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Purpose: Changes in lens protein expression during zebrafish development results in a smooth gradient of refractive index
necessary for excellent optical function. Age-related changes in crystallin expression have been well documented in
mammals but are poorly understood in the zebrafish.
Methods: In the zebrafish lens, a systematic analysis of protein content with age was performed using size exclusion
chromatography (SEC) combined with linear trap quadrupole Fourier transform tandem mass spectrometry (LTQ-FT LC-
MS/MS; rank-order shotgun) proteomics in lenses of larval, juvenile, and adult zebrafish.
Results: α-Crystallins, previously shown to have low abundance in the zebrafish lens, were found to increase dramatically
with maturation and aging. SEC determined that β-crystallin was predominant at 4.5 days. With age, the α- and γ-crystallins
increased, and a high molecular weight fraction appeared between six weeks and six months to become the dominant
component by 2.5 years. Similarly, shotgun proteomics determined that β-crystallins were the predominant proteins in
the young lens. With age, the proportion of α- and γ-crystallins increased dramatically. After crystallins, calpain 3,
membrane, and cytoskeletal proteins were most abundant. Five new β-crystallins and 13 new γ-crystallins were identified.
Conclusions: As expected, SEC and proteomics demonstrated changing levels of protein expression with age, especially
among the crystallins. The results also confirmed the existence of novel crystallins in the zebrafish genome.

Lens crystallins are proteins expressed at high
concentrations in lens cells to achieve the high index of
refraction required for normal optical function. Crystallin
proteins are organized in short-range, glass-like order in the
cytoplasm and are vital for the development and maintenance
of lens transparency [1-3]. α-Crystallins, members of the
small-heat shock protein family, protect against lens opacity
by preventing the aggregation of unfolding proteins and
maintaining cytoskeletal organization [4-8]. Similarly,
mutations in α-, β-, or γ-crystallins have been linked to loss of
transparency and human congenital cataract formation [9,
10].

The expression levels of different crystallins vary
throughout development and aging, which leads to different
crystallin levels in different regions of the lens since lens cells
are retained throughout the lifespan of an organism. Changing
crystallin expression may be vital for lens function, which
depends on a smooth gradient of refractive index that corrects
for spherical and chromatic aberration [11-13]. Age-related
changes in crystallin expression have been well documented
in mammals but are poorly understood in the zebrafish, which
as an aquatic vertebrate has an even higher index of refraction
in the lens than the mammal. In terrestrial species, the cornea
contributes to image refraction at the air-cornea barrier while
in aquatic species, the index of refraction of the cornea is
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almost identical to water so the lens is responsible for image
refraction [14].

There are many similarities in the optical and biophysical
properties of zebrafish and mammalian lenses including
expression of many of the same crystallins. Both zebrafish and
mammalian lenses contain αA- and αB-crystallins, although
the zebrafish has a gene duplication in αB-crystallin resulting
in the expression of both αBa- and αBb-crystallins [15-17].
The β-crystallin proteins are also similar between zebrafish
and mammals, and it has been proposed that six β-crystallin
genes are found in all vertebrates [18,19]. γ-Crystallins are
more divergent. Humans and mice contain genes for γA-
through γF-crystallins, although γD- and γF-crystallins are
pseudogenes in humans and these are specific to terrestrial
mammals. Both zebrafish and mammals express γN-and γS-
crystallins, and zebrafish additionally have multiple members
of the γM-crystallin family of aquatic crystallin in the lens
[20-22].

While crystallin gene and protein expression have been
examined in the adult zebrafish lens and a few additional
embryonic crystallins have been identified, this report is the
first systematic analysis of changing crystallin expression
during development and aging. We used size exclusion
chromatography (SEC) combined with linear trap quadrupole
Fourier transform tandem mass spectrometry (LTQ-FT LC-
MS/MS; rank-order shotgun) proteomics to analyze protein
expression in the lenses of larval, juvenile, and adult zebrafish.
Advanced shotgun proteomics techniques allowed the
identification of parent proteins from individual peptides in a
complex protein sample [23,24]. With mass accuracies below
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5 parts-per-million, shotgun proteomics is more sensitive than
two dimensional (2D) polyacryamide gel electrophoresis for
separation and detection of proteins with low abundance
[25]. As expected, SEC and proteomics were consistent in the
demonstration of varying levels of protein expression with
age, especially among the crystallins. α-Crystallins,
previously shown to have low abundance in the zebrafish lens,
were found to increase dramatically during maturation and
aging. Shotgun proteomics also identified novel crystallin
peptides in the zebrafish lens that confirmed the existence of
hypothetical crystallins in the zebrafish genome.

METHODS
Lens homogenization: Fish were housed at 28.5 °C on a 14/10
h light/dark cycle and cared for in accordance with the
University of Washington Institutional Animal Care and Use
Committee. Lenses were dissected from WIK wild-type
zebrafish, euthanized in 0.2 mM tricaine solution at 4.5 days
(50 lenses), 10 days (50 lenses), three weeks (20 lenses), six
weeks (20 lenses), six months (4 lenses), and 2.5 years (4
lenses) of age. All lenses appeared to be transparent. Fresh
lenses were homogenized in 20 mM Tris-HCl and 1 mM
EDTA, pH 8.0 on ice. After homogenization,
phenylmethylsulfonyl fluoride (PMSF) was added to the
solution to yield a final concentration of 0.1 mM.
Homogenized lenses were immediately prepared for mass
spectrometric analysis or analyzed by size exclusion
chromatography.
Size exclusion chromatography: Lens homogenates were
separated into major protein components using a Biosep SEC-
S3000 column (Phenomenex, Torrance, CA) and an
ÄKTApurifier™ fast protein liquid chromatography (FLPC)
(Amersham Biosciences, Pittsburgh, PA). A 50 μl sample of
zebrafish lens homogenate (~2 mg/ml protein) was injected
onto the column. The sample was eluted using 20 mM Tris-
HCl, pH 8.0 at a flow rate of 0.5 ml/min. Protein elution was
measured by absorbance at 280 nm. Fractions were collected
every 250 μl, and select fractions were prepared for analysis
using mass spectrometry. Each chromatogram was run at least
three times. Individual molecular weight standards from the
Gel Filtration Calibration Kit (GE Healthcare,
Buckinghamshire, UK) were run to calculate fraction size.
Protein concentration was calculated for each fraction from
the six-week lenses using a bicinchoninic acid assay (BCA)
protein assay kit (Thermo Scientific, Waltham, MA).
Mass spectrometric analysis: Mass spectrometry was used to
identify and quantify proteins present in zebrafish lens
homogenates and select SEC fractions. Fifty microliters of
sample was mixed with 50 μl of 12 M urea, 100 mM
NH4HCO3, 7 μl of 1.5 M Tris-HCl pH 8.0, and 2.5 μl of 200
mM tris(2-carboxyethyl)-phosphine (TCEP). The sample was
allowed to incubate at 37 °C for 1 h. Next, 20 μl of 200 mM
iodoacetamide was added, and the sample was incubated for
1 h at 22 °C in the dark. After incubation, 4 μl of 1 M

dithiothreitol (DTT) was added to the sample to react with
excess iodoacetamide and incubated for 1 h at 22 °C. The
sample was then mixed with 800 μl of 25 mM NH4HCO3 and
200 μl of methanol. One microliter of 1 mg/ml sequencing
grade trypsin (Promega, Madison, WI) was added to the
sample and allowed to incubate at 22 °C for 16 h. The sample
was dried and dissolved in 190 μl of 5% acetonitrile (ACN)
and 0.1% trifluoroacetic acid (TFA). The sample was loaded
onto a pre-equilibrated UltraMicro Spin C18 column (Nest
Group, Southborough, MA) for desalting. Peptides were
eluted from the column using 80% acetonitrile (ACN) and
0.1% TFA. The peptide sample was dried and dissolved in 100
μl of 5% acetonitrile (ACN) and 0.1% formic acid.

Peptides were subjected to collision induced dissociation
(CID) during LTQ-FT LC-MS/MS (Thermo Scientific)
analysis to generate peptide tandem mass spectra (known as
shotgun proteomics). Gas phase fractionation (GPF) was used
to increase both individual protein sequence and proteome
coverage [26]. For quantification with GPF analysis, data was
acquired in quadruplicate. Each data set had four sets of
identical stage 1 mass spectrometry (MS1) data from which
“peptide quantity” was derived and four sets of unique stage
2 mass spectrometry (MS2) data sets from which peptide
sequences were derived. With GPF, the MS2 data was
acquired from four unique mass-to-charge ratio (m/z) ranges
(400–600, 600–800, 800–1200, and 1200–2000), while the
MS1 data was always acquired from the 400–2000 m/z range
to provide the statistical significance needed for
quantification. The software SEQUEST (Thermo Scientific)
generated peptide sequence matches and identified parent
proteins based on the International Protein Index (IPI). The
algorithms, Peptide-Prophet and Protein-Prophet, used
statistical routines to assign probability scores to the peptide
sequence best fit and the likelihood that the parent protein was
present [27,28]. Only proteins with a statistical probability
score greater than or equal to 0.9 were included in the analysis.
Spectral counting was used to calculate rank order from a
single sample [29].
Bioinformatics: Protein amino acid sequences were obtained
from the IPI and NCBI. Multiple sequence alignments were
performed using ClustalW [30]. Phylogenetic analyses were
conducted using amino acid alignments with the neighbor-
joining method (1000 bootstraps) in MEGA version 4 [31].

RESULTS
Size exclusion chromatography: Size exclusion
chromatography of the whole lens homogenates from WIK
wild-type zebrafish determined the differences in major
protein components in the larval (4.5 days, 10 days, 3 weeks),
juvenile (6 weeks), adult (6 months), and aged (2.5 years) time
points (Figure 1). Purified human αB-crystallin eluted from
the column at 9.76 ml. Selected fractions from the six-month
old lenses were analyzed by rank-order shotgun proteomics
to confirm the protein composition of the predicted β-
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crystallin, γ-crystallin, and high molecular weight peaks
(Table 1). The β-crystallin peak fraction (10.50–10.75 ml)
contained only β-crystallins. The γ-crystallin peak fraction
(12.50–12.75 ml) contained five different γ-crystallins and
βB2-crystallin, which was also present in the β-crystallin
peak. The high molecular weight peak fraction (9.25–9.50 ml)
contained all three α-crystallins present in the fish lens as well
as three γ-crystallins, which were not observed in the γ-
crystallin peak. The shotgun proteomics confirmed that the
major components in zebrafish lens crystallins separated by
size exclusion chromatography into α-, β-, and γ-crystallin and

high molecular weight peaks as observed in mammalian
species.

In the homogenate of the 4.5-day lens, three broad protein
peaks were observed, a small α-crystallin peak (9.78 ml), a
large β-crystallin peak (10.62 ml), and a small γ-crystallin
peak (11.79 ml; Figure 1). The α-crystallin peak remained
small throughout the larval stage while the γ-crystallin peak
increased progressively at 10 days and three weeks. At six
weeks when zebrafish reach the juvenile stage, the α-crystallin
protein fractions (9.00–10.25 ml) increased dramatically to
approximately 22% of the total protein concentration. At this

Figure 1. Size exclusion
chromatography of zebrafish lens
homogenates during development and
aging. Absorbance at 280 nm for
detection of proteins was plotted versus
elution volume (x-axis), which
corresponds with molecular size.
Individual protein molecular weight
standards are shown at the bottom of the
graph. High molecular weight
aggregates elute early followed by a
broad peak of polydisperse α-crystallin
oligomers with an average size of 24
subunits. Next, a broad peak of β-
crystallin elutes from the column, which
forms octamers, tetramers, and dimers,
and finally, γ-crystallins, which are
monomeric, were observed. The
youngest lenses (4.5 days) were
dominated by a large broad β-crystallin
peak. α-Crystallin and γ-crystallin
abundance increased during lens
maturation, and a high molecular weight
peak, first observed at six months,
increased with age to become the largest
peak by 2.5 years.

TABLE 1. THE THREE MAJOR PEAKS IN THE SEC OF THE SIX-MONTH-OLD LENSES WERE ANALYZED BY SHOTGUN PROTEOMICS TO CONFIRM PROTEIN CONTENT.

Rank HMW fraction 9.25–9.5 ml IPI β fraction 10.5–10.75 ml IPI γ fraction 12.5–12.75 ml IPI
1 αA-crystallin 509939.2 βB2-crystallin 501506.3 γS2-crystallin 868287.1
2 γM3-crystallin 607324.4 βA1a-crystallin 502528.2 γS4-crystallin 486227.2
3 αBa-crystallin 482033.2 βB3-crystallin 607344.1 γS3-crystallin 500990.2
4 γM2b-crystallin 504980.1 βA2-2-crystallin 513173.2 γS1-crystallin 495605.2
5 αBb-crystallin 488884.1 βA4-crystallin 490966.2 βB2-crystallin 501506.3
6 γM2a-crystallin 607295.1 βB1-crystallin 502990.3 γM7-crystallin 509894.2

The six most abundant proteins detected were crystallins. The high molecular weight (HMW) fraction contained α- and γ-
crystallins, the β fraction contained only β-crystallins, and the γ fraction contained five γ-crystallins and one β-crystallin. IPI
refers to the International Protein Index reference number.
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stage, the β-crystallin fractions (10.25–11.50 ml) were
approximately 36% and the γ-crystallin fractions (11.50–
13.50 ml) were 42% of the total protein. No high molecular
weight peak was present up to six weeks, suggesting that the
juvenile zebrafish lens contained undetectable levels of high
molecular weight protein aggregates.

