competing stimuli (e.g., noisy environ-
ment) (Hulme & Melby-Lervåg, 2012). Children with APD can show 
deficits in short-term/working memory and attention (Moore, 2011; 
Sharma et al., 2014; Allen & Allan, 2014; Gokula et al., 2019). These 
difficulties correlate with auditory and speech processing (Hornickel 
et al., 2012). Our exploratory partial correlation analysis showed a 
significant positive correlation between PC measures and Spatial 
advantage skill (LiSN-S variables) in the left RT (i.e., parahippocampal 
gyrus, ROI #130) (Fig. 7A and B). The meta-analysis showed that this 
region is highly correlated with episodic memory, memory encoding, 
memory retrieval, and autobiographical memory (Fig. 7C). Studies of RT 
have shown its connection with the auditory cortex and memory path-
ways (Todd et al., 2016) and have indicated that RT plays a key role in 
the involvement of DMN in medial temporal regions (Andrews-Hanna 
et al., 2010; Kaboodvand et al., 2018). From a network neuroscience 
perspective, several studies have investigated PC or PCnorm and their 
relation to working memory performance during the N-back task and 
have suggested that the brain tends to allocate more inter-modular 
connectivity to fulfill the demands of this cognitive task (Shine et al., 
2016; Bertolero et al., 2018; Cohen & D’Esposito, 2016; Pedersen et al., 
2020). Our results for the PC/PCnorm analyses suggest differences be-
tween groups in inter-/intra-modular activation that could be associated 
with working memory differences between groups. In our study, we 
observed group differences for PC but not for PCnorm. Both metrics show 
how a node participates in inter-modular connection, but PCnorm con-
trols the influence of intra-modular connectivity (Pedersen et al., 2020). 
Thus, the lack of group differences in PCnorm suggests that the PC group 
differences reflect intra-modular differences in brain activity. Our hub 
analysis showed that the RT region functions as a connector non-hub 
(PCnorm > 0.5, WMZ < 1) in the visual module that facilitates in-
teractions between modules/networks. This contrasts with Kaboodvand 
et al.’s (2018) study of healthy adults, which suggested that RT is a 
provincial hub within DMN; such a difference in results could be partly 
related to age differences in the study populations. 

4.3. Limitations and future directions 

Although our research provides insights into the brain organization 
of children with APD, several methodological issues should be addressed 
in future studies. 

Collecting a large sample size in a single small country like New 
Zealand during the global pandemic was challenging for this study. 
Although our sample size was, in theory, large enough to elicit reliable 
graph theory measures according to previous studies (Termenon et al., 
2016; Andellini et al., 2015), there is an important concern regarding 

the impact of age due to differences between our case and our control 
groups. To address this, we added age as a nuisance regressor in our 
general linear model and compared this analysis where age is not 
included (see Table S4). However, studies on developmental groups 
have shown that brain functional and structural connectomes are 
continuously changing during growth (Oldham et al., 2022; Oldham & 
Fornito, 2019; Cao et al., 2014; Greene et al., 2014; Meunier et al., 2009; 
Khundrakpam et al., 2013). It is possible that developmental brain 
changes need to be considered when interpreting our results. Therefore, 
we believe future research would benefit from data sharing approaches 
by gathering larger data cohorts across the developmental life span to 
validate our results as a generalizable finding. 

We observed that the choice of brain parcellation affected our results 
with more significant regions in the Schaefer parcellation than the 
Gordon parcellation (as the number of nodes affects the interpretation of 
fMRI time-series and statistical comparisons). The goal of parcellation is 
to derive a set of homogenous brain regions with high intra-node con-
nectivity – this is an ill-posed issue in network science that is known to 
affect results. This semi-arbitrary selection of parcellation and its effect 
on global and local properties of brain network has been discussed for a 
long time among researchers in the field (Zalesky et al., 2010a; Andellini 
et al., 2015; Termenon et al., 2016; Arslan et al., 2018; Bryce et al., 
2021), and the solution that has been recommended is to apply multiple 
parcellation schemes to understand the influence of brain parcellation 
(Bryce et al., 2021). Evidence from numerous neuroimaging studies 
indicates that the human connectome is unique to individuals in terms of 
connectional traits (Barch et al., 2013; Gordon et al., 2017; Mueller 
et al., 2013; D. Wang et al., 2015;), where these distinct features can be 
distinguished among individuals (Finn et al., 2015). Also, these unique 
identified patterns of brain networks could change in different tasks 
(Salehi et al., 2020). Since group-wise parcellations (e.g., Gordon or 
Schaefer parcellations) may not show these unique individual features 
and patterns, we hope that future research applies individualized par-
cellation to improve the understanding of APD’s functional organiza-
tion, which would result in a deeper understanding of brain activity 
associated with cognitive and listening behaviors in APD. 

