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Abstract
Surveillance is essential for communicable disease prevention and control. Traditional
notification of demographic and clinical information, about individuals with selected
(notifiable) infectious diseases, allows appropriate public health action and is protected
by public health and privacy legislation, but is slow and insensitive. Big data–based
electronic surveillance, by commercial bodies and government agencies (for profit or
population control), which draws on a plethora of internet- and mobile device–based
sources, has been widely accepted, if not universally welcomed. Similar anonymous
digital sources also contain syndromic information, which can be analysed, using
customised algorithms, to rapidly predict infectious disease outbreaks, but the data
are nonspecific and predictions sometimes misleading. However, public health author-
ities could use these online sources, in combination with de-identified personal health
data, to provide more accurate and earlier warning of infectious disease events—
including exotic or emerging infections—even before the cause is confirmed, and allow
more timely public health intervention. Achieving optimal benefits would require
access to selected data from personal electronic health and laboratory (including
pathogen genomic) records and the potential to (confidentially) re-identify individuals
found to be involved in outbreaks, to ensure appropriate care and infection control.
Despite existing widespread digital surveillance and major potential community ben-
efits of extending its use to communicable disease control, there is considerable public
disquiet about allowing public health authorities access to personal health data. In-
formed public discussion, greater transparency and an ethical framework will be
essential to build public trust in the use of new technology for communicable disease
control.
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Surveillance and Big Data are Everywhere

Like it or not, we are under constant, state-sanctioned surveillance (Hanley 2017),
which is officially “justified” on the grounds of national security, crime prevention,
road safety or public service improvement. Unofficially, retailers, goods and service
providers and advertisers monitor our preferences, behaviours and habits, for commer-
cial gain—drawing on data provided by us, sometimes voluntarily,1 but often unwit-
tingly. Masses of “anonymous” data about population movements, financial transac-
tions and leisure activities are mined, from surveillance cameras, travel cards,
smartphones and tablets, wearable devices, internet searches, online orders, credit card
use and social media. These data are analysed, compared, integrated and traded without
our explicit consent. Surveillance has a long history, but modern technology has
revolutionised the accessibility, scope and speed of data collection and analysis.

“Big Data” refers to the rapidly escalating volume, complexity, variety and speed of
data acquisition. Big Data analytics is “the process of collecting, organising and
analysing large data sets, to discover patterns and generate useful, actionable informa-
tion” (Garattini et al. 2017). There are risks and benefits associated with Big Data
analytics (Davis and Patterson 2012), but little public understanding of what they are,
what they depend on and how, if at all, individuals can influence their use. We often
assume that data are anonymous, because they do not contain primary identifiers, such
as our name or unique (e.g. social security or healthcare) number. Or we are told they
have been de-identified, by removal of primary identifiers and other personal data such
as address or date of birth. However, experts agree that data de-identification is, at best,
provisional because of the plethora of other “anonymous” data and metadata that can be
linked, to re-identify individuals (Lubarsky 2017). Even the most sensitive personal
data that banks, government agencies, healthcare providers or insurance companies
assure us are secure can be accidentally “lost”, deliberately leaked, sold or hacked, with
loss of privacy, identity or funds (Tanner 2017).

Big Data is used very effectively in marketing and some types of scientific research,
such as meteorology, but relatively little, so far, in healthcare, partly because of privacy
concerns and partly because data are often not digital (Bansal et al. 2016). However,
health service administrative data, patient medical records and laboratory reports are
rapidly being digitised. In the microbiology laboratory, for example, infectious disease
research and diagnostics have been transformed by nucleic acid–based pathogen
identification and genome sequencing, which are faster, more informative and more
amenable to digitisation than traditional culture-based “cottage industry” methods
(Gilbert 2002).

