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Abstract
Recently, the familyMidichloriaceae has been described within the bacterial order Rickett-
siales. It includes a variety of bacterial endosymbionts detected in different metazoan host

species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of

Midichloriaceae are also considered possible etiological agents of certain animal diseases.

Midichloriaceae have been found also in protists like ciliates and amoebae. The present

work describes a new bacterial endosymbiont, “Candidatus Fokinia solitaria”, retrieved from

three different strains of a novel Paramecium species isolated from a wastewater treatment

plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA

approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with

three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped

endosymbionts (1.2 x 0.25–0.35 μm in size) were not surrounded by a symbiontophorous

vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in

between the trichocysts or just below them. Frequently, they occurred inside autolyso-

somes. Phylogenetic analyses ofMidichloriaceae apparently show different evolutionary

pathways within the family. Some genera, such as “Ca. Midichloria” and “Ca. Lariskella”,
have been retrieved frequently and independently in different hosts and environmental sur-

veys. On the contrary, others, such as Lyticum, “Ca. Anadelfobacter”, “Ca. Defluviella” and
the presently described “Ca. Fokinia solitaria”, have been found only occasionally and asso-

ciated to specific host species. These last are the only representatives in their own

branches thus far. Present data do not allow to infer whether these genera, which we

named “stand-alone lineages”, are an indication of poorly sampled organisms, thus under-

represented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
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Introduction
The order Rickettsiales belongs to the Alphaproteobacteria and exclusively comprises obligate
intracellular bacteria including causative agents for serious human diseases, such as Rickettsia
rickettsii (Rocky Mountain spotted fever), and Rickettsia prowazekii (epidemic typhus) [1–3].
For many years, it was mainly the pathogenicity of species such as Rickettsia, Anaplasma and
Ehrlichia that stirred up the interest in this group. Later, the discovery of their close relation-
ship to mitochondria fueled speculations on their phylogeny and evolution [4–6]. Studies on
so-called “neglected Rickettsiaceae” or Rickettsia-like organisms (RLO) inhabiting non-haema-
tophagous hosts opened further perspectives in this field, both from the evolutionary and eco-
logical points of view [7–10]. Studying the biodiversity of Rickettsiales will not only provide
missing links needed to resolve the intricate evolutionary patterns within Rickettsiales per se
and enlighten their role as partners in numerous symbiotic systems, but also broaden our
knowledge of host-symbiont interaction and its development during evolution.

At present the order Rickettsiales comprises the families [11]: i) Rickettsiaceae, with the gen-
era Rickettsia, Orientia, Occidentia [12], “Candidatus (Ca.) Megaira” [10], “Ca. Cryptoprodo-
tis” [8], “Ca. Arcanobacter” [13], “Ca. Trichorickettsia” and “Ca. Gigarickettsia” [14]; ii)
Anaplasmataceae, with the genera Anaplasma,Wolbachia, Ehrlichia, Neorickettsia [15,16],
Aegyptianella [17], “Ca. Neoehrlichia” [18], “Ca. Xenohaliotis” [19], and “Ca. Xenolissocli-
num” [20]; and iii) the newly described “Ca. Midichloriaceae” (Midichloriaceae from now on).
Recently,Midichloriaceae have been recognized as a clade or even a putative family by several
authors [3,21–25] and finally received their formal family description by Montagna and col-
leagues [26]. The status of a fourth family, Holosporaceae, is presently debated. It fell at the
base of Rickettsiales evolution in several phylogenetic trees based on SSU rRNA gene analyses
(e.g. [25,27–30]), and even on concatenated protein coding genes [25]. However, other recent
studies that consider LSU rRNA and/or different sets of protein coding genes seem to contra-
dict this view, suggesting alternative placements ofHolosporaceae within Alphaproteobacteria
[11,31–33]. Whatever the position ofHolosporaceae is, it does not affect the monophyletic evo-
lutionary status of the three families Rickettsiaceae, Anaplasmataceae andMidichloriaceae,
defined in all studies addressing their phylogeny (e.g. [11,26,30]). Therefore,Holosporaceae
will not be discussed here.

The families of the order Rickettsiales show differences in their host range. Up to now, mem-
bers of the Anaplasmataceae have been only detected in animals (Metazoa), thus suggesting a
certain host specificity (reviewed in [16]). The family Rickettsiaceae was considered to inhabit
only arthropods and vertebrates as alternating hosts. Rather unexpectedly, members of this
family, including species showing no pathogenicity to vertebrates [7], have been recently
detected in most eukaryotic super-groups as defined by Adl and colleagues [34]. Rickettsia-like
endosymbionts occur in Opisthokonta, such as Metazoa (e.g. in leeches [35]) and Holomycota
(e.g. Nuclearia [36]); in Archaeplastida, such as green algae [37–39] and higher plants [40]; in
SAR (Stramenopiles, Alveolata, Rhizaria) host organisms, such as Alveolata, mainly ciliates
[8,10,14] and Rhizaria [41]; in Excavata, such as euglenozoans [42,43]. In particular, “Ca.
Megaira polyxenophila” shows an exceptionally broad host range inhabiting different ciliates
[10,44,45], cnidarians [46,47] and green algae [37,39], indicating the possibility of horizontal
transfer.