By six months of age, a significant high molecular weight
peak (9.01 ml) was observed (Figure 1). The broad α-
crystallin (10.01 ml) and β-crystallin (10.73 ml) peaks
remained well defined. The γ-crystallin peak observed at
11.62 ml appeared smaller than the corresponding peak in the
six-week profile, and two new, smaller molecular weight γ-
crystallin peaks (12.18 and 12.43 ml) were present. These
peaks could represent the expression of different γ-crystallin
proteins in the adult zebrafish lens or truncation products,
which had not yet aggregated. When the 2.5-year-old, aged
lens homogenate was separated using SEC, a high molecular
weight peak (8.96 ml) was observed, although the 2.5-year-
old lenses remained completely transparent by slit-lamp
examination (Figure 2) and microscopy after removal (not
shown).
LTQ-FT LC-MS/MS proteomics: crystallins: Trypsin-
digested peptides from zebrafish whole-lens homogenates
were analyzed in quadruplicate by shotgun proteomics to
generate a rank-order list of detectable proteins. The total
number of proteins detected was 106 in the 4.5-day-old lenses
(Appendix 1), 112 in the three-week-old lenses (Appendix
2), 136 in the six-week-old lenses (Appendix 3), and 234 in
the six-month-old lenses (Appendix 4). In each age group
examined, crystallins comprised the top 12 most abundant
proteins on a rank-order list. Of the 37 embryonic and adult
zebrafish lens crystallins reported previously, only two of the
embryonic γ-crystallins (γM2d3- and γM2d4-crystallin) were
not detected at any age in our analysis.

α-Crystallin proteins increased in abundance during
maturation and aging (Table 2), similar to the SEC results. α-
A-crystallin was the 28th most abundant protein at both 4.5

days and three weeks and increased to become the most
abundant protein by six months. Neither αBa- nor αBb-
crystallins were detected in the 4.5-day-old or three-week-old
lenses while both were abundant in the six-month-old lenses.

β-Crystallin proteins were frequently detected at all ages
of lens examined (Table 2), consistent with SEC results. βB1-
crystallin was the most abundant protein at 4.5 days and three
weeks, and βA4-crystallin was the most abundant protein
detected at six weeks. βB3-crystallin was the second most
abundant protein at six months (behind αA-crystallin). Five
novel β-crystallin proteins were detected in addition to the
nine previously described β-crystallins (Table 2, Appendix
5). A phylogenetic analysis was conducted using the reported
gene sequences for the six human β-crystallin genes, the nine
previously reported zebrafish β-crystallin genes, and the five
novel β-crystallin-like genes detected by shotgun proteomics
(Figure 3). The two previously named “βA1c-crystallin
predicted” and “βA1-like-crystallin” aligned with the βA-
crystallin family genes, and these genes were re-titled βA1c-
and βA1d-crystallins. Three novel proteins, zgc:171773, zgc:
171636, and LOC553473, aligned closely with human and
zebrafish βB1-crystallin. These three novel proteins have been
titled βB1b-, βB1c-, and βB1d-crystallins. βB1b- and βB1c-
crystallins were especially abundant in the juvenile zebrafish
lens (Table 2).

Because so many different γ-crystallins were observed in
the zebrafish lens, few γ-crystallins appeared in the top 10
most abundant proteins at any age. The exceptions to this were
γMX-crystallin, which was abundant at all ages examined,
γN2-crystallin, which was among the top five proteins in the
larval and juvenile fish lens, and γS1-crystallin, which was the
third most abundant protein in the six-month-old lenses (Table
3). Of the 24 γ-crystallins described previously, only five were
detected in the 4.5-day-old lens while 18 different γ-
crystallins were detected in the six-months-old lens. This
result corresponded with the SEC data, which showed
increasing γ-crystallin abundance during aging. In addition to

Figure 2. Slit-lamp views of living,
anesthetized six-month-old (left panel)
and 2.5-year-old (right panel) WIK
zebrafish. Minimal light scattering is
visible from the cornea, and no light
scatter is visible from the lens. Lens
transparency was maintained over 2.5
years, demonstrating the clarity of the
lens and cornea in the zebrafish at ages
up to 2.5 years.
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the 24 γ-crystallins described previously, 13 novel γ-crystallin
family proteins were detected in the zebrafish lens (Table 3,
Appendix 5). A phylogenetic tree was constructed from the
gene sequences of known and novel zebrafish γ-crystallin
proteins (Figure 4). One gene (zgc:153846) aligned with γM1-
crystallin and was titled γM1b-crystallin. Two genes (zgc:
110028 and 110021) aligned with γMX-crystallin and were
titled γMXb- and γMXc-crystallins. The remaining 10 novel
γ-crystallins all aligned with the γM2-crystallin family and
were named accordingly, γM2d9–16-, γM2e-, and γM2f-
crystallin. The genes of 30 out of the 36 γ-crystallins detected
in addition to five other γ-crystallin-like genes that were not
detected were all located on chromosome 9 (Figure 5).

LTQ-FT LC-MS/MS proteomics: non-crystallin proteins:
Calpain 3 was the most abundant non-crystallin protein in the
larval and juvenile zebrafish lens (Table 4). Calpain3 is a
calcium-dependent protease involved in fiber cell
differentiation [32]. The levels decreased from the 14th most
abundant protein at 4.5 days to the 38th most abundant protein
at six months of zebrafish development.

The intermediate filaments, CP49 (Bfsp2) and vimentin,
were not detected in the 4.5-day-old larval lens and increased
in abundance during maturation. In the six-month-old fish
lens, CP49 (Bfsp2), a lens-specific intermediate-filament, was
the most abundant non-crystallin protein detected. Actin was
abundant in the lens at all ages studied while tubulin α2 and
tubulin β2b decreased in abundance during lens maturation.
Several other cytoskeletal proteins were detected at low levels
in the six-month-old lens including β spectrin, myosin,

dynein, plectin, radixin, vinculin, actinin α1, and tubulin β5,
β6, and α8 (Appendix 4).

The lens specific proteins, major intrinsic protein of the
lens (Mip) 1 and Mip2, were detected at all ages studied. Mip2
was more abundant than Mip1 in the younger lenses while
Mip1 abundance increased in the adult zebrafish lens. Three
proteins known to be expressed in the zebrafish lens, Grifin,
lengsin, and Scinla [33-35], were not detected in the 4.5-day-
old larval lens and increased in abundance during maturation
and aging. Two proteins associated with human familial
Alzheimer disease were constitutively expressed at all ages,
thimet oligopeptidase 1 and valosin-containing protein
[36-39]. Several housekeeping proteins were detected at all
ages examined, confirming that the shotgun proteomics
method is a sensitive and effective method of protein detection
and analysis.

Ribosomal proteins comprised 37% (39/106) of the total
proteins detected in the 4.5-day-old lens (Appendix 1). At
three weeks, 26% (29/112) of the total proteins were
ribosomal (Appendix 2), and at six weeks, ribosomal proteins
decreased to 11% (15/136; Appendix 3). At six months,
ribosomal proteins comprised only 8% (18/234) of the total
detectable lens proteins (Appendix 4). The decreasing
abundance of ribosomal proteins may correlate with
decreasing translation of new lens proteins with age and may
also protect lens cells against deleterious effects of aging.

DISCUSSION
Rank-order shotgun proteomics combined with size exclusion
chromatography was used to determine developmental

TABLE 2. THE CHANGE IN α- AND β-CRYSTALLIN PROTEINS WITH AGE WAS DETERMINED IN ZEBRAFISH LENSES BY SHOTGUN PROTEOMICS ANALYSIS.

Crystallin protein
Rank order (relative abundance)

Chromosome IPI4.5 days 3 weeks                6 weeks                6 months
αA 28 28 13 1 1 IPI00509939.2
αBa - - - 9 15 IPI00482033.2
αBb - - 80 26 5 IPI00488884.1
βA1a - - 27 177 15 IPI00502528.2
βA1b 10 10 4 25 21 IPI00503999.3
βA2–1 7 14 9 11 6 IPI00495820.1
βA2–2 8 9 8 8 9 IPI00513173.2
βA4 9 8 1 10 19 IPI00490966.2
βB1 1 1 - 5 10 IPI00502990.4
βB2 - 24 15 4 8 IPI00501506.3
βB3 - - 54 2 5 IPI00607344.1
βγX 83 - 71 82 7 IPI00493885.5
βA1c predicted (“βA1c”) 63 36 26 20 1 IPI00503128.2
βA1 crystallin, like (“βA1d”)” 4 6 7 32 14 IPI00504818.3
LOC553473 (“βB1b”) 2 2 2 57 14 IPI00607401.3
zgc:171773 (“βB1c”) 3 4 3 6 1 IPI00859087.1
zgc:171636 (“βB1d”) - - 76 80 15 IPI00858800.1

The numbers in columns 2–5 represent the rank order of protein abundance at each age listed (i.e., “1” indicates the most abundant
protein detected in the lens). Column 6 “Chromosome” lists the chromosome from which the corresponding gene is transcribed.
All three α-crystallins increased in abundance during lens maturation. β-Crystallins were abundant at all ages examined, and
five novel β-crystallin proteins were identified. IPI  refers to the International Protein Index reference number.
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changes in crystallin and non-crystallin proteins in the larval,
juvenile, and adult zebrafish lens. α-Crystallin and γ-
crystallins increased in abundance with lens maturation while
β-crystallin remained abundant at all ages studied. Eighteen
novel zebrafish crystallin proteins were identified.

The earliest report of zebrafish αA-crystallin transcripts
was in the 24 hours post-fertilization (hpf) lens [40,41], and
the αA-crystallin promoter was shown to drive lens expression
of a green fluorescent protein (GFP) transgene starting at 25
hpf [15]. Neither αBa- nor αBb-crystallin transcripts were
detected up to 48 hpf in whole zebrafish [40,41], although an
αBa-crystallin polyclonal antibody was reported to stain the
lens, retina, and brain at 24, 48, and 72 hpf [42] so the onset
of αB-crystallin expression remains to be clarified. αB-
crystallin transcripts were easily detected in the adult
zebrafish lens [16,17]. In the 4.5 days post-fertilization (dpf)
larval lens, the αA- but not αB-crystallin was detected and
increased in both the α-crystallin peak fraction and the high
molecular weight fraction during maturation and aging. α-
Crystallins are vital for the development and maintenance of
lens transparency and protect against protein unfolding and
aggregation that lead to lens opacity [4-6,8,43]. The presence
of all three α-crystallins plus γ-crystallins in the high
molecular weight peak fraction at six months (Table 1) was
expected because α-crystallin acts as a molecular chaperone
to prevent γ-crystallin aggregation during aging [17,22,44,

45]. While the current study reported α-crystallin to be as high
as 22%, a previous study reported that α-crystallin comprised
only 7.8% of the total zebrafish lens protein [19]. The
difference may be related to the age of the fish in which α-
crystallin content was measured. The 2.5-year-old zebrafish
lenses examined in this study were completely transparent so
it would be surprising if the adult zebrafish lens contained less
than 10% of α-crystallin. Rodents, which have a similar life-
span to zebrafish, have about 21.5% of α-crystallin in their
lenses at six weeks [46], which is very similar to our
observation that α-crystallins comprised 22% of total protein
in the six-week-old zebrafish lens. The total amount of α-
crystallin combined with its dramatic increase during lens
maturation is consistent with the importance of α-crystallin in
its protection against lens opacification during aging [4,8,
47].

βB1-crystallin was the most abundant protein in the
zebrafish lens at both 4.5 days and three weeks. Size exclusion
chromatography results demonstrated that total β-crystallin
content was much higher than α- or γ-crystallin in the larval
zebrafish lens. βB1-crystallin transcripts were first detected
in the zebrafish lens at 20 hpf, making it the earliest reported
zebrafish lens crystallin [18]. In contrast to the zebrafish,
βB1-crystallin is negligible in the embryonic mouse lens and
sharply upregulates at birth, becoming the most abundant β-
crystallin in the mouse by six weeks of age [48]. Analysis of

Figure 3. Phylogenetic tree of human
and zebrafish β-crystallin genes
constructed by Mega 4 with 1000
bootstraps. All zebrafish β-crystallins
listed were detected by shotgun
proteomics of the zebrafish lens (Table
2). Five novel β-crystallins (unfilled
symbols) were detected and named
based on their alignment. H, human; Z,
zebrafish.
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rodent lenses during maturation detected a high percentage of
γ-crystallin in the newborn lens with increasing α- and β-
crystallins over the next few weeks [46,49]. γ-Crystallins were
dominant in the embryonic dogfish lens [50]. Finally,
newborn human lenses contain 35% α-crystallin, 40% β-
crystallin, and 25% γ-crystallin [51]. While there are
similarities in protein content of vertebrate lenses, there are
differences in the timing of the expression of α-, β-, and γ-
crystallins.