In this paper, we discuss the benefits, risks and ethical implications, for individuals
and the community, of the intersecting roles of healthcare digitisation, pathogen
genomics and Big Data analytics. Less attention has been paid to the application of
Big Data to pathogen genomics than to its application to human genomics but, despite
some major differences, there are parallels between them with respect to potential
benefits and ethical, legal and social implications (Mattick 2018; Mittelstadt and Floridi

1 Users of online applications consent to the collection and use of their data by accepting “Terms and
Conditions” as a condition of use, but the small print is so long and detailed that most of us do not read it
or understand the implications.
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2016; Middleton 2018). We argue that an ethical framework is needed, to guide the use
of new technologies in communicable disease surveillance and control.

Electronic Health Records—Benefits and Risks

Hospitals, general practitioners, diagnostic services, pharmacies, health insurance com-
panies and government healthcare agencies already store personal health data electron-
ically. Most people have several separate records, created by different agencies for
different purposes. A universal “cradle-to-the grave” personal electronic health record
(EHR), incorporating all personal heath data in a single repository, would have many
potential advantages. It would provide immediate access to actionable information in an
emergency and could be updated by, and shared among, authorised healthcare pro-
viders, as required; it would alert prescribers to drug allergies and interactions, prevent
unnecessary investigations and, by the use of personalised decision support systems,
provide enhanced diagnostic, therapeutic and prognostic information.

Despite potential benefits, relatively few countries have successfully implemented
universal EHRs. Denmark’s system, which is one of the most advanced in the world
(Rothstein 2008), has reportedly failed to realise its potential to improve healthcare
service delivery, in part because of failure to develop common technical standards for
health information exchange (Kierkegaard 2013). Wherever such systems have been
proposed, there are unresolved controversies about privacy, effects on doctor/patient
relationships and trust, whether individuals can opt out, who controls or can have
access to data and when consent is required, how to protect data from unauthorised use
or accidental loss (Fairweather and Rogerson 2001), and use of “de-identified” data for
ethically approved research. Many of these issues were widely canvassed in recent
debates about Australia’s (limited) My Health Record system (Bragge and Bain 2018;
Gillespie 2018).

A universal EHR system could have major benefits for healthcare research and
delivery. For example, “de-identified” aggregate data can be used to monitor the use,
outcomes and quality of health services and inform improvements or generate new
knowledge about disease epidemiology, such as spatiotemporal distribution or socio-
economic, environmental or “lifestyle” risk factors. This information would support the
development and evaluation of new treatments, preventive strategies or decision
support systems and help to address social determinants of disease (Hunter 2018;
Marmot 2001). Potential benefits would be attenuated if a substantial proportion of
the population were excluded or refused to participate, because of concerns about
privacy and data security, or if individual consent were required for access to de-
identified data.

Data safety and security cannot be absolutely guaranteed, even with the best
technical standards. It is claimed that re-identification is straightforward (Teague
et al. 2017) (depending on the de-identification methods used); data can be hacked
(BBC World-Asia 2018) and, occasionally, data custodians betray public trust by
selling data for financial gain, to pharmaceutical, insurance or software companies
(Tanner 2017; Naughton 2017). The risks and potential consequences of misuse are
likely to be minimal, if optimal technical standards are applied, but there is often little
publicly available information on which to base an informed judgement. Nevertheless,
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universal EHRs could provide substantial benefits for patient safety and health resource
allocation. In the following sections, we argue that linking EHRs to person-specific
pathogen genomic data (and/or that of relevant nonhuman animal or environmental
pathogens) would enhance the timeliness, precision and effectiveness of public health
responses to infectious diseases emergencies.

Communicable Disease Surveillance and Outbreak Investigations

“Surveillance serves as the eyes of public health” (Fairchild et al. 2007) or “the finger
on the pulse of the health of a community” (Lee et al. 2012). The WHO defines
surveillance as the “…systematic ongoing collection, collation and analysis of data for
public health purposes and the timely dissemination of public health information for
assessment and public health response as necessary”(WHO, n.d). Communicable
disease surveillance dates back to, at least, the nineteenth century. Its purpose is to
identify and provide appropriate care of people affected by diseases of public health
importance and their immediate contacts; prevent the spread of disease; and detect,
investigate and control outbreaks. Recent infectious disease outbreaks and pandemics
have demonstrated its continuing importance (Box 1).

