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Finite-size effects on bacterial 
population expansion under 
controlled flow conditions
Francesca Tesser1, Jos C. H. Zeegers1, Herman J. H. Clercx1, Luc Brunsveld2 & Federico Toschi1,3,4

The expansion of biological species in natural environments is usually described as the combined effect 
of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also 
be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a 
dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria 
under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity 
of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical 
fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite 
at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size 
hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates 
that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore 
the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of 
bacteria.

Many biological populations and communities live in liquid environment under the effect of a flow. This occurs 
both at large scales, for example for aquatic organisms and larvae in rivers and estuaries or marine organisms and 
plankton in the oceans1,2, and at smaller scales, for algae in bioreactors down to bacterial infections in human 
body3,4. The study of the expansion of biological species in these environments is relevant for ecology, for example 
to understand algae blooms or the spread of invasive species5, but also, in conservation biology, for the reintro-
duction and persistence of populations under difficult environmental conditions, like for instance organisms 
living in the silt of a river6. In all cases the complexity of these systems is challenging because of the interplay 
between living species, with their motility behaviours and their active strategies to persist under difficult condi-
tions and the role of the flow, which is usually both a vehicle for nutrient and the cause of transport of organisms 
out of their initial environments7. Phenomena such as the spatial spreading of populations in new territories and 
the invasion of new species can dramatically change due to a streaming flow.

The natural generalisation of classic spatial models of growth in liquid environments is formulated in terms 
of reaction-diffusion-advection equations of the density of organisms, c(x, t)8,9. In these ecosystems, the spatial 
dynamics of a population is given by the combination of growth, individual own dispersion, and the transport by 
the flow as an extra biased migration factor10:
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Diffusion models are commonly used for a wide range of living species, such as animals, plants and insects, 
since their dispersion in many cases is well described by an effective diffusion with a constant coefficient D11. 
Here, the reaction term is controlled by the logistic growth dynamics with rate μ, which saturates at c =​ 1, and the 
advection term contributes for the transport by a flow field, u(x, t).

In absence of any flow, eq. (1) is the well-known Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation12. 
For sharp enough initial conditions, like the ones relevant in biology, it admits traveling wave solutions with 
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constant speed µ=v D2F  and front width w of order µ~ D/ 13. This equation is generally used to describe 
propagation of population fronts into a homogeneous empty territory. Recently, the invasion speed of ciliate 
Tetrahymena cells has been measured in experiments in a liquid habitat showing a good agreement within the 
FKPP framework, with the population expansion described in terms of diffusive motility and doubling  
dynamics14. When flows are present, instead, front propagation and transport properties are deeply linked15, and 
the flow influences not only the expansion process but can also have a dramatic impact on the population chance 
of survival in the habitat. The solution for eq. (1) in a one-dimensional homogeneous infinite habitat with con-
stant velocity, of absolute value u, is simply given by a change in the reference frame. The two speeds sum up, 
producing a front propagating with increased speed, vf =​ vF +​ u, if the flow is supporting the growth or reduced 
speed, vf =​ vF −​ u, in the case of adverse flow. Persistence in the last case is guaranteed for vF >​ u, otherwise the 
colony cannot propagate further and is simply flushed away16. The dynamics gets richer, instead, when the land-
scape is not infinite16 or non-homogeneous17,18 or the flow is nonstationary1 as in realistic situations.

Several numerical studies have investigated eq. (1) as models for diluted plankton populations in the ocean 
under complex turbulent flows, also considering inertial effects9,10. Alternative models have been developed to 
describe situations in which the transport is only partially felt by the populations, like benthic organisms which 
only occasionally enter into the stream feeling the drift before settling again6. One experimental application 
of eq. (1), instead, considers the growth of bacteria on a ring-shaped agar landscape rotating with respect to a 
UV-light pattern to mimic an external advection19. However, to our knowledge, no systematic and controlled 
experiments have been performed to quantify the biological front propagation under real flows.

Advection in the case of classic chemical reaction fronts has been instead more studied. The reaction-diffusion 
equation for this kind of reactions can differ from the FKPP equation in the order of the reaction term. For 
example, a cubic equation holds for autocatalytic iodate-arseneous acid fronts20 having self-sustained traveling 
front solutions21 similar to the FKPP fronts. Experimental studies based on autocatalytic reactions have been 
performed in Poiseuille and other laminar flows22, and further experimental investigations have been done with 
series of vortices23,24 and disordered porous media flow25,26. The main benchmark usually consists of the propaga-
tion front speed as a function of the mean flow velocity and for autocatalytic reactions under laminar flows there 
is a good agreement between experiments and advection-reaction-diffusion models20. In the supportive-flow 
regime the reactive front is usually carried by the flow at a speed which is a linear function of the mean flow, while 
at counter-flow conditions its behaviour appears more diverse. In the Eikonal limit (front width much smaller 
than the channel width), even if highly distorted by the flow, the front does not slow down but maintains the 
zero-flow speed. Instead, in non-Eikonal regimes, it monotonically decelerates reversing the motion for a critical 
adverse flow20. In the case of porous media flows, the front is observed to remain frozen for a wide range of coun-
ter velocities before starting to move downstream for relative high adverse flows26,27.

Despite the relevance of these natural phenomena, spatial models for growth, to our knowledge, have never 
been tested under controlled flow conditions and it is not obvious whether the simple advection-reaction-diffusion 
scheme, which is usually proposed16, can well describe real situations. Microfluidics is currently recognised to be 
a powerful tool for quantitative studies on microbiological processes and to be the best candidate to control flow 
at small scales28,29.

In this article we present the design of a dedicated microfluidic device for the growth of E. coli bacteria popu-
lations under both co- and counter-flowing laminar conditions. We focus our attention to the front dynamics and 
its advancing speed with the idea of comparing the biological front behaviour to the results reported in literature 
for chemical species in the context of the advection-reaction-diffusion equation22.

In the case of our experiment we do find a speed up of the front due to a supportive flow and a decrease in 
the propagation speed with respect to vF at small counter velocities, but, surprisingly, a stable regime is visible in 
which bacteria persist growing against the flow at a constant speed, irrespective of the intensity and even for rel-
atively large opposing flows. This result is not explainable in terms of the FKPP equation and has no counter part 
in the chemical reactions literature. We will discuss how this result is peculiar of the finite size of bacteria and will 
conclude that the FKPP is lacking in describing the spatial growth of colonies in this case. This last point shares 
close similarities with recent non-diffusive models of spatial growth of bacterial colonies on solid substrates30.

Results
In order to perform multiple measurements of bacterial front propagation at different flow conditions in a single 
experiment we designed a fluidic device made of multiple parallel channels with same cross section as sketched 
in Fig. 1A. Most of the sets of experiments reported here have been obtained with a device made of 15 channels 
(15ch), with 300 μm ×​ 280 μm of rectangular cross section and 5.6 mm of length. Furthermore, also the results 
from a different preliminary device made of 42 channels (42ch), with same cross section but 11 mm long, are 
consistent with the 15ch geometry. Results from both the devices are presented here. The devices are made of 
PDMS and are sealed to glass from one side. A picture of a typical device is visible in the Supporting Information 
in Fig. S1. The experiment is characterised by two phases: the loading of bacteria in the device and the actual 
growth along the channels. For this reason, the device has two inlets and two outlets connected to on-off valves 
which can be independently set and allow the device to be used according to two different flow configurations. 
One flow configuration is used for the loading phase and prepares the initial conditions for the experiment by 
controlling the position of the laminar interface between bacterial suspension and clear medium as sketched in 
Fig. 1A. The second flow configuration is designed for generating variable flow rates in the parallel channels as 
depicted in Fig. 1B. The network of flow rates can be solved applying the conservation of mass at each fluidic 
junction, knowing the fluidic resistance of each branch, and solving for the Poiseuille pressure drop at each node: 
qualitatively, the pressure drop at the entrance of each channel generates a series of decreasing flow rates in the 
channels in the first half of the device and increasing flow rates in the opposite direction in the second half of 
the device. In the case of an odd number of channels, the middle one is characterised by zero flow, for symmetry 
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reasons. This geometry allows to expose the front of bacteria to different velocities both in co- and counter-flow 
direction within the same experiment. The complete flow field has been solved with a numerical simulation by a 
Lattice Boltzmann Method (LBM) and verified in the device with Particle Tracking Velocimetry measurements 
on polystyrene beads diluted in water (results in the Supporting Information, Figs S2, S3 and S4).

With the idea of considering the simplest individual dispersion mechanism, we decide to focus only on thermal  
diffusion. For this purpose we use E. coli DH5α, which are known to be poorly motile31 and non-motile on agar32. 
In the case of non-motile bacteria, an estimate of the diffusion coefficient, using Stokes-Einstein relation for a 
spherical particle of radius 1 μm in water at 37 °C, gives D =​ 3 · 10−7 mm2s−1. At the beginning of the experiment 
bacteria are deposited by flow in the upper side of the device, as initial condition (see Fig. 1A), where they diffuse 
and start to duplicate expanding along the channels (see Fig. 1B). As visible by bright field microscopy, no motil-
ity is exhibited at this stage, however a very small fraction of bacteria appears to swim after two and a half hours 
from the beginning of the experiment and deposit at the walls, also much further than the main front position. 
This phenomenon, in principle undesired, due to the non-homogeneous behaviour in the population sample, has 
the effect of limiting the duration of the main front detection in time. However, no swimming motility is visible 
for the bacteria which compose the main front tracked in our experiment. Considering a duplication time for 
bacteria at 37 °C equal to T =​ 38 min =​ ln2/μ32 and the diffusion as estimated above, the expected Fisher speed is 
vF ≈​ 2 · 10−2 μm/s and the front width of order w ~ 30 μm.

The bacteria were genetically modified in order to be fluorescent and to be detected by camera equipment and 
appropriate filters (see Appendix 2). The fluorescence intensity map is captured along the channels at intervals of 
times of approximately 6 minutes. An example of such an intensity map is displayed in Fig. 1C. A variable amount 
of time is needed by the front to reach the entrance of the channels (x =​ 0 in Fig. 1C and D), from this moment the 
front is detected for a period of time of approximately 3 hours (about 8 hours in total from the beginning of the 
experiment). After this time, the motion of the front gets usually disturbed and then hidden by the background 
homogeneous growth given by the small fraction of swimming bacteria, as mentioned above. To obtain quanti-
tative information on bacterial density, the proportionality between the intensity of fluorescence light collected 
by the camera and the bacterial density of reference samples was validated under the same optical conditions for 
a significant range of bacterial concentrations (see Fig. S5 in the Supporting Information). The intensity signal is 
then integrated along the transversal direction in each channel in order to express the front profile in the direction 
parallel to the flow as shown in Fig. 1D for three representative channels.

Bacterial front speed measurements.  The main result of this experiment concerns the speed of the 
population fronts along the channels. First of all the existence of traveling waves propagating with constant 
speed along the channels is confirmed, as visible in Fig. 1D, for which it is possible to define a front speed  
(see Supporting Information for details). The results concerning the front speed are summarised in Fig. 2, as a 
function of the centreline velocity, vmax, of each channel. These values of the flow are the ones obtained from the 
LBM simulations. The experiment is reproduced at different inflow rates Q in order to span a wide range of flow 
speeds. Moreover, for Q =​ 0.1 μL/min and the 15ch device, four identical experiments are repeated in order to 
analyse the intrinsic variability of the process and to improve the estimation of the output values by averaging 
over independent tests. In this case only the mean value is shown instead of single measurements. The errors 
on single measurements are defined based on the technique for speed extraction (see Supporting Information), 

Figure 1.  (A and B) Sketch of the 15ch device and the two modes of operation. (A) Bacteria loading procedure: 
the bacterial suspension enters from top left and the medium inlet is at bottom left, while both fluids are flowing 
out from the upper-right outlet. In this way the laminar interface between the two liquids is placed in the upper 
part of the device as initial state of the experiment. (B) Experimental flow configuration with one inlet for the 
medium at bottom left and one outlet in the opposite side: this configuration generates circulating streamlines 
through the channels with varying velocity in opposite orientation. The channel in the middle is characterised 
by zero velocity for symmetry reasons. (C) Fluorescence intensity map in all channels of the 15ch device at time 
6.7 hours from the beginning of the experiment. (D) Fluorescence intensity profile along three representative 
channels normalised by the maximum intensity in channel 8, plotted about every 17 minutes, from time 
3.8 hours to 7.2 hours.
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and the errors on the mean values are obtained from the single measurements by usual error propagation. The 
fast co-flow cases are difficult to analyse in terms of sharp fronts propagating with a defined velocity. Indeed, 
in this case, the growth process appears to be driven by single individuals which are resuspended and carried 
downstream at early times and dramatically diluting the front. It is not possible to quantify this growth regime 
in terms of a collective front propagation on these time and length scales. This extreme co-flow regime is left 
out of the purpose of this paper and the design of the channel and acquisition procedure are optimised for the 
intermediate regimes. This choice implicates gradual increase in the error bars in the fast supportive flow regime. 
In the set of our experiments, a direct measure of the bacterial propagation speed in liquid medium at zero 
velocity is available, which results in v0 =​ (0.081 ±​ 0.001) μm/s. It is of the same order of magnitude but a factor 
four larger than the Fisher speed prediction, vF. Figure 2 shows that the front speed varies with the fluid velocity, 
propagating faster for a flow supporting the growth and reducing for a flow in the opposite direction. In particu-
lar, in the co-flow regime the front motion can be explained as an advected front, propagating at a speed which 
is given by the growth speed at zero velocity, v0, plus a contribution proportional to the fluid velocity. The slope 
obtained from a linear fit, s =​ 0.086 ±​ 0.003, is much smaller than one, which means that the front is not carried 
downstream by the maximum fluid velocity nor by the mean fluid velocity but by a much smaller velocity. This 
is consistent with sedimentation of the bacteria used, since they are slightly denser than the medium, combined 
with a parabolic profile of the flow in the channel, which makes the bacteria experiencing a reduced velocity, 
closer to the wall. The effective velocity which is relevant for the front speed-up for these data can be estimated 
from s to be at distance d ≪​ h, d ≈​ hs/4 ≈​ 6 μm from the wall, where h =​ 280 μm is the depth of the channel and 
a parabolic profile is assumed along the vertical direction z with no-slip conditions at the walls z =​ 0 and z =​ h, 
and vmax as centreline velocity at z =​ h/2. On the negative axis in Fig. 2, instead, the front speed is reduced with 
respect to v0 but, remarkably, does not show a dependency on the flow intensity over a wide range of counter-flow 
velocities. A plateau velocity appears indeed, where the bacterial front propagates at a constant positive speed 
independent of the flow velocity. The average of the data in this regime gives vmin =​ (0.044 ±​ 0.002) μm/s, which is 
smaller than v0. The experiment is designed in a way that negative population front velocities are not measurable, 
since they would never enter the region of interest where the acquisition takes place. Anyhow the output of an 
eventual negative speed experiment would have given no front detection, while a very clear signal, with accurate 
speed, is always visible at relative high counter-flowing velocities. Independent observations in bright field (see 
Appendix 2), of this particular counter-flow regime, show that the population is expanding in its leading part as 
a monolayer at the level of the bottom wall. From this observation one can inferred that boundary conditions are 
extremely important to sustain the growth upstream, both because the velocity is zero at the wall and because of 
eventual interaction, i.e. stickiness, between cells and walls. However it is not clear how this growth speed at the 
wall differs from the one at zero flow. An explanation is suggested below.