Similarly, the recently described familyMidichloriaceae, with “Ca. Midichloria” as a type
genus, revealed a striking biodiversity in the last years.Midichloriaceae as a whole show a wide
host range. They can invade not only different arthropods including ticks, fleas, bed bugs, seed
bugs and gadflies [21,48–51], but also other metazoan species such as Trichoplax adhaerens
[25] and cnidarians [46,52]. Associations to fish [53,54] and mammals [55,56], including
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humans [24,51,57], were detected as well. Moreover, they have been found in Amoebozoa [58]
and Ciliophora [22,59,60]. Indeed, they have been detected in organisms belonging to different
eukaryotic super-groups (for review see [25,26]) but up to now, there are no records from
Archaeplastida and Excavata.

Representative hosts of both, Rickettsiaceae andMidichloriaceae, are found at various tro-
phic levels of the food chain, suggesting the theoretical possibility of horizontal transfer of the
bacteria from one host to another by trophic interaction. Though not yet proven for all Rickett-
siales, recent findings support the idea of possible host shifts in some Rickettsiaceae [9,10].
Data on recently described members ofMidichloriaceae (i.e. “Ca. Defluviella procrastinata” in
Paramecium nephridiatum and “Ca. Cyrtobacter zanobii” in Euplotes aediculatus) support the
notion of the independent establishment of different symbiotic systems involvingMidichloria-
ceae and ciliates during evolution [32,60,61]. Protists may have served as a source of infection
for other organisms in aquatic environments, and may have facilitated the later transfer of
Rickettsiaceae andMidichloriaceae to terrestrial habitats by arthropods. Taking into account
the frequent occurrence ofMidichloriaceae in haematophagous ticks [21,23,62–66] and bed
bugs [50], it is only a little step up to the tick’s or bug’s victim, a potential vertebrate host. This
putative course of host range expansion is presently supported by a growing evidence for
potential infectivity ofMidichloriaceae towards vertebrates [53,56,57]. Thus, studying this
group may result in finding new potential pathogens of humans and economically important
vertebrate species.

In the present study we provide an ultrastructural, molecular and phylogenetic description
of a novel bacterial endosymbiont representing a new solitary branch within theMidichloria-
ceae family. It was recently discovered in a Paramecium species collected from a wastewater
treatment plant in Rio de Janeiro (Brazil). According to the taxonomic rules for uncultivable
bacteria [67], we propose to name the endosymbiont species “Ca. Fokinia solitaria”. New
insights into the evolutionary pattern of Rickettsia-Like Organisms are also discussed.

Materials and Methods

Host isolation, cultivation and identification
The Paramecium strains Rio ETE_ALG 3VII, 3IX, 3X and 3XI were isolated from the wastewa-
ter treatment plant Estação de Tratamento de Esgoto Alegria (22°52'16"S 43°13'44"W, Rio de
Janeiro, Brazil) in February 2012. Sampling permission was provided by the State water and
sewage company CEDAE (Companhia Estadual de Águas e Esgotos do Rio de Janeiro). Mono-
clonal cultures (strains) were established and maintained at 22 ± 1°C in 0.25% Cerophyl-
medium inoculated with Enterobacter aerogenes [68]. According to morphological features
[69] and eukaryotic SSU rRNA gene sequencing [70] the host was identified at genus level. As
strain Rio ETE_ALG 3XI lost its endosymbionts after few generations of cultivation, bacterial
SSU rRNA gene sequence and TEM observation were not obtained for this strain.

DNA extraction
Total DNA extraction was performed according to the following protocol: approximately 50
cells were washed by six successive transfers into sterile mineral water (Volvic1, Danone
Waters, Paris, France); Paramecium cells were starved overnight in sterile Volvic water, washed
again six times to minimize bacterial contamination and fixed in 70% ethanol. DNA was
extracted applying the NucleoSpin1 Plant DNA Extraction Kit (Macherey-Nagel GmbH &
Co. KG, Düren NRW, Germany), following the CTAB protocol for mycelium.
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Molecular characterization
For the molecular characterization of the endosymbiont, bacterial SSU rRNA genes were
amplified with the Alphaproteobacteria specific forward primer 16Sα_F19b 5'-CCTGGCTCA
GAACGAACG-3' [71] and the universal bacterial reverse primer 16S_R1522a 5'- GGA
GGTGATCCAGCCGCA -3' [71] using a touchdown PCR with annealing temperatures of
58°C (30 sec, 5 cycles), 54°C (30 sec, 10 cycles) and 50°C (30 sec, 25 cycles). The reaction was
carried out in a C1000 Thermal cycler form Bio-Rad Laboratories (Hercules, CA, USA). The
obtained PCR products were purified with the EuroGold CyclePure Kit (EuroClone S.p.A.
Headquarters & Marketing, Pero Milano, Italy) and sequenced using the internal primers 16S
F343 ND 5’-TACGGGAGGCAGCAG-3’, 16S R515 ND 5’-ACCGCGGCTGCTGGCAC-3’
and 16S F785 ND 5’-GGATTAGATACCCTGGTA-3’ [71] at GATC Biotech AG (Konstanz,
Germany).

Species-specific probe design
In order to verify that the sequenced bacterial SSU rRNA gene amplicon derived from the
endosymbiont, three species-specific probes were designed: Fokinia_198 5'-CTTGTAGTGA
CATTGCTGC-3' (Alexa488-labeled, Tm = 54.5°C), Fokinia_434 5'-ATTATCATCCCTA
CCAAAAGAG-3' (Cy3-labeled, Tm = 54.7°C) and Fokinia_1250 5'-ACCCTGTTGCA
GCCTTCT-3' (Cy3-labeled, Tm = 56.0°C). Tm was determined by Eurofins GMBH (Ebersberg,
Germany) that synthetized the probes. FISH experiments using one of the species-specific
probes in combination with the almost universal eubacterial probe EUB338 (either FITC- or
Cy3-labeled [72]) were performed. The newly designed probes were tested at different formam-
ide concentrations ranging from 0% up to 50%; their specificity was in silico determined using
the TestProbe tool 3.0 (SILVA rRNA database project [73]) and the probe match tool of the
Ribosomal Database Project (RDP [74]) allowing 0, 1 or 2 mismatches (Table 1). Finally, they
have been uploaded to ProbeBase [75] and figshare (DOI: 10.6084/m9.figshare.2008524).

Fluorescence in situ hybridization (FISH)
FISH experiments were performed to detect the presence of endosymbiotic bacteria. At least
20 cells were washed three times in sterile Volvic and placed on SuperFrost Ultra Plus1 slides
(Gerhard Menzel GmbH, Braunschweig, Germany). Cells were fixed with 2% paraformalde-
hyde (PFA), dehydrated in an ethanol gradient and air-dried. Fixed cells were covered with
hybridization buffer [76] containing recommended formamide concentration and 10 ng/μL of
each probe. Slides were incubated overnight at 46°C in order to increase the accessibility of the
bacterial SSU rRNA [77]. The next day, after washing for 20 min at 48°C, slides were air dried,
mounted with CitiFluorTM AF1 (Citifluor Ltd, London, Great Britain) containing DAPI, and

Table 1. In silicomatching of the species-specific probes Fokinia_198, Fokinia_434 and Fokinia_1250 against bacterial SSU rRNA gene sequences
available from RDP (release 11, update 4) and SILVA (release 123) databases. Number of sequences in the corresponding database was 3,333,501
(RDP) or 1,756,783 (SILVA). “mism” stands for “mismatch(es)”. Reported are the number of sequences (“hits”) which theoretically hybridize with the probe
allowing for the given number of mismatches.

Species-specific probe RDP SILVA

0 mism 1 mism 2 mism 0 mism 1 mism 2 mism

Fokinia_198 0 hits 0 hits 7 hits 0 hits 0 hits 0 hits

Fokinia_434 0 hits 84 hits 1,540 hits 0 hits 18 hits 437 hits

Fokinia_1250 0 hits 0 hits 13 hits 0 hits 0 hits 4 hits

doi:10.1371/journal.pone.0145743.t001
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examined using the fluorescence microscope Nikon Eclipse Ti (Nikon Corporation, Tokyo,
Japan).

Alternatively, to reduce autofluorescence background signal, cells were incubated for 30
minutes at 4°C in 2% PFA in depression slides, transferred to microscope slides and incubated
again for 30 minutes at 4°C. The surplus liquid was removed. One drop of ice-cold 70% metha-
nol was added, immediately removed and the slides were transferred into a washing chamber
filled with 2x PBS at room temperature. Hybridization was performed applying 10 ng/μL of
each probe in the hybridization buffer containing optimal formamide concentration (see
results). The slides were incubated at 46°C in a humid chamber for 1.5–2 hours, followed by
two washing steps in washing buffer [76] for 30 minutes at 48°C. During the whole procedure
cells were prevented from drying. Finally, the cells were covered with Mowiol (Calbiochem1,
Merck KGaA, Darmstadt, Germany) containing PPD and DAPI according to manufacturer
protocol. Images were obtained with a Leica TCS SPE confocal laser scanning microscope
(Leica Microsystems GmbH, Wetzlar, Germany).