Box 1 Detecting exotic or emerging infections of high consequence

In late February 2003, a man, who had recently travelled to China, presented to a hospital in Hanoi with what
an astute clinician recognised as an unusual, severe acute respiratory syndrome (which would come to be
known as SARS). At about the same time, the Chinese Ministry of Health announced, belatedly, that an
outbreak of severe atypical pneumonia in Guangdong province had already claimed at least 300 lives, since
November 2002. Scientists and epidemiologists, from WHO’s Global Influenza Surveillance (GISN) and
Global Outbreak and Response (GOARN) networks, immediately began collecting and analysing
microbiological, clinical and epidemiological data. By mid-March, another 150 suspected cases of SARS
had been identified in Hong Kong, Singapore, Vietnam and Canada (Heymann and Rodier 2004).

Despite China’s delayed outbreak report, a massive global effort, led by WHO and GOARN, rapidly identified
a novel coronavirus (SARS CoV) as the cause. They documented modes of transmission, nosocomial
infections, risk factors and a high mortality, which enabled WHO to develop evidence-based guidance for
diagnosis, management, hospital infection control, quarantine and travel. Within 6 months, the global
spread of SARS had ceased, albeit only after it had spread to 29 countries on six continents, caused 8437
cases (of which 92% were in China) and 813 deaths, and cost the global economy an estimated US$54
billion (Knobler et al. 2004).

Similar delays in recognition and reporting of the 2013–2014 Ebola virus disease outbreak in West Africa led
to unprecedented cross-border transmission and, ultimately, > 28,000 cases and 11,000 deaths—mostly in
the three affected countries—before it was eventually brought under control by a massive, coordinated
international effort (Koch 2016a).

These outbreaks illustrate not only the serious risks for the source countries, of
inadequate surveillance and delayed outbreak detection, but also the benefits of
prompt public health intervention once outbreaks have been recognised. The SARS
(2003) and H1N1 influenza (2009) pandemics highlighted the importance of effective
communicable disease surveillance, for national and international health security. The
WHO International Health Regulations (IHR) (WHO 2008) provide a legal frame-
work for disease detection and response. Many countries still do not comply with the
IHR, but WHO has increased their efforts to encourage and support implementation,
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especially in low- and middle-income countries. In most high-income countries,
communicable disease surveillance has been in operation for decades and credited
with rapid detection of novel disease incursions, such as Hendra virus in Brisbane,
1994 (Selvey et al. 1995), and West Nile virus in New York, 1999 (Sejvar 2003), and
national monitoring of pandemic influenza 2009 (NSW Public Health Network 2009)
as well as outbreak control. Methods used range from reports of unusual or suspicious
index cases by astute (medical or veterinary) clinicians to mandatory notification of
diseases of public health importance, syndromic surveillance and digital
epidemiology.

Notification of Communicable Diseases of Public Health Importance

Notification of communicable diseases, to central public health authorities, allows
coordinated public health action. Detection and investigation of outbreaks require
prompt, accurate laboratory diagnosis and follow-up of affected individuals. This
means that personal information—names, ages, addresses and relevant medical
data—is reported to public health authorities, often without the person’s knowledge
or consent. Patients and their contacts are questioned to determine the likely sources
and the extent of the outbreak. Patients are treated, if necessary, and may be isolated,
while they remain infectious, to prevent further spread; contacts, or occasionally whole
communities, may be quarantined (Koch 2016b), especially if preventive measures,
such as vaccination or antibiotic prophylaxis, are unavailable.

These interventions are intrusive and have been a source of controversy, since the
late nineteenth century, when physicians objected to tuberculosis surveillance, which
they claimed would encroach on the sanctity of the patient-doctor relationship (Shrady
1897). However, throughout most of last century, there has been widespread public
acceptance of name-based communicable disease surveillance of selected (prevalent,
serious and/or preventable) infectious diseases, based on a generally well-founded
assumption of privacy—i.e. that information will be conveyed only to those who need
to know. The benefits include development of evidence-based infection prevention,
disease control and health service planning strategies and the ability to monitor disease
epidemiology (Fairchild et al. 2017) and inform development of vaccines and
antimicrobials.

Collection and storage of personal data for communicable disease control are usually
protected by public health and privacy legislation. Until recently, it has been relatively
inefficient. Conventional paper-based disease notification, by mail or fax, and “shoe-
leather” outbreak investigations are slow. Hard copy records are “protected by chaos”
(Rothstein 2008) and difficult to access for unauthorised, inappropriate or even legit-
imate use, such as approved research. Culture-based laboratory diagnosis and referral of
isolates to a reference laboratory for strain typing takes days or weeks. By then,
important epidemiological information (such as food history) is often lost or forgotten
and the outbreak is likely to have spread. Recently, faster, more accurate pathogen
identification and strain typing methods, including whole-genome sequencing (WGS)
(Köser et al. 2012a), and automated laboratory reporting have improved the timeliness
of outbreak detection and provided more accurate microbiological information for
public health action.
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Outbreak Management Using Pathogen Whole-Genome Sequencing

Over the past 20 years, increasingly sophisticated genotypic methods have been devel-
oped for pathogen strain typing but, until recently, most have been expensive, time-
consuming and/or not particularly discriminatory and mainly used for retrospective
outbreak investigation. However, newer strain typing methods have been used routinely,
for several years, to improve detection of outbreaks due to, for example,Mycobacterium
tuberculosis (Merker et al. 2017), foodborne pathogens, such as Salmonella Enteritidis
and its numerous serovars (Campioni et al. 2015), and nosocomial pathogens such as
methicillin-resistant Staphylococcus aureus (O’Sullivan 2006). Pathogen whole-genome
sequencing (WGS) is the ultimate strain typing method. Recently, it has and is continuing
to become faster, less expensive and more informative than other genotypic methods and
is being introduced into routine use in public health laboratories (Ashton et al. 2016; Satta
et al. 2017; Inns et al. 2017; Gurjav et al. 2016). It promises to dramatically improve the
accuracy and speed of pathogen identification, antimicrobial resistance (AMR) profiling,
biological risk prediction, outbreak identification and pathogen tracking (ECDC 2016;
Quainoo et al. 2017), with definitive discriminatory power.

The value of WGS lies in the fact that microbial genomes change over time due to
point mutations of nucleotides—i.e. single nucleotide polymorphisms (SNPs)—which
occur at different rates between species and between different regions of the genome.2

Epidemiologically related isolates (i.e. from the same outbreak) are identical or differ-
ent from each other by small numbers of SNPs, whereas differences between unrelated
isolates are much larger. As the pathogen spreads from person to person, differences
between the outbreak isolates’ genomes increase, as SNPs accumulate, but remain
small, compared with those between unrelated genomes. By comparing genomes of
outbreak isolates with each other and with a reference strain of the same pathogen, one
can infer the approximate date of onset and sequence of transmission events (Dudas
et al. 2017), from the number and positions of SNPs. WGS of related isolates can
confirm (or exclude) individual transmission events (Arnold et al. 2016), reveal who
infected whom, whether there are gaps in the order of transmission (Köser et al. 2012b),
which may indicate unrecognised cases or asymptomatic carriers. If relevant isolates
are available, it can identify an index case or common source (e.g. food) of widely
dispersed cases (Inns et al. 2017), and it can identify “superspreaders” (Stein 2011)—
individuals who infect a disproportionately large number of other people.

Some of this information can be discovered by traditional epidemiological investi-
gation, but generally, only much more slowly and with greater difficulty. People may
not know, may forget or not wish to reveal what, where or with whom they ate or were
in contact, days or weeks before. Implicating a place (restaurant, food processing plant,
farm), person or animal as the source of an outbreak has potentially serious medico-
legal, commercial or international trade implications (Stasiewicz et al. 2015; Lüth et al.
2018) and genomic data are more objective and, hence, more convincing than epide-
miological data. Nevertheless, these different types of information are complementary
and both are needed to validate results.