This study identified novel zebrafish crystallins. Eight
“embryonic” γ-crystallins, γM2d1- through γM2d8-
crystallin, were identified in normal 2 dpf embryonic lenses,
which had not been previously detected in the adult lens
[22]. In the 4.5 dpf larval lens, we detected only two of these

proteins, γM2d7- and γM2d8-crystallin, as well as six other
novel γM2d-crystallin-family members. All but two of the
“embryonic” γ-crystallins, γM2d3- and γM2d4-crystallin,
were detected in at least one of the time points measured in
addition to eight novel γM2d-crystallin-family members,
γM2d9- through γM2d16-crystallin. Because none of the γ-
crystallins were abundant in the six-month old lens and many
of them were abundant in the six-week-old lenses, it would be
most accurate to refer to γM2d1- through γM2d16-crystallin
as embryonic and juvenile crystallins. Genes for all of these
crystallins were found on chromosome 9. In contrast, the four
γS-crystallins were abundant in the six-month-old lenses and
rarely found in younger lenses so these could be considered
adult crystallins. The more divergent γN1-, γN2-, and γMX-

TABLE 3. THE CHANGE IN γ-CRYSTALLIN PROTEINS WITH AGE WAS DETERMINED IN ZEBRAFISH LENSES BY SHOTGUN PROTEOMICS ANALYSIS.

Crystallin Protein
Rank order (relative abundance)

Chromosome IPI4.5 days 3 weeks 6 weeks 6 months
γM1 - 32 32 14 9 IPI00495938.1
zgc:153846 (“γM1b”) 25 20 21 62 9 IPI00607433.4
γM2a - 19 10 23 9 IPI00607295.1
γM2b - 17 35 18 9 IPI00504980.1
γM2c 48 - 105 12 9 IPI00503886.1
γM2d1 - - - 206 9 IPI00485200.3
γM2d2 - 21 51 - 9 IPI00505178.4
γM2d5 - - - 185 9 IPI00614258.2
γM2d6 - 37 42 - 9 IPI00638856.2
γM2d7 93 99 122 - 9 IPI00486384.5
γM2d8 17 16 20 - 9 IPI00487422.2
LOC799807 (“γM2d9”) 15 - 52 - 9 IPI00835330.1
zgc:171758 (“γM2d10”) 26 29 40 74 9 IPI00859358.1
zgc:171793 (“γM2d11”) - 40 37 - 9 IPI00866205.1
zgc:171791 (“γM2d12”) 12 11 12 226 9 IPI00833949.1
zgc:92692 (“γM2d13”) 13 12 17 108 9 IPI00502160.1
zgc:171792 (“γM2d14”) 16 - 24 - 9 IPI00863220.1
zgc:92724 (“γM2d15”) 18 25 29 63 9 IPI00774533.1
zgc:173495 (“γM2d16”) - 74 95 - 9 IPI00866651.1
LOC569604 (“γM2e”) - 15 11 46 9 IPI00613116.2
zgc:172241 (“γM2f”) - 26 18 173 9 IPI00489442.3
γM3 - 84 22 21 9 IPI00607324.4
γM4 - 38 31 22 21 IPI00485316.1
γM5 - - 47 41 9 IPI00483712.2
γM6 - 103 43 85 9 IPI00507423.3
γM7 - 68 28 27 9 IPI00509894.2
γMX 11 5 6 7 12 IPI00864931.1
zgc:110028 (“γMXb”) - 88 48 166 9 IPI00503899.2
zgc:110021 (“γMXc”) 6 7 19 35 12 IPI00607474.1
γN1 - 27 14 13 2 IPI00499329.1
γN2 5 3 5 29 24 IPI00495773.1
γS1 - - 93 3 22 IPI00495605.2
γS2 - - - 15 9 IPI00868287.1
γS3 - - - 28 9 IPI00500990.2
γS4 - - 98 16 9 IPI00486227.2

The numbers in columns 2–5 represent the rank order of protein abundance at each age listed (i.e., “1” indicates the most abundant
protein detected in the lens). Column 6 “Chromosome” lists the chromosome from which the corresponding gene is transcribed.
Out of the total 36 γ-crystallin proteins identified, only 13 were detected at 4.5 days and 27 were detected at six months, indicating
an increase in γ-crystallin abundance and diversity with aging. Thirteen novel γ-crystallins were identified. IPI  refers to the
International Protein Index reference number.
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Figure 4. Phylogenetic tree of zebrafish γ-crystallin genes constructed by Mega 4 with 1000 bootstraps. All zebrafish γ-crystallins listed were
detected by shotgun proteomics of the zebrafish lens (Table 3). Thirteen novel γ-crystallins (unfilled symbols) were detected and named based
on their alignment.
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Figure 5. Zebrafish chromosome 9,400 kilobase-pair region containing 35 known and hypothetical γM-crystallin genes. Proteins from 30
genes in this region were found by shotgun proteomic analysis of the zebrafish lens (Table 3). The five genes marked (indicated by asterisk)
were not detected but also show sequence similarity to the γM-crystallins. Gene positioning was determined by the NCBI map viewer,
Ensembl Genes on Sequence Map. The scale on the left side of the image represents mega base-pairs. The gray line represents the chromosome.
Genes on the left side of the gray line are located on the minus strand, and genes on the right side of the gray line are located on the plus strand.
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crystallins had a more stable expression pattern and were
moderately abundant at all ages examined. Even though
zebrafish are known to have frequent gene duplications like
αBa- and αBb-crystallins, 36+ γ-crystallins were a
surprisingly large number, and a large percentage of these
genes were found to be on chromosome 9 within a 400
kilobase-pair sized region of the gene (0.74% of the total
chromosome 9 length; Figure 4). The functional purpose for
so many γ-crystallin proteins in the zebrafish lens remains to
be determined, especially because the non-refractive role of
γ-crystallin is poorly understood.

The total number of ribosomal subunit proteins detected
in the lens decreased dramatically during lens maturation,
which would be expected due to the large decrease in the need
to translate new proteins over time. The observed decrease in
ribosomal proteins may also serve to protect the lens from
aging as decreases in expression of the 60S ribosomal subunit
has been correlated with increased cell survival [52-54].

The development and maintenance of lens transparency
is especially important for zebrafish, which are visual hunters.
In contrast, mice rely on other senses for obtaining food. The
optical and biochemical similarities with the human lens and
the experimental advantages of external lens development
make the zebrafish a valuable model for studies of the lens
during eye development and aging, which are currently
conducted in several prominent zebrafish laboratories [19,
20,55-58]. The results reported in the current study detail
crystallin protein expression throughout zebrafish lens
maturation and aging and provide a foundation for future
systematic studies of the functional importance of crystallins

in the development and maintenance of lens transparency and
refraction in the vertebrate lens.
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Appendix 1. Shotgun proteomics results from 4.5-day-old larval zebrafish
lenses.

To access the table, click or select the words “Appendix
1.” This will initiate the download of a pdf archive that
contains the table. The rank lists the order of abundance.

Spectral count indicates the number of times a peptide from
the parent protein was detected in the sample and was used to
generate the rank order.

Appendix 2. Shotgun proteomics results from three-week-old larval
zebrafish lenses.

To access the table, click or select the words “Appendix
2.” This will initiate the download of a pdf archive that
contains the table. The rank lists the order of abundance.

Spectral count indicates the number of times a peptide from
the parent protein was detected in the sample and was used to
generate the rank order.

Appendix 3. Shotgun proteomics results from six-week-old juvenile
zebrafish lenses.

To access the table, click or select the words “Appendix
3.” This will initiate the download of a pdf archive that
contains the table. The rank lists the order of abundance.

Spectral count indicates the number of times a peptide from
the parent protein was detected in the sample and was used to
generate the rank order.

Appendix 4. Shotgun proteomics results from six-month-old adult zebrafish
lenses.

To access the table, click or select the words “Appendix
4.” This will initiate the download of a pdf archive that
contains the table. The rank lists the order of abundance.

Spectral count indicates the number of times a peptide from
the parent protein was detected in the sample and was used to
generate the rank order.

Appendix 5. The percent coverage and the number of unique peptides
identified for each of the 18 novel crystallin proteins are listed for each age
at which the protein was identified.

To access the table, click or select the words “Appendix
5.” This will initiate the download of a pdf archive that
contains the table. Percent coverage was determined by the
number of amino acids in all of the peptides identified by
shotgun proteomics for each protein divided by the total

number of amino acids in the protein sequence. The number
of unique peptides refers to the peptide sequences identified
by shotgun proteomics that are unique to an individual parent
protein sequence.
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