The used probes were EUB338 (5’-GCTGCCTCCCGTAGGAGT-3’, Cy3-labeled [72]), the
Alphaproteobacteria-specific probe ALF1b (5’-CGTTCGYTCTGAGCCAG-3’, 6-FAM-labeled
[76]) and the specifically designed ones.

Phylogenetic analysis
The obtained bacterial SSU rRNA gene sequence of “Ca. Fokinia solitaria” was aligned with the
automatic aligner of the ARB software package version 5.2 [78] together with 22 closely related
sequences of theMidichloriaceae family, 17 members of the Anaplasmataceae and Rickettsia-
ceae and 10 sequences representing the outgroup. The alignment was optimized manually
especially focusing on the predicted base pairing of the stem regions, referring to the SSU
rRNA structure of E. coli provided by ARB. The aligned sequences were then trimmed at both
ends to the length of the shortest one; gaps were treated as missing data. The resulting align-
ment (S1 Alignment) contained 1,568 nucleotide columns that were used for phylogenetic
inference. The optimal substitution model was selected with jModelTest 2.1 [79] according to
the Akaike Information Criterion (AIC). A maximum likelihood (ML) tree was calculated with
1,000 bootstrap pseudoreplicates using the PHYML software version 2.4.5 [80] from the ARB
package. Bayesian inference (BI) was performed with MrBayes 3.2 [81], using three runs each
with one cold and three heated Monte Carlo Markov chains, with a burn-in of 25%, iterating
for 1,000,000 generations (obtained model parameters are shown in S1 Table). The runs were
stopped after verifying the average standard deviation of the split frequencies had reached a
value 0.01 or below. A similarity matrix [82] was built using the same 1,568 columns employed
in phylogenetic reconstructions.

Transmission Electron Microscopy (TEM)
Ciliates were processed for electron microscopy as described elsewhere [59]. Briefly, the cells
were fixed in a mixture of 1.6% PFA and 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH
7.2–7.4) for 1.5 h at room temperature, washed in the same buffer containing sucrose (12.5%)
and postfixed in 1.6% OsO4 (1 h at 4°C). Then the cells were dehydrated in an ethanol gradient
followed by ethanol/acetone (1:1), 100% acetone, and embedded in Epoxy embedding medium
(Fluka Chemie AG, St. Gallen, Switzerland). The resin was polymerized according to the man-
ufacturer’s protocol. The blocks were sectioned with a Leica EM UC6 Ultracut. Sections were
stained with aqueous 1% uranyl acetate followed by 1% lead citrate.

Negative staining was performed by first washing and starving the cells overnight in distilled
water to decrease the abundance of food and environmental bacteria. Single cells were then
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squashed with the micropipette and the remaining were transferred onto grids covered with
the supporting film. Staining was performed using aqueous 1% uranyl acetate. All samples
were examined with a JEOL JEM-1400 (JEOL, Ltd., Tokyo, Japan) electron microscope at 90
kV. The images were obtained with an inbuilt digital camera.

Nucleotide sequence accession number
The sequence obtained from bacterial SSU rRNA gene of the endosymbiont of Paramecium
clone Rio ETE_ALG 3VII was submitted to the GenBank database (NCBI) under the accession
number KM497527 (1,473 bp).

Results

Characterization of the host
The Paramecium strains isolated from the wastewater samples were submitted to morphologi-
cal analyses. General morphological features like size, body shape and location of the cytoproct
were typical for the Paramecium caudatum-aurelia clade. However, species identification
proved to be equivocal, suggesting the possibility that we were dealing with a new species. A
detailed description of the host including morphometric, ultrastructural, and molecular char-
acterization will be provided in a separate publication.

Molecular characterization of endosymbiont
Nearly full-length bacterial SSU rRNA gene sequences were obtained for the three strains Rio
ETE_ALG 3VII, 3IX and 3X. The sequences were identical, hence, strain Rio ETE_ALG 3VII
was used representatively for all three strains (Rio ETE_ALG 3VII: 1,473 bp, GenBank acces-
sion: KM497527). NCBI Blastn results against nucleotide collection (nr/nt) showed the highest
identity (88.5% and 87.0%, respectively) with an uncultured bacterium from a lake in New
York (accession number FJ437943) and “Ca. Defluviella procrastinata”, symbiont of Parame-
cium nephridiatum. It is noteworthy that, compared to the otherMidichloriaceae included in
the analysis, the SSU rRNA gene sequences of both “Ca. Fokinia solitaria” and “Ca. Defluviella
procrastinata” had four small insertions (2–13 nucleotides long) in the same positions (76, 94,
200, 216, according to the E. coli SSU rRNA gene reference numbering). These insertions were
paired two by two in the predicted rRNA structure, increasing the length of two stems in
regions V1 and V2 respectively. Other two small insertions (4 and 5 nucleotides long, at posi-
tions 452 and 476, respectively) were present in “Ca. Fokinia solitaria” only, which were pre-
dicted to increase the length of a third stem in region V3 of the rRNA molecule.

FISH experiments
In preliminary FISH experiments, positive signals with both probes (EUB338 and Alf1b) were
observed in the cytoplasm of all Paramecium strains. Overlapping signals of both probes indi-
cated the presence of endosymbiotic bacteria belonging to Alphaproteobacteria in the cell cor-
tex. Bacteria localized in digestive vacuoles (food bacteria) showed positive signals only with
probe EUB338.

The designed species-specific probes Fokinia_198, Fokinia_434, and Fokinia_1250 were
specifically designed to have a similar and low Tm that should have guaranteed good specificity
without formamide or with low formamide concentrations. Hybridization experiments with
their target organism in a formamide range from 0 to 30%, confirmed the signal intensity was
best between 0–15% formamide (Fig 1). Specificity of probes was tested in silico against avail-
able bacterial SSU rRNA gene sequences (Table 1). The probes Fokinia_198 and Fokinia_1250
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Fig 1. Species-specific in situ detection of “Candidatus Fokinia solitaria” in Paramecium sp. strain Rio ETE ALG 3VII at 15% formamide
concentration.Merge of the signals from probes EUB338 (fluorescein-labelled, green signal) and A) species-specific probe Fokinia_434 (Cy3-labelled, red
signal), B) alphaproteobacterial probe ALF1b (Cy3), C) species-specific probe Fokinia_198 (labelled with Alexa488, green signal), or D) species-specific
probe Fokinia_1250 (Cy3). Stratification of the endosymbiont in section through the host cortex (A, C) and through the inner part of the host cell (B, D). “Ca.
Fokinia solitaria” appears yellowish. Scale bars: 10 μm.

doi:10.1371/journal.pone.0145743.g001
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showed high specificity even when mismatches were allowed. Probe Fokinia_434, on the other
hand, recognized 84 non-target sequences when one mismatch was allowed (Table 1). Experi-
ments with one species-specific probe and either EUB338 or Alf1b clearly showed that “Ca.
Fokinia solitaria” is the only symbiont residing in the cytoplasm (outside the food-vacuoles) of
these host strains (Fig 1).

Phylogenetic analysis
After the choice of the GTR+I+G substitution model with jModelTest, the ML and BI trees were
estimated (Fig 2). The monophyly of the three families Rickettsiaceae, Anaplasmataceae andMid-
ichloriaceae was confirmed with both inference methods, which joinedMidichloriaceae and Ana-
plasmataceae as the sister group to Rickettsiaceae, with bootstrap value 78.2% for ML and
posterior probability value 0.80 for BI. Additionally, in both trees several sequences within the
Midichloriaceae formed well-supported monophyletic clades, like the genera “Ca. Midichloria”
and “Ca. Lariskella”. However, most of the ancient relationships within this family showed com-
paratively little support and appeared still unresolved, which is in good agreement with literature
(e.g. [59,60]). Only the position of “Ca. Cyrtobacter” as sister group to all otherMidichloriaceae
was obtained with high support with both inference methods (100%ML; 1.00 BI).

The sequence of “Ca. Fokinia solitaria” from Paramecium strain Rio ETE_ALG 3VII affili-
ated toMidichloriaceae and was strongly associated (99.9% ML; 1.00 BI) to “Ca. Defluviella
procrastinata” endosymbiont of P. nephridiatum (Fig 2), while the identity among them was
only 87.0%. The two sequences together were grouped with high support (99.8% ML; 1.00 BI)
to the previously mentioned uncultured bacterium from a freshwater lake in New York
(FJ437943), which had 88.5% and 84.9% identity with “Ca. Fokinia solitaria” and “Ca. Deflu-
viella procrastinata”, respectively. The branches leading to the three sequences were long com-
pared to the otherMidichloriaceae in the obtained phylogenetic tree. Further groupings of the
three sequences with the genus Lyticum, “Ca. Anadelfobacter veles” and other uncultured bac-
teria were not supported statistically.