2 Bacterial genomes also change by addition or deletion of blocks of DNA. This complicates but does not
invalidate interpretation of WGS. Most of what follows refers to bacterial genomes to which WGS has been
most recently applied, but the principles apply to all microbial pathogen.
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Additional technical developments are needed before the benefits of WGS can be
fully realised, but they are feasible or already in progress. They include greater
automation and standardisation of quality control methods, bioinformatics tools and
algorithms, for analysis and interpretation, and networking of laboratory databases to
allow real-time monitoring for outbreak detection (Kwong et al. 2015).

Implications and Risks of WGS for Surveillance and Outbreak Investigations

Surveillance and outbreak investigation has always required the use of personal data.
The much greater precision of WGS raises new questions of consent and unanticipated
harm, but despite its increasing use in public health and hospital laboratories (Quainoo
et al. 2017; Azarian et al. 2015), there has been little discussion of these issues. Unlike
public health surveillance, nosocomial outbreak investigations are not protected by
legislation and there is no clarity about privacy protection or the need for informed
consent when the use of WGS is extended into new domains. In the following case
study (Box 2), we outline some ethical issues raised by WGS of stored isolates for
retrospective investigation of a hospital outbreak and suggest that, while the benefits
would have been greater if WGS had been available at the time, the ethical dilemmas
would have been even more challenging.

Box 2 A high stakes neonatal intensive care unit outbreak investigation3 (Pinto et al.
2013)

Two very premature infants aged 9 and 11 days, respectively, who were nursed in the same room of a neonatal
intensive care unit (NICU), developed fulminating methicillin-resistant Staphylococcus aureus (MRSA)
sepsis and died within 2 days of each other, despite appropriate treatment. Routine genotyping showed they
were infected with the same rare MRSA strain. Possible sources were vaginal colonisation of one mother,
transmitted to her infant at birth and then to the other infant; or unrecognised colonisation of a patient, staff
member or visitor transmitted, by direct or indirect contact, to both infants. NICU staff and patients were
screened for MRSA colonisation. Although screening of staff is controversial and rarely indicated, they
readily agreed, after being assured of confidentiality. Routine admission and weekly follow-up screening of
new inpatients was implemented.

No patient or staff member was identified as carrying the MRSA outbreak strain by initial screening, but over
the next 7 months, 13 additional infants became colonised, indicating that nosocomial transmission was
continuing, despite enhanced infection control measures. Several of these infants were already colonised
with the MRSA outbreak strain within hours of delivery, by caesarean section. Therefore, operating suite
and NICU staff (again) were screened. One colonised NICU staff member was assumed to have acquired it
from a colonised infant, whom she was nursing and no one was identified as a likely source.

However, soon after this, another NICU staff member attended the hospital emergency department, with an
infected leg abrasion, from which the MRSA outbreak strain was isolated. She was treated and returned to
work. Subsequently, for several months, no newly MRSA-colonised infants were identified; the outbreak
was apparently over. This raised the possibility that this latter NICU staff member had been the an unwitting
source or vector of ongoing transmission. Her screening swabs had been negative, but sites of MRSA
colonisation other than the nasal mucosa (the only site swabbed) are not uncommon. The outbreak strain
reappeared in the NICU 7 months later and, subsequently, was isolated from patients in the emergency
department and other hospital wards, most of whom had some contact with the NICU.

WGS was not available at the time of the outbreak, but it was performed, 5 years later, on stored MRSA
outbreak isolates to determine, if possible how this unusual, highly virulent MRSA strain was introduced.
What/who were the source and/or vector(s) of continued transmission? Was the reappearance of the
outbreak strain, after seven months, due to ongoing transmission or a new introduction?

3 This case study is modified from an actual outbreak report (Pinto et al. 2013)
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WGS of stored outbreak isolates, for retrospective outbreak investigation, is likely to
provide some answers to epidemiological questions, but before it is done, several
important ethical questions should be considered:

a) Should informed consent for WGS be obtained from individuals from whom
isolates were obtained (or their carers), despite logistical difficulties and emotional
risks? Individual consent was given, at least implicitly, for collection of specimens
for diagnosis or screening and whatever laboratory procedures were in routine use
at the time, but WGS is a new procedure, and its results will have potentially
significant implications, for affected individuals.

b) If WGS identifies an individual as a likely source or vector of nosocomial
transmission, how would this reflect on her infection control practices or affect
her future employment? What would be the psychological effects of discovering
that she had transmitted a pathogen to vulnerable patients in her care (even if no
blame were attributed to her by others)? Should she be told?

c) What are the potential medico-legal implications for the hospital, if a staff member
were identified as a vector of pathogen transmission? Transient contamination of
other staff members’ hands was likely but unverifiable.

d) Who owns microbial isolates and the information they contain—the people from
whose clinical samples they were isolated or the laboratory, which isolated and
characterised them?

Questions like these are even more relevant now that the use of WGS is increasing, not
only for research or retrospective outbreak investigation but, potentially, for routine
pathogen identification, AMR testing and prospective hospital infection control
(O'Sullivan et al. 2012).

Use of Pathogen WGS and Metagenomics for Routine Diagnosis and Strain Typing

It is predicted that WGS will replace conventional culture-based pathogen identification
and AMR testing, in public hospital and private diagnostic laboratories, within a few
years (Kwong et al. 2015). Pathogen identification and sequencing, directly from
clinical specimens, without the need for culture or prior knowledge of the target
pathogen (clinical metagenomics4), is likely to be possible in the future. When it is,
sequence-based pathogen identification and AMR testing results will be available
within hours. This will allow appropriate antimicrobial therapy for a bacterial or fungal
infection, to be started much sooner than is currently possible or avoided altogether, if a
viral infection is identified. Either way, outcomes will be better, with fewer drug side
effects, improved antimicrobial stewardship, less AMR and less frequent pathogen
transmission. There are still major barriers to routine culture-based WGS or culture-
independent metagenomics, but decreasing costs, faster sequencing, the potential to
identify virulence or AMR markers and polymicrobial infections and/or to predict

4 Culture-independent pathogen identification, using nucleic acid detection such as polymerase chain reaction
(PCR) has been used for years, but has not replaced culture, when the likely pathogen(s) is/are uncertain or
AMR testing and/or strain typing are required. Metagenomics allows unbiased, detection and sequencing of all
micro-organisms in a sample, including, potentially, unexpected, rare, novel, unculturable and/or multiple
pathogens.
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outbreaks with a single assay, make them attractive options for clinical microbiology
(Forbes et al. 2017; Gardy and Loman 2018).

Integrating Genomic, Clinical and Epidemiological Data

Human genomic data and Big Data analytics are already being combined for
personalised diagnosis and treatment (“precision medicine”) of some diseases
(Brittain et al. 2017). The use of pathogen WGS or metagenomic data will expedite
the introduction of precision medicine in infectious diseases. Application of Big Data
analytics to (i) demographic, clinical and lifestyle risk factors (from EHR); (ii) genetic
and immunological predictors of risk and response to therapy (from personal genomic
data); and (iii) pathogen virulence and AMR profiles (from WGS data) would allow
individually tailored antimicrobial therapy (drug, dose, route of administration, dura-
tion) and improved outcomes.

Infectious diseases differ from most others in that the speed of diagnosis and time to
initiation of appropriate therapy (within hours, for life-threatening sepsis) is the major
determinant of the outcome, not only for the affected individual but also for her immediate
contacts and the wider community. Rapid identification is obviously essential to ensure
prompt, appropriate care and isolation of a patient with a potentially fatal meningococcal
or an imported pan-resistant Gram-negative bacterial infection; extremely drug-resistant
tuberculosis; or an exotic, high impact viral infection, e.g. Ebola or pandemic influenza. It
is also important to allow timely application of appropriate hospital infection control and
public health interventions, such as vaccination, antimicrobial prophylaxis and/or quar-
antine of contacts, to prevent or limit a dangerous outbreak.