Interestingly, plateau regimes exist also for autocatalytic reactions, but only at zero velocity26 or at the Fisher 
velocity for channel flows in the Eikonal limit (front width much smaller than channel width)20. It can be deduced, 
therefore, that the presence of two characteristic different velocities, the one at zero flow and the minimum one at 
strong enough counter-flows, indicates that the growth process is somehow different in the two cases. A possible 
interpretation of the results considers the fact that at the wall, and with strong opposite flow, any diffusion motion 
is suppressed and the only propagation possible is the duplication process and the cumulative mechanical forces 
between individual bacteria. At small velocities, instead, or without any flow, the contribution by the diffusive 
dynamics which, if alone, would produce the usual Fisher speed vF, adds up to that minimal growth process, 
which alone would give a speed vmin, producing a front which is faster than the growth on a substrate (v0 >​ vmin) 
and faster than the Fisher speed alone (v0 >​ vF).

In order to validate this hypothesis we developed a simple model of hard (impenetrable) spheres in one space 
dimension which undergo a drift and diffusive dynamics with duplication as sketched in Fig. 3 (see Appendix 2 
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Figure 2.  Front propagation speed of bacterial populations as a function of the maximum centreline 
fluid velocity. (Black) squares are mean values of four identical experiments, while the other sets of data refer 
to single experiments. Different medium flow rates Q (μL/min) and different devices, 15ch or 42ch, span 
different velocity ranges. Dashed horizontal lines refer to the estimated zero velocity front speed v0 and plateau 
velocity vmin, the continuous line is a linear fit on the positive fluid velocity vmax >​ 0 and corresponds to a slope 
vf =​ v0 +​ 0.086vmax.
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for details). Usual models for spatial growth, as the FKPP equation or discrete models as the stepping stone algo-
rithm33, assume a growth contribution which acts only locally and diffusion or migration as spatial phenomena. 
In this model, instead, also a non local effect is introduced for the birth event, given by the excluded volume of 
the spheres. The concept of “motion by growth” is not new, as it is known that in very narrow channels, where 
bacteria motility vanishes, bacterial cells can still pass through by growth and division34. In the model that we 
propose, the diffusive motion vanishes due to the strong counter-drift which packs the spheres at the maximum 
density, and the minimal growth by duplication is the only mechanism left to the front for advancing. In Fig. 3 the 
front speed from our one dimensional model is compared against our experimental data of Fig. 2. This is done by 
tuning the parameters D, μ and the radius of the spheres, r, in the model to match the two velocities, v0 and vmin 
of the experimental data, and rescaling the drift of the model, to match also the slope of the experimental data in 
the supportive regime.

So far the discussion focused on the front speeds, however the propagation dynamics is also characterised by the 
front width and the density at the stationary state. As visible in Fig. 1D, and also confirmed by the data from other 
channels, the front appears to be sharper and denser in the counter-flow condition, while in the supportive case it 
looks systematically more dilute and broader (more data are shown in the Supporting Information in Figs S9 and 
S10). This observation is in agreement with the picture of the one-dimensional model, by which the density of beads 
is systematically higher for negative drift velocities, where they become highly compact, while positive drifts tend to 
dilute the front. However, the comparison is only qualitative. For these observed quantities the transversal dimen-
sion and the vertical variation of the flow field are expected to be relevant as well and, probably, a more microscopic 
information on the bacteria body distribution would be needed in order to improve the model.

Discussion
By the use of a microfluidic device we have performed experiments of bacterial colony growth under controlled 
flow conditions, observing traveling waves and measuring their propagation speed. In addition to a direct meas-
ure of the propagation speed at zero flow in liquid medium, we have observed the influence of the flow both 
in opposite and supportive directions. Surprisingly, a well visible plateau regime can be observed at non-zero 
front velocity, for the high counter-flow case, which leads us to consider two distinct contributions to the spatial 
dynamics: the Brownian diffusion on one side and the duplication of finite-size organisms on the other side. In 
the case of non-motile bacteria in liquid medium, these two mechanisms appear to contribute approximately 
with the same order of magnitude, so that both effects are visible, but, in general, one of the two contributions can 
be negligible for other living or chemical species. Indeed, in the case of chemical species, the local nature of the 
reaction term is legitimate down to the atomic scales, while in the case of cell size, the front velocity is dominated 
by the division replication process when the diffusive dynamics is suppressed (e.g. on solid substrates or under 
strong counter-flow conditions).

For the growth of bacteria in liquid medium, where both Brownian dynamics and advection take place we have sug-
gested a simple model to capture the role of advection and diffusion for finite size duplicating beads. Even though very 
simple, the model includes the key essential features. In principle, the one-dimensional model can be extended by con-
sidering other dimensions, or introducing further details like the existing models for growth of bacteria on substrates, 
which solve the mechanical forces between bacteria allowing also some compressibility on the individual bodies30.

Figure 3.  (Top) Scheme for the 1-dimensional growth model of hard impenetrable spheres of radius r on 
a semi-infinite space with a wall at x =​ 0. Every particle undergoes a stochastic drift-diffusion process and 
gives birth to a new particle next to it (in red/light gray) at constant rate only if there is space. The duplication 
processes are indicated by the arrows. The front is defined as the position of the most advanced particle. 
(Bottom) Comparison between the experimental data of front speed of Fig. 2 and the numerical front speed 
from the 1d hard beads model, as a function of drift v. Parameters for the model have been fixed in order to 
match the two velocities of the experiment, cmin =​ vmin and c0 =​ v0. D =​ 0.0036, μ =​ 0.5, r =​ 0.088 and time step 
dt =​ 0.05. One more parameter is free to match the velocity in the channel vmax with the drift v in the model 
v =​ αvmax, with α =​ 1/s.
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In conclusion our experiments indicate that advection-reaction-diffusion equations are useful to describe 
the dynamics of populations growing under flow but, in some circumstances, the FKPP equation needs to be 
extended to account for finite-volume effects. In particular, these finite-volume effects seem to be relevant when 
the diffusive dynamics is not dominant, like in the counter-flow regimes where it can be suppressed by advection. 
Additional investigations taking into account the complete flow field with its vertical profile, systematic analysis 
on the effect of varying the shear rate with similar centreline velocities by changing the channel geometry, can also 
provide additional understanding on the population growth dynamics under flowing conditions.

Methods
Bacterial strain preparation.  DH5α bacteria were genetically modified to contain the pHT584 plasmid35,  
coding for the expression of monomeric Yellow Fluorescent Protein (mYFP) out of a pTWIN vector with 
Ampicillin resistance. The bacterial strain was cultivated overnight in 6 mL of growth medium (LB medium) sup-
plemented with Ampicillin. 2 mL of the bacterial culture was then diluted in 2 mL of fresh medium. Estimation of 
the bacterial density at this step is 1.5 · 1010 bacteria/mL, obtained by single colony counting procedure. Bacterial 
population during the experiment is visualised in absence of any IPTG in the medium, and the signal derives 
from background expression. Bacteria are loaded in the PDMS device using a BD plastic 3 mL syringe, controlled 
by a KDS Legato 180 syringe pump at flow rates set between 4 and 8 μL/min for 2 h.

Microfluidic device and experimental protocol.  The device is made of PDMS and is fabricated following  
standard soft-lithographic procedures and sealed on a glass slide36. A new device is fabricated every time for a new 
experiment, since it is not possible to clean it completely after being used with bacteria. The experiment requires 
an accurate flow control at very small velocity scales, of order of μm/s and smaller, and also no flow in some parts 
of the device for a long period of time, of order of 5–10 hours. Because of PDMS permeability to water vapour37, 
which is not negligible at these velocity rates and time scales, the device is put under water at 50 °C for minimum 
1 hour before placing under the microscope, to saturate the PDMS with water. Then it is immersed inside a water 
bath for all the duration of the experiment to completely remove residual flows otherwise given by evaporation 
through the walls. The temperature control is provided by a hot plate in contact with the water bath set at the tem-
perature of 43 °C in order to maintain the bath and the PDMS at 37 °C, optimal temperature for bacterial growth. 
The temperature calibration has been performed using a probe. The inlets and outlets of the device are connected 
with 90-degrees bent metal connectors to soft tubing (0.5 mm ID) to 4 independent shut-off PEEK valves, in order 
to change from loading bacteria configuration to the experimental flow condition. The syringe for the medium is 
a 10 mL Hamilton glass syringe controlled by a separate KDS Legato 180 syringe pump. The medium is degassed 
with Biotech Degasi Classic before the use, then it is flushed in the device for 30 minutes to replace the water and 
to provide an homogeneous concentration of nutrient. Then the bacteria syringe is connected and the bacteria 
loading procedure can take place. The medium and bacteria syringe pumps are synchronised, so that they ramp 
down automatically after 2 h to the final flow rate, minimising the disturbance to the bacteria interface. Finally the 
valves are manually changed to the final flow configuration.

Image acquisition.  Optical access to the device occurs through the glass by use of an upright fluorescence 
microscope (Olympus BX61) coupled to a CCD ATIK-4000 camera. The appropriate excitation and emission of 
fluorescent bacterial strain is provided with the filter cube MYFP-HQ by Olympus (excitation BP 490–500 nm, 
emission BP 515–560 nm) and light is focused and collected by a 2.5x magnification objective, which gives a field 
of view of 6 ×​ 6 mm2 (resolution ~3 μm/pixel). In general acquisition of fluorescence images is done at intervals 
of 343 seconds with an exposure time of 30 seconds. Bright field mode has been used in the experiment to check 
the initial state of the experiment and to monitor the leading front progression at high counter-speed with 10x 
and 20x magnification objectives and a Thorlabs camera.

1D growth model with excluded volume.  The model considers a number of one dimensional hard beads 
of diameter 2r living on a one dimensional continuous semi-infinite habitat x =​ [0, +​∞​). The dynamics of a single 
bead is described by a stochastic displacement dx given by a constant drift v and diffusion D:

= +dx vdt D dW t2 ( ) (2)

with dW the increment of a Wiener process W(t) with unit variance: 〈​dW(t)〉​ =​ 0 and 〈​(dW(t))2〉​ =​ dt. The beads 
interact by excluded volume, in the sense that they are impenetrable and cannot overlap. Since the system is con-
fined in 1 dimension, the order is also necessarily preserved, as in the single file dynamics and this has important 
consequences for the statistical behaviour of the constrained beads in the bulk38. Moreover growth is also imple-
mented: each bead can give birth to an identical bead of the same size next to it, left or right, at a rate μ and only 
if there is space. The actual probability for a particle in xi to give birth on the right in the time interval dt is then 
μdt/2 multiplied by the probability of the space between xi +​ r and xi +​ 3r being empty. A wall is placed at x =​ 0 
and it has the same effect of a fixed bead at x =​ 0 −​ r. The dynamics advances at intervals of time dt in which beads 
displace and have chance to duplicate in a random order, the overlap between beads is treated as a kind of inelastic 
interaction: the particle of interest is displaced as much as there is place and then, in case of overlap, it is placed 
next to the neighbouring bead, which means at the minimal distance 2r from its centre. Note that here the advec-
tion is not implemented as a pure transport on the whole population, but as a biased drift on each individual 
movement. The front is defined as the position of the most advanced particle, xf (t), and the front speed as the 
derivative, c =​ dxf /dt. It is numerically estimated as the slope of linear regression on values of front position on 
time, averaged over independent realisations. Depending on the direction of the drift v, the dynamics is classified 
in three classes: the no-flow v =​ 0, the counter-flow v <​ 0 or the co-flow v >​ 0 case. At zero velocity the front speed 
is given by a constant, plus a term which scales as the Fisher speed with the square root of the diffusion coefficient: 
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= +c D c A D( ) min0 , with constant coefficient A. However, in contrast with the FKPP dynamics, even in the 
limit D →​ 0 the front can proceed at its minimum speed cmin, which is given by duplication of the most advanced 
particle, at velocity given by one body size a =​ 2r per twice the duplication time τ =​ 2/μ (only growth on one of 
the 2 sides) cmin =​ a/τ =​ rμ. The same minimum velocity appears at high negative values of drift, which have the 
effect of suppressing the contribution of diffusion. Positive values of drift instead transport the first bead freely 
ahead, and have the overall effect of a front moving, on average, at the converging speed c =​ c0 +​ v.
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