Transmission Electron Microscopy (TEM)
The endosymbionts were located in the host cortex, stratified in a narrow layer in between the
trichocysts or just below them (Fig 3A and 3B). Most often, they were oriented parallel to the
trichocysts axis and perpendicular to the plasma membrane. In ultrathin sections, endosymbi-
onts appeared as tiny rods, 1.2 μm long and 0.25–0.35 μmwide. They showed a distinct double
membrane characteristic of Gram-negative bacteria (Fig 3C). The bacteria never formed clus-
ters and lay naked in the host cytoplasm. Occasionally, dividing forms could be found. No fla-
gella were detected. However, in cross sections bacteria were surrounded by a narrow rim
lacking host ribosomes and containing fine fibrils, while in some longitudinal sections, there
seemed to be a “tail” of the same material trailing after the endosymbiont (Fig 3C, white arrow-
head). However, negative staining demonstrated the absence of flagella (Fig 4). Bacterial ribo-
somes and nucleoid were quite conspicuous in the bacterial cytoplasm, but other inclusions
were rarely observed. The cytoplasm of the infected ciliates was abundant in autolysosomes,
most often containing mitochondria; the endosymbionts could be also quite frequently
enclosed in autolysosomes (Fig 3D, white arrowhead), sometimes together with mitochondria
(not shown).

Discussion
After the description of “Ca. M. mitochondrii” had been published in 2006, the number of spe-
cies and sequences closely related to “Ca. M. mitochondrii” and other members of the family
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Fig 2. Bayesian inference phylogenetic tree built with MrBayes employing the GTR + I + Gmodel.Numbers indicate bootstrap values inferred after
1,000 pseudoreplicates for maximum likelihood and Bayesian posterior probabilities (values below 70.0% and 0.7 are not shown). The sequence
characterized in the present work is reported in bold. Scale bar: 9 nucleotide substitutions per 100 positions. “Ca.” stands for “Candidatus”.

doi:10.1371/journal.pone.0145743.g002
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Fig 3. Transmission electronmicroscopy images of ‘‘Candidatus Fokinia solitaria” in longitudinal (A, C) and transverse (B, D) sections. Black
arrows point at the bacterial membranes; white arrowheads indicate fibrillar material associated to the endosymbiont (C) and host autolysosome containing
the endosymbiont (D). Scale bars: 0.5 μm (A) and 0.2 μm (B, C, D).

doi:10.1371/journal.pone.0145743.g003
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increased remarkably. During the last years, several new genera were discovered and our
knowledge of the familyMidichloriaceae took shape step by step. With the present species
description of “Ca. Fokinia solitaria” we add a new piece to the puzzle ofMidichloriaceae.

The familiesMidichloriaceae, Anaplasmataceae and Rickettsiaceae represent monophyletic
clades with high support values (Fig 2). The obtained tree topologies based on bacterial SSU
rRNA gene sequences associatingMidichloriaceae to Anaplasmataceae is coherent with all pre-
viously published SSU rRNA phylogenies [21,22,25,32,59,60,83,84], except one [51]. Two
genome based studies [25,85] showed a closer relationship betweenMidichloriaceae and Rick-
ettsiaceae. On the contrary, other recent publications using different sets of species and genes
placedMidichloriaceae as sister to Anaplasmataceae, although with limited support, in agree-
ment with most SSU rRNA trees [32,86]. Further genomic data will be necessary to unambigu-
ously establish evolutionary association among the three families.

The phylogenetic analyses of our data indicated a close association of “Ca. Fokinia solitaria”
to two different sequences forming a highly supported (99.8% ML; 1.00 BI) monophyletic
branch. One of the sequences derives from an uncultured bacterium of a freshwater lake in
New York (unpublished; accession number FJ437943), the other one belongs to “Ca. Deflu-
viella procrastinata”, an endosymbiotic bacterium inhabiting P. nephridiatum [60]. Their phy-
logenetic proximity suggests that these three species might have derived from a common
ancestor. Additionally, the occurrence of similar insertions in the SSU rRNA genes of “Ca.
Fokinia solitaria” and “Ca. Defluviella procrastinata”, supports this presumption and suggests
that this feature could be a shared derived character of the two genera. The sequence FJ437943
does not share any of the insertions and therefore seems to retain the ancient condition. Never-
theless, as the identity values among the three sequences (84.9–88.5%) are far below the taxo-
nomic threshold for discriminating bacterial genera (sequence similarity of 94.5% or lower,
according to [87]), the three sequences belong to different genera. Taking into account their
highly supported phylogenetic association, the low sequence identities and the long terminal
branches in the phylogenetic analysis, these species appear to be fast evolving.

Up to now, some representatives ofMidichloriaceae, such as genera “Ca. Midichloria”, “Ca.
Lariskella” and “Ca. Bandiella”, have been observed in a great variety of host species and with a
worldwide distribution [21,23,64–66,88–91]. Such host species occur both in aquatic and

Fig 4. Negative staining of “Candidatus Fokinia solitaria”. No flagella are visible. Scale bar: 0.2 μm.

doi:10.1371/journal.pone.0145743.g004
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terrestrial habitats. Most likely, the ancestral host species was an aquatic organism indicating at
least one event of adaptation to terrestrial animals [61]. Due to the unresolved phylogenetic
relationships between the genera ofMidichloriaceae it is not clear, when and how many times
the adaptation to terrestrial animals took place (compare Fig 2 of this work with Fig 4 of [61]).
Nevertheless, infection experiments on “Candidatus Jidaibacter acanthamoeba” and “Candida-
tus Bandiella woodruffii” proved the possibility of horizontal transfer among aquatic organisms
[32,89]. In contrast to these genera, others seem to be represented by few isolates appearing as
“stand-alone” branches in the phylogeny ofMidichloriaceae, not only as “Ca. Fokinia”, but also
the recently redescribed genus Lyticum [59,92–94] as well as “Ca. Defluviella” [60] and “Ca.
Anadelfobacter” [22]. Presently noted “stand-alone” genera ofMidichloriaceae could be either
an indication of poorly sampled organisms, thus underrepresented in GenBank, or fast evolv-
ing, highly specialized, real “stand-alone” evolutionary lineages.

Overall, the familyMidichloriaceae seems to consist of different clades with members show-
ing different evolutionary strategies: widespread and adaptable endosymbiotic bacteria (“Ca.
Midichloria”, “Ca. Lariskella”, and “Ca. Bandiella”) on one hand, and fast evolving “stand-
alone” symbionts, such as Lyticum, “Ca. Defluviella”, “Ca. Anadelfobacter” and “Ca. Fokinia”,
on the other hand. To refer to the characteristic of “Ca. Fokinia”, represented by an isolated
branch, and in accordance with the guidelines of the International Committee of Systematic
Bacteriology [67], we propose the name “Ca. Fokinia solitaria” in honor to our appreciated col-
league Professor Sergei I. Fokin, a prominent specialist in the study of bacterial symbionts of
ciliates.

All so far discoveredMidichloriaceae-endosymbionts of ciliates are rod-shaped but differ
significantly in their size, “Ca. Fokinia solitaria” being one of the smallest. There are also
remarkable differences in the intracellular localization of the endosymbionts. “Ca. Fokinia soli-
taria” and “Ca. Cyrtobacter comes” [22] are not surrounded by a host membrane and lie naked
in the host cytoplasm, whereas both Lyticum species and “Ca. Anadelfobacter veles” reside in
host vesicles [22,59]. Only “Ca. Fokinia solitaria” shows a defined distribution, stratified in a
narrow layer in the host cortex. This area is known to be devoid of acid phosphatase (AcPase)
activity, indicating the absence of lysosomes and autophagosomes [95,96]. The special localiza-
tion of endosymbionts between the host trichocysts could be favorable for “Ca. Fokinia soli-
taria”, permitting it to avoid the host defense mechanisms, especially because it is not
surrounded by a protective symbiont-containing vacuole. The occurrence of “Ca. Fokinia soli-
taria” in autolysosomes in the inner parts of the cytoplasm seems to support this view. Autop-
hagy is not only a process of degrading macromolecules or organelles to provide nutrition
during starvation periods; it is also involved in other biological processes like development and
differentiation, cell death as well as immune system and protection against pathogens [97–99].
In mammalian cells, autophagy defends the host cells against pathogenic microbes (xenophagy
[100]) like viruses [101], bacteria [102–104] and pathogenic protists [105]. Hence, the loss of
“Ca. Fokinia solitaria” in one of the sampled Paramecium strains may be the result of xeno-
phagy and implies that the endosymbiont is not necessary for the host species and is treated as
a pathogen. On the other hand, several pathogens were found to be able to avoid, subvert or
even utilize the hosts autophagic machinery for replication [106,107] and egress from the host
cell [108].

TEM observation of “Ca. Fokinia solitaria” gave no evidence for the existence of flagella (Fig
4) but the occurrence of a narrow rim lacking host ribosomes and containing fine fibrillar
material was detected (Fig 3C) and a tail-like structure possibly made out of fibrils has been
found in some longitudinal sections. These observations and the distinct distribution of “Ca.
Fokinia solitaria” inside the host cell indicate the possibility that the bacteria are able to move
inside the host cytoplasm, probably by using host actin for the movement [109–112].
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The microbial community of wastewater and activated sludge is highly diverse. Due to the
enriched abundance of organic matter, wastewater is a perfect milieu for growth of non-patho-
genic and pathogenic bacteria and the close association between many different bacteria species
increases the development and distribution of virulence and resistance factors (for review see
[113]). After passing several steps of clarifying and removing contaminants, the remaining
sewage is released into the environment still containing several pathogens [113–115]. There-
fore, ciliates play a necessary role in the purification of sewage by supporting the flocculation
process [116] and more importantly, as bacterivorous organisms they regulate bacterial bio-
mass and the occurrence of pathogenic bacteria [117,118]. During the process of feeding, they
run the risk of being colonized by bacteria [95,119]. Thus, the probability of being infected by
potential human or animal pathogens is high in a habitat bearing many different bacteria.
Hence, ciliates could play a role as reservoir for pathogens [44] especially in environments like
wastewater. Indeed, in some cases, protists have been found to harbor pathogenic bacteria
[120–122]. Other potentially pathogenic bacteria have been found in amoeba and ciliates as
well [123,124]. “Ca. Fokinia solitaria” was found in a Paramecium species isolated from a
wastewater treatment plant in Rio de Janeiro, Brazil. Up to now, only two other records of bac-
teria inhabiting ciliates deriving from wastewater are available [60,125], suggesting that the role
of ciliates as reservoir for potentially pathogenic bacteria in wastewater may have been
overlooked.

A big diversity of Rickettsiales not associated with pathogenicity for vertebrates emerged
recently [7]. In almost five years of intensive environmental screening for endosymbiotic bacte-
ria in ciliates, eight new species ofMidichloriaceae corresponding to six new genera have been
described, or respectively molecularly characterized for the first time, in ciliate model organ-
isms Paramecium and Euplotes, i.e. “Ca. Defluviella procrastinata”, “Ca. Cyrtobacter comes”
and “Ca. C. zanobii”, “Ca. Anadelfobacter veles” [22,60], Lyticum sinuosum and L. flagellatum
[59], “Ca. Bandiella wodruffii” [89], and this new one, “Ca. Fokinia solitaria”. This high rate of
new species descriptions indicates a general high abundance of differentMidichloriaceae spe-
cies in ciliates and, possibly, in protists. It seems very likely that more descriptions of newMidi-
chloriaceae will follow providing us a better understanding of their phylogenetic relationships
and host-endosymbiont interactions.

Description of “Candidatus Fokinia solitaria”
“Candidatus Fokinia solitaria” (Fo.kiˈni.a so.li. taˈri.a; N.L. fem. n. Fokinia, in honor of Profes-
sor Sergei I. Fokin; N.L. adj. solitarius, solitary, lonely). Short rod-like bacterium (1.2 x 0.25–
0.35 μm in size). Cytoplasmic endosymbiont of the ciliate Paramecium sp. strain Rio ETE_ALG
3VII (Oligohymenophorea, Ciliophora). Basis of assignment: SSU rRNA gene sequence (acces-
sion number: KM497527) and positive match with the specific FISH oligonucleotide probes
Fokinia_198 (5'-CTTGTAGTGACATTGCTGC-3'), Fokinia_434 (5'-ATTATCATCCCTACC
AAAAGAG-3') and Fokinia_1250 (5'-ACCCTGTTGCAGCCTTCT-3'). Belongs toMidichlor-
iaceae family in the order Rickettsiales (Alphaproteobacteria). Identified in Paramecium sp.
strain Rio ETE_ALG 3VII isolated from a wastewater treatment plant in Rio de Janeiro (Bra-
zil). Uncultured thus far.

Supporting Information
S1 Alignment. Alignment of the bacterial SSU rRNA gene sequence of “Ca. Fokinia soli-
taria”. 22 closely related sequences of theMidichloriaceae family, 17 members of the Anaplas-
mataceae and Rickettsiaceae and 10 other Alphaproteobacteria representing the outgroup were
aligned with “Ca. Fokinia solitaria” to perform phylogenetic analyses. The alignment was
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trimmed at both ends to reach the length of the shortest sequence on each side, the resulting
1,568 nucleotide columns are presented here.
(S1_ALIGNMENT)

S1 Table. Obtained model parameter values of the executed GTR + I + G model according
to the performed MrBayes analysis of our sequence alignment. The parameters are given as
total tree length (TL), reversible substitution rates (r(A<->C), r(A<->G), etc), stationary
state frequencies of the four bases (pi(A), pi(C), etc), the shape of the gamma distribution of
rate variation across sites (alpha), and the proportion of invariable sites (pinvar). The estimated
sampling size (ESS) is shown as minimal (minESS) and average (avgESS) values. PSRF stands
for potential scale reduction factor.
(DOCX)
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