Many benefits for individual patients and their (known) contacts could be achieved
by the use of individual EHRs, alone, but personalised treatment regimens and outcome
monitoring also depend on the use of algorithms derived from analysis of aggregate
data from large numbers of EHRs. Big Data analytics can not only develop but also
validate and improve diagnostic, treatment and decision support algorithms and,
potentially, identify previously unrecognised prognostic information such as clinical
or genetic markers of susceptibility to infection, an excessive immunological response
or of being a “superspreader”. Thus, the community benefits of an EHR system, for
disease prevention and research, would depend on widespread—ideally universal—
community participation (not unlike vaccination).

Moreover, to realise the additional benefits of using pathogen WGS data for
communicable disease surveillance will require access to and analysis of aggregate
WGS data in national or international laboratory networks, linked to clinical and
epidemiological databases. EHRs of individuals, whose isolates are identified as part
of an outbreak, would be scanned for common risk factors, contacts or exposure to
environmental sources, of which the individuals, themselves, may be unaware, to
expedite outbreak investigation. Automatic access to, at least, selected personal EHR
data, without the need for individual consent, will be essential, since the effectiveness
of public health interventions depends on speed. However, data linkage could disclose
information that individuals may want to remain private. The trade-off has implications
for the effectiveness of surveillance systems because, as “utility increases privacy
decreases” (Lubarsky 2017). The challenge is to ensure an appropriate balance between
individual risk and community benefit.
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Syndromic Surveillance, Digital Epidemiology and Big Data

The use of pathogen WGS or metagenomics for surveillance, as outlined above, is
highly specific, but also selective and insensitive. Infected (and infectious) people, who
are asymptomatic or have mild symptoms, who do not seek or have access to medical
care or for whom laboratory tests are not ordered, may unwittingly spread infection to
others. Syndromic surveillance can “capture” undiagnosed infections and is commonly
used to complement other methods. One important source of syndromic data is medical
encounters such as emergency department or office visits (Henning 2004; Muscatello
et al. 2005). Automated monitoring of coded, de-identified data, analysed in almost
real-time, allows health authorities to rapidly identify the onset, trace the spread and
identify trends, over time, of outbreaks, e.g. of diarrhoeal or respiratory diseases; it can
provide early warning of seasonal, or even pandemic, influenza, or track adverse
reactions to antimicrobial drugs or vaccines (Salathé 2016). Although syndromic
surveillance contains high levels of background “noise”, its strengths are timeliness
and pattern recognition.

Digital epidemiology refers to the study of disease patterns using digital data (Gardy
and Loman 2018; Salathé et al. 2012). For communicable disease epidemiology, data
may include conventional syndromic surveillance, as outlined above, as well as, for
example, participatory surveillance systems, to which volunteers report symptoms
online (Guerrisi et al. 2016); calls to hospital or nurse help lines; ambulance dispatch
requests; health insurance claims; and laboratory, pharmacy or EHR records. They can
also include any of the myriad data collected for unrelated purposes that may (or may
not) reflect disease activity, such as school and work absenteeism rates, over-the-
counter drug sales, social media posts (Salathé et al. 2012; Charles-Smith et al. 2015;
Tang et al. 2018) and internet searches (Ginsberg et al. 2009). Data from animal and
environmental health sources can help to identify emerging infectious disease risks.

Applying Big Data analytics to diverse and underutilised data, often from otherwise
hidden populations, could enhance outbreak detection and our understanding of infec-
tious disease epidemiology on a global scale, rather than the local or national focus of
conventional surveillance. The greater scope, diversity and geographic range of data
sources would increase the potential for acquisition of new knowledge, modelling of
disease outbreaks, trends and related human behaviour and, ultimately, for improved
global control, reduced morbidity and mortality from communicable diseases and greater
health security. But there are also potential, largely unknown and poorly defined, risks.

One risk is the use of flawed methods for disease prediction or modelling. The
accuracy and reliability of different types of data, and the methods used to analyse
them, are highly variable, e.g. references to “flu”, on Facebook, “flu-like illness” in an
experienced GP’s case notes or “influenza A virus identified” in a laboratory report
could apply to the same, or to very different, conditions. The limitations of novel
surveillance systems were illustrated by the demise of Google Flu Trends, which was
based on Google searches related to “flu” or symptoms or behaviours interpreted as
likely to be due to flu. It was predicted, but ultimately failed, to identify the onset of
seasonal influenza 2 weeks in advance of conventional surveillance (Ginsberg et al.
2009; Lazer et al. 2014). Its failure was attributed to the lack of transparency of
methods, over-fitting of data and failure to account for changing search behaviours
(Lazer and Kennedy 2015).
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Another risk is that many data sources do not capture basic demographics (age, sex,
ethnicity) and infants, the elderly and economically disadvantaged groups—who are
most at risk from communicable diseases—are likely to be under-represented (Bansal
et al. 2016). Methods developed to minimise bias and validate results in conventional
epidemiological research, such as sampling protocols and case definitions, cannot
easily be applied (Lee et al. 2016).

The harmful effects, of inaccurate or exaggerated outbreak predictions or modelling,
include economic impacts on trade, tourism and health services, social consequences of
unnecessary public fear and loss of trust in public health authorities. Appropriately
skilled, multidisciplinary development teams could anticipate and mitigate these risks.
Peer review and ethical oversight of methods and validation of results by comparison
with conventional data would help to prevent them—albeit at increased cost of program
development and maintenance.

Perhaps, the greatest risk, however, is public fear, ignorance and mistrust. Ill-
informed media scrutiny and political risk aversion could prevent or delay the incor-
poration of de-identified personal health data into Big Data–based public health
surveillance, despite the benefits. Including them would complement and help to
validate less-specific, less-reliable data and mitigate the risks. Even the best available
de-identification methods, and optimal levels of data security around legitimate use of
identified personal data for outbreak investigations, may not placate these fears.
However, well-designed public education and consultation initiatives, supported by
suitable privacy regulation and regulation of standards, would improve trust. On the
other hand, if important data were, theoretically, available but omitted, public health
authorities would attract public, media and political censure if they failed to prevent or
limit an infectious disease emergency because they failed to utilise or respond to
intelligence, whatever the source, which could have predicted it.

There is an urgent need for open and informed discussion about the ethical impli-
cations, quality and safety of Big Data–based use of varied types of data, including
personal and pathogen genomic data, in communicable disease control. Questions for
discussion—assuming the most reliable methods of data capture and analysis are in
use—might include, but not be limited to:

a) What is the personal significance of a pathogen isolated from an individual,
considering the highly specific and sensitive personal information that its WGS
can reveal? Should it be subject to a similar degree of privacy protection as that of
her personal (human) genome?

b) Given the public benefits (accuracy, reliability, sensitivity, specificity, timeliness)
of using as many and varied types of data as possible, in communicable disease
surveillance, outbreak investigation and research, should the use of de-identified
personal data from EHRs (which may include personal and/or pathogen genomic
data) be permitted, and in what circumstances? Do individuals have a moral
obligation to participate? Should individual consent be required and if so in what
circumstances?

c) What level of probability and reliability, based on Big Data analytics, should be
required before issuing a public alert about an impending infectious disease
emergency—e.g. due to a previously unknown emerging or highly virulent,
transmissible or drug-resistant pathogen—considering the need to balance the risks

Asian Bioethics Review (2019) 11:173–187 183



of delay against those of a false alarm? (Would a 30% risk of a dangerous
infectious disease emergency be morally equivalent to a 30% risk of a category
4 tropical cyclone, for example?)

d) What would be an ethical response to information, based on reliable Big Data
analytics that some populations are at increased risk of infection and/or of becom-
ing a risk to others? Considering the risk of stigmatisation, discrimination, loss of
autonomy (e.g. mandatory testing) and/or restriction of liberty (e.g. quarantine),
who should be told (the affected group; health professionals; the general public)?

Answers to these and other questions would inform development of an ethical frame-
work, for future communicable disease control, which, we argue, is needed because
recent technological innovations have raised new ethical issues. A framework would
guide development of policies to optimise benefits and minimise risks, protect vulner-
able populations and build public trust in and support for public health action in an
infectious disease emergency.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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link to the Creative Commons license, and indicate if changes were made.
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