Brain networks are most commonly modeled where nodes and edges 
are represented as brain regions and the magnitude of their associated 
activities (i.e., functional connectivity; FC), respectively (Biswal et al., 
1997; Bullmore & Sporns, 2009), to study the interaction between pairs 
of nodes in brain disease and disorders (Di Martino et al., 2014; Fornito 
et al., 2015). In recent years, a new approach, proposed as edge-centric, 
was introduced for studying brain functional connectome (Betzel, 2022; 
Faskowitz et al., 2020, 2022; Esfahlani et al., 2021). In this model, 
instead of measuring the activity of one brain region that fluctuates with 
another (i.e., node-based FC; nFC), the similarity between pairs of co- 
fluctuation time series is assessed by capturing moment-by-moment 
similarities of co-fluctuations between pairs of brain regions (i.e., edge 
FC, eFC) (Esfahlani et al., 2020). Similar to nFC, eFC is obtained from 
identical fMRI time series and can be utilized for creating an edge-by- 
edge connectivity matrix to study the brain network patterns. Thus by 
providing complementary insight into brain network organization, the 
edge-centric model could reveal details about the disruption of func-
tional brain dynamics (Faskowitz et al., 2020; 2022). 

Another issue that arose from our cross-sectional study was that 
although our APD sample was diagnosed based on a comprehensive 
diagnostic assessment protocol (28 children diagnosed with APD), the 
sample was heterogeneous and included a range of children who had 
been recently diagnosed (39%) or diagnosed more than a year previ-
ously (60%). Some children were under treatment (32%). Future 
research can minimize this by utilizing a longitudinal study design to 
investigate changes in brain functional organization from diagnosis until 
treatment. Additionally, APD commonly occurs with other comorbid 
disorders (Sharma et al., 2009; Dawes & Bishop, 2010; O’Connor, 2012; 
Burns, 2013; Gokula et al., 2019). Children diagnosed with APD indicate 
symptoms of listening difficulties when they are referred to audiology 
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clinics, and these difficulties can be caused by auditory processing, 
language, cognitive, or hearing deficits (Dawes et al., 2008; Dawes & 
Bishop, 2010; Moore, 2012; Ankmnal-Veeranna et al., 2019; Magimairaj 
& Nagaraj, 2018; Dillon & Cameron, 2021). These prevalent comorbid 
conditions were also identified in our study populations. The participant 
diagnostic reports showed that almost half of the children (12 out of 28) 
had comorbid disorders such as dyslexia (8/29%), ADHD/ADD (3/ 
11%), and DLD (1/3%), and the others were only diagnosed with APD 
(16/57%). Although we were able to see group differences in brain re-
gions, a larger sample that separates children with APD with and 
without different comorbidities could better unravel differences in brain 
processing between these subgroups. We suggest that future studies 
investigate separate groups of children based on their diagnosis. This 
differentiation could help improve the understanding of how the func-
tional organization of APD has been affected by comorbid disorders. 

Despite a couple of reports on the structural connectivity of APD 
(Schmithorst et al., 2013; Farah et al., 2014), the brain structural or-
ganization of children with APD has not been fully explored. We 
recommend future studies by acquiring diffusion-weighted MRI data 
and applying network neuroscience to investigate the WM microstruc-
tural organization of APD individuals to help understand neural path-
ways involved in listening difficulties. 

5. Conclusion 

In summary, this study presents new evidence of changes in brain 
network function in children with APD. Despite similar modular orga-
nization and whole-brain connectivity in both groups, children with 
APD showed atypical hub architecture compared to HC. Our results also 
indicated that the alteration of the brain topology in APD exists at the 
regional level, not at the global level. The group comparison based on 
the PC metric revealed significant differences in the right and bilateral 
auditory areas (e.g., STG) according to two methodologically different 
parcellations. These areas are associated with auditory processing, 
listening, speech, language, emotions and memory perception within 
DMN, indicating the role of multi-modal factors for listening difficulties 
in APD children. Our study underlines the importance of future research 
utilizing network science to understand the neural bases of APD and the 
use of these regional biomarkers as a potential clinical support tool. 
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