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Abstract

We propose a set of family-based burden and kernel tests for censored traits (FamBAC and

FamKAC). Here, censored traits refer to time-to-event outcomes, for instance, age-at-onset

of a disease. To model censored traits in family-based designs, we used the frailty model,

which incorporated not only fixed genetic effects of rare variants in a region of interest but

also random polygenic effects shared within families. We first partitioned genotype scores of

rare variants into orthogonal between- and within-family components, and then derived their

corresponding efficient score statistics from the frailty model. Finally, FamBAC and Fam-

KAC were constructed by aggregating the weighted efficient scores of the within-family com-

ponents across rare variants and subjects. FamBAC collapsed rare variants within subject

first to form a burden test that followed a chi-squared distribution; whereas FamKAC was

a variant component test following a mixture of chi-squared distributions. For FamKAC, p-

values can be computed by permutation tests or for computational efficiency by approxima-

tion methods. Through simulation studies, we showed that type I error was correctly con-

trolled by FamBAC for various variant weighting schemes (0.0371 to 0.0527). However,

FamKAC type I error rates based on approximation methods were deflated (max 0.0376)

but improved by permutation tests. Our simulations also demonstrated that burden test

FamBAC had higher power than kernel test FamKAC when high proportion (e.g.� 80%)

of causal variants had effects in the same direction. In contrast, when the effects of causal

variants on the censored trait were in mixed directions, FamKAC outperformed FamBAC

and had comparable or higher power than an existing method, RVFam. Our proposed

framework has the flexibility to accommodate general nuclear families, and can be used to

analyze sequence data for censored traits such as age-at-onset of a complex disease of

interest.

Introduction

Recent advances in next generation sequencing (NGS) have expanded the scope of disease

gene mapping from common variants to rare variants. Common genetic variants identified

through genome wide association studies (GWASs) often explain only a small proportion of
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disease heritability. Rare genetic variants, here defined as alleles with a minor allele frequency

(MAF) less than 1%–3%, tend to be functional and have stronger effects than common genetic

variants, and may account for some of the missing heritability. This transition of disease gene

mapping from common variants to rare variants has resulted in active development of new

methods that test the association between rare variants and human complex traits. As these

variants are rare, single variant association tests, a standard approach for common variants in

GWASs, are underpowered unless effect sizes of rare variants or total sample sizes are very

large [1, 2]. To overcome this problem, a common strategy is to aggregate rare variants in a

gene or region [3–5] in the test statistics. In general, these methods can be classified into two

classes: (1) burden tests [1–3], which collapse multiple rare variants into a single burden vari-

able and then test its association with the trait; and (2) variance component or kernel tests (e.g.

SKAT [5] and C-alpha [4]), which model marginal effect of each rare variant and then com-

bine into a variance component test. It is known that the burden tests are more powerful than

kernel tests when high proportion of rare variants within the region are causal and share effects

in the same direction on the trait. Conversely, when a large portion of non-causal rare variants

are present or causal rare variants have effects in mixed directions on the trait, kernel tests

have advantage over burden tests [5]. To achieve robust power, an optimal test, SKAT-O, was

proposed to combine burden and SKAT tests [6].

Although population-based designs are widely used in GWAS, family-based designs have

several advantages for rare variants association analyses. First, due to the low minor allele fre-

quencies (MAF) of rare variants, they may not be sampled adequately in the unrelated samples

in the population-based designs. On the contrary, family-based designs are likely to increase

the chance of sampling causal rare variants because of the shared genetic content within fami-

lies [7, 8]. Second, by sequencing parents and/or siblings, the chance of observing de novo

mutations or rare homozygous genotypes are higher in the family-based designs than in the

population-based designs [7]. Lastly, as allele frequencies differ relatively larger in rare variants

than in common variants among different geographic regions, populations, or rare variant

sites [9, 10], commonly used methods to adjust population stratification such as PCA are likely

to fail in population-based designs due to their assumption of a smooth distribution of MAFs

[11]. Therefore, family-based designs are appealing because of their known property of being

robust to population stratification.

To date, a number of family-based association tests for rare variants have been developed,

mostly for qualitative and quantitative traits. Majority of them follow the framework of burden

and kernel tests. Here, we further distinguish the family-based association tests for rare vari-

ants by whether genotype scores of rare variants are modeled directly (e.g. FBAT-MM [12],

KMFAM [13], famBT and famSKAT [14], MONSTER [15]), or decomposed into orthogonal

between- and within-family components (e.g. [16, 17]). The orthogonal decomposition of

genotype scores was initially proposed by Fulker et al. [18], and was later implemented in vari-

ous family-based association tests for quantitative traits [17, 19, 20]. Abecasis et al. [19] showed

analytically that testing the effect of the within-family component of a single common variant

is equivalent to testing the additive genetic effect of the variant, and is independent of popula-

tion stratification. This property was also demonstrated in our recent work on family-based

rare variant association tests for quantitative traits [17], in which we showed that our burden

and kernel tests built upon the effect of the within-family component remain robust even

when simulated datasets consist of subjects from continental subpopulations or closely related

subpopulations.

Apart from qualitative and quantitative traits, understanding the genetic basis of censored

traits has drawn an increasing interest since the era of linkage studies, such as the effort of

mapping genetic modifiers for age-at-onset (AAO) of Alzheimer disease [21, 22]. Here,

FamBAC and FamKAC on censored traits
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censored traits refer to time-to-event outcomes. For instance, AAO of a disease is only

observed in affected subjects but right censored in unaffected subjects at the last observed

age (e.g. age of enrollment into the study or age-at-exam (AAE)). One strategy used in

genetic association studies for AAO of a disease was to treat AAO as a quantitative trait [23–

25]. However, this strategy is hindered by biased sampling since unaffected subjects, particu-

larly those who may carry genes that affect AAO but have not had disease onset yet, are not

included. For this reason, modeling AAOs as a censored trait using survival models can be

an attractive alternative. To date, a number of rare variant association methods based on sur-

vival models have been developed, mostly for population-based designs [26–28]. In compari-

son, such methods are rather limited for family-based designs [29, 30]. For family-based

designs, the frailty model have advantage over the Cox proportional hazard model since it

can incorporate random effects such as the random polygenic effects shared within families.

The RVfam R package developed by Chen and Yang [29] can perform rare variants associa-

tion tests for censored traits in families. Their method utilizes the frailty model to generate

test statistics for each individual variant, and then sums over the weighted squares of the test

statistics across variants to form a sum of square (SSQ) test [31]. Similar to other methods,

RVFam models genotype scores directly. In this paper, we utilized the orthogonal decompo-

sition of genotype scores in the frailty model, and derived the efficient score statistics of the

within-family component parameter to construct Family-based Burden (Kernel) Association

tests for rare variants with Censored traits, called as FamBAC and FamKAC. The use of the

orthogonal decomposition of genotype scores will reduce spurious association findings due

to population stratification. In the following sections, we present the analytical derivation of

our proposed test statistics, and evaluate their performance through extensive simulation

studies.

Methods

In this section, we describe the general framework of our proposed family-based burden and

kernel tests, FamBAC and FamKAC, for detecting the association between rare variants and a

censored trait. The main steps of our method derivation are illustrated in a flowchart (Fig 1),

including genotype orthogonal decomposition, the frailty model with the between- and

within-family genotype components, the score statistics, subject-specific efficient score statis-

tics for each variant, and final burden and kernel test statistics. Further details are described

below.

We first introduce the definitions and notations of the orthogonal decomposition of

genotype scores for a set of rare variants in general nuclear families, extended from the

single variant scenario described in Abecasis et al. [19]. Considering n nuclear families and k
rare variants in a gene or region, we denote a vector of k genotype scores as Gij = (gij1, . . .,

gijk) for the jth (j = 1, . . ., ni) offspring in the ith (i = 1, . . ., n) family (total sample size N = ∑i

ni). For instance, assuming an additive genetic model, the genotype score gijm for the mth

variant of the jth offspring in the ith family can be coded as 0, 1, or 2 based on the number

of minor alleles. For the parental genotype scores in the ith family, we used the notation of

GiF = (giF1, . . ., giFk) for the father and GiM = (giM1, . . ., giMk) for the mother, respectively. Fol-

lowing the orthogonal decomposition strategy [18, 19], we composed the genotype scores Gij

into orthogonal between-family component Gbi and within-family component Gwij for the

set of k rare variants (Fig 1: Orthogonal Decomposition). Both Gbi and Gwij are then incorpo-

rated into the frailty model to derive the efficient score statistics for constructing the final

test statistics.

FamBAC and FamKAC on censored traits
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Fig 1. Flowchart for the derivation of FamBAC & FamKAC.

https://doi.org/10.1371/journal.pone.0210870.g001
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Efficient scores

Let T be the event time variable with a finite distribution, such as AAO of a disease, and C be

the censoring time variable such as AAE. For the jth offspring (j = 1,� � �, ni) in the ith family

(i = 1,� � �, n), the observed time Yij can be denoted as Yij = min(Tij,Cij), and the event indicator

can be denoted as Δij = I(Tij� Cij). Taking AAO and AAE of a disease as an example, for the

affected subject, the observed time are AAOs (Yij = Tij) and the event indicator Δij = 1; while

for the unaffected subject, the observed time are AAEs (Yij = Cij) and the event indicator Δij =

0. Assume that Xij = (Xij1, . . ., Xijp) are the p covariates and Qij is the random polygenic effects

from other genes. The hazard function h(t) at a specific time t based on the frailty model is as:

hijðtÞ ¼ h0ðtÞexpðXijaþ Gbigb þ Gwijgw þ QijÞ; ð1Þ

where h0(t) is the baseline hazard function, and α = (α1, . . ., αp) is a vector of coefficients for

the p covariates. γb = (γb1, . . ., γbk) and γw = (γw1, . . ., γwk) are vectors of parameters for the

between- and within-family components of the k variants, Gbi and Gwij, respectively. The ran-

dom polygenic effects Q follows a normal distribution of N(0, σ2Fi� I), whereFi is the kinship

coefficient matrix of family i. The partial log-likelihood function can then be written as in Fig

1 (Frailty Model section).

To simplify the presentation, we use parent-offspring trios to illustrate the rest of proce-

dures. The full derivation for general nuclear families with and without parents are described

in S1 Appendix. For parent-offspring trios, since there is only one offspring per family, we

changed the subject index from ij to i to simplify the notation. Eq (1) is reduced to:

hiðtÞ ¼ h0ðttÞexpðXiaþ Gbigb þ Gwigw þ QiÞ ¼ h0ðtÞyi:

Specifically, Qi� N(0, σ2) and θi = exp(Xiα + Gbiγb + Gwiγw + Qi) with i = 1, . . ., n for the off-

spring in the ith family. At the variant level, θim = exp(Xiα + Gbimγbm + Gwimγwm + Qi) for the

mth variant. The variant-specific partial log-likelihood of the hazard function is then written

as:

lpðgbm; gwmÞ ¼
X

i:Di¼1

ðXiaþ Gbimgbm þ Gwimgwm þ Qi � logð
X

l:Yl�Yi

ylmÞÞ: ð2Þ

By taking the first derivative of Eq (2) for each corresponding parameter, we can estimate the

fixed effect parameters through maximum partial likelihood estimation on their correspond-

ing score function, and the random effect parameter through penalized partial likelihood

approach for frailty model [32, 33] implemented in ‘survival’ R package. Here, we showed the

score statistics with respect to γwm and γbm:

Uwm ¼
X

i:Di¼1

Uwim ¼
X

i:Di¼1

ðGwim �

P
l:Yl�Yi

Gwlmylm
P

l:Yl�Yi
ylm

Þ ð3Þ

and

Ubm ¼
X

i:Di¼1

Ubim ¼
X

i:Di¼1

ðGbim �

P
l:Yl�Yi

Gblmylm
P

l:Yl�Yi
ylm
Þ; ð4Þ

Although the subject-specific score statistics Uwim and Ubim are only defined for affected

subjects (i.e. Δi = 1), information from the unaffected subjects is also contained in the score

statistics through the summation of subjects whose event or censoring time prior to the event

time of an affected subject i (i.e. Yl� Yi in Eqs (3) and (4)). Evidence for the association

between the k rare variants and the censored trait can be evaluated through the following

FamBAC and FamKAC on censored traits
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hypothesis testing [19]:

H0 : gw ¼ 0

Ha : gw 6¼ 0

Under the null hypothesis, we can compute the efficient score for each variant by removing

the effects of the nuisance parameters (Fig 1). For example, the efficient score of γwm for the

mth variant and the ith trio is as below:

Swim ¼ U0
wim � Î 0

wim;bimðÎ
0
bim;bimÞ

� 1U0
bim; ð5Þ

where U0
wim and U0

bim are the score statistics for the within- and between-family components

Gwim and Gbim, respectively, under the null hypothesis γw = 0. Î 0wim;bim and Î 0
bim;bim are compo-

nents of the observed Fisher information matrix under the null hypothesis (See S2 Appendix).

Test statistics

The within-family efficient score of each variant from each subject (Swim, Eq (5)), was then

used to construct burden and kernel tests. Here, we first introduce several notations in the

matrix form. Let Sw be an n × k matrix of efficient scores with Sw[i, m] = Swim, W be a k × k
diagonal weight matrix with W[m, m] = wm being the weight of the mth variant. Also let 1n be a

vector of n 1s and 1k be a vector of k 1s. For the burden test, FamBAC collapses efficient scores

of multiple rare variants into a single burden variable for each subject to form a test statistics

as below:

TFamBAC ¼
ð
Pn

i¼1

Pk
m¼1 wmSwimÞ

2

Pn
i¼1 ð
Pk

m¼1 wmSwimÞ
2 ¼
ðST

w1nÞ
TW1k1

T
k WðST

w1nÞ

ðSwW1kÞ
T
ðSwW1kÞ

: ð6Þ

We can prove that all elements of Sw are asymptotically distributed as a normal distribution

with mean 0 under the null hypothesis. It is also reasonable to assume that under the null

hypothesis the efficient scores of the offsprings in each trio are independently identically dis-

tributed. Then, according to the central limit theorem, TFamBAC is asymptotically distributed as

χ2 distribution with degree of freedom 1.

For the kernel test, FamKAC can be written as a quadratic statistic which sums over the

marginal effects of individual rare variants as below:

TFamKAC ¼
Xk

m¼1

w2
mð
Xn

i¼1

SwimÞ
2
¼ ðST

w1nÞ
TW2ðST

w1nÞ: ð7Þ

Under the null hypothesis, ST
w1n ¼ ð

Pn
i¼1 Swi1; . . . ;

Pn
i¼1 SwikÞ

T
is asymptotically distributed as a

multivariate normal distribution with mean 0 and covariance matrix n × cov(Sw1, Sw2, . . .,

Swk), where Sw1, Sw2, . . ., Swk are the efficient scores of the k variants from Sw. This quadratic

form is shown to follow a mixture of χ2 distribution as:

TFamKAC �
Xk

m¼1

lmw
2ð1Þ;

where λ1, . . ., λk are the eigenvalues of V = nW2cov(Sw1, Sw2, . . ., Swk). For computing efficiency,

Davies exact method [34] can be used to approximate the mixture of χ2 distribution to obtain

p-values. Alternatively, one can also perform permutation tests to obtain empirical p-values.

It has been shown that decreasing the weight of non-causal variants and increasing the

weight of causal variants can yield improved power. To improve the performance of the tests

FamBAC and FamKAC on censored traits
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in detecting effects of very low frequency variants, it will require choosing a suitable variant

weighting scheme that would up-weight the variants with lower frequencies. Let w1, . . ., wk be

the weights of the k variants, which are pre-specified without using the outcome and reflects

the relative contribution of the variants to the test statistic. There have been several weighting

schemes proposed to date [2, 5, 17]. Here, we focus on two commonly used variant weight

functions: the Madsen and Browning weight wp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
[2] and the Beta weight wB =

Beta(p; 1, 25) [5], where p refers to the MAF of a given variant.

Simulation studies

To evaluate the validity and performance of our proposed methods FamBAC and FamKAC,

we conducted a series of simulation studies of parent-offspring trios, and assessed Type I

errors and statistical power under various parameter settings. We designed our simulation of

sequence data based on the exome of a gene region, which is similar to the process described

in Jiang et al. [17]. That is, assuming a gene with a size of 30 kb, we first generated a pool of

20,000 haplotypes of size 30 kb using COSI [35] (https://personal.broadinstitute.org/sfs/cosi/),

with parameters that mimicked linkage disequilibrium and allele frequency distributions

observed in European population. We then divided this 30 kb gene into 100 segments of size

300 base pairs to represent subregions of the gene (e.g. introns, exons). Assuming 10 exons are

within a gene, we randomly select 10 segments from the 100 segments to form a haplotype size

of 3 kb to represent the exome captured in whole exome sequencing. This 3 kb region was sub-

sequently fixed for all replicates generated by simulation. Using the pool of 20,000 haplotypes

of size 3 kb, we generated genotype data for a population of 1,000,000 parent-offspring trios.

Specifically, for each parent-offspring trio, we first randomly sampled two haplotypes without

replacement from the 20,000 haplotype pool to form genotype data for each parent, and then

randomly sampled one haplotype from each parent to generate genotype data for the offspring.

The variants considered to be rare were those with population MAF from COSI less than 0.01.

Consequently, 69 rare variants were found within the selected 3 kb region.

To simulate AAO of a disease as a censored trait, we assumed that every subject will eventu-

ally encounter the disease given sufficient follow-up time. Therefore, in order to create the cen-

soring scenario, we generated AAO and AAE separately for each offspring. When AAO�
AAE, the subject was designated as affected with event time at AAO and event indicator Δ = 1;

when AAO > AAE, the subject was designated as unaffected with censoring time at AAE and

Δ = 0. To evaluate type I error rates, the AAO data were generated under the null hypothesis,

where rare variants within the 3 kb region do not affect the AAO distribution. Thus, we drew

random samples of AAO from a normal distribution N(μAAO, VAAO), where μAAO and VAAO

were the pre-specified mean and variance of AAO. Similarly, AAE was randomly sampled

from another normal distribution N(μAAE, VAAE) where μAAE and VAAE were the pre-specified

mean and variance of AAE. For simplicity, we assumed the variance of AAO and AAE were

the same (VAAE = VAAO = 100). To ensure that the AAO data were generated within a reason-

able life span (e.g. within 100 years of age), we assumed that the mean AAO (μAAO) was at the

age of 45. The mean AAE (μAAE) was determined to be at an age that can theoretically lead to a

given censoring rate. For example, to reach 10% censoring rate, μAAE was estimated at 26.88.

For each parameter setting, we generated 10,000 replicates of 2,000 trios to estimate type I

error rate.

To evaluate the power of proposed tests, AAO data were generated under the alternative

hypothesis, where rare variants within the 3 kb region contribute to the AAO distribution. We

assumed that the total AAO variance (VAAO) was contributed by all causal rare variants within

the 3 kb region (Vg), polygenes (Vp), and residual environmental factors (Ve). We fixed the

FamBAC and FamKAC on censored traits
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total AAO variance VAAO at 100 and the residual variance Ve at 75. This led to various combi-

nations of Vg and Vp for the remaining variance (Vg + Vp = 25). We set different proportions

of causal rare variants (Pcv) to obtain the number of causal rare variants (kcv) in the region. We

randomly selected kcv causal rare variants from all rare variants within the 3 kb region. Assum-

ing all causal rare variants contributed equally to AAO, the genetic variance contributed by

each causal rare variant was obtained from Vcv ¼
Vg
kcv

. We can then derive the additive genetic

effect of each causal variant by am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Vcv
pmð1� pmÞ

q
, where pm was the population MAF for the mth

variant from COSI. The AAO data of the offspring in the ith trio was then generated from the

following model, AAOi ¼ mAAO þ
Pkcv

m¼1 amðgim � 1Þ þ P þ E, where μAAO was the overall

AAO mean fixed at 45, gim was the genotype score of the offspring in the ith trio at the mth vari-

ant, and P and E were the random polygenic and environmental effects, randomly drawn from

N(0, Vp) and N(0, Ve), respectively. Similar to type I error simulations, AAE was randomly

sampled from N(μAAE,VAAE), where VAAE was fixed at 100 and μAAE was determined at the age

to theoretically achieve a given censoring rate. Table 1 summarizes the parameter settings used

in the simulation studies.

Our simulation studies covered two scenarios regarding to the directions of effects of the

kcv causal rare variants within the 3 kb region on AAO. First, we simulated one scenario in

which all kcv causal rare variants had negative effects on AAO. In other words, all causal rare

variants would lead to earlier AAO (deleterious variants). By fixing all other parameters, we

compared statistical power of the proposed methods FamBAC and FamKAC for different cen-

soring rates, variance of AAO contributed by all causal rare variants (Vg), proportions of rare

variants to be causal (Pcv), and number of trios, respectively. Second, we simulated another sce-

nario in which the kcv causal rare variants had effects in mixed directions on AAO. Within the

kcv causal rare variants, we randomly selected a proportion of causal rare variants with positive

effects on AAO, which would lead to later AAO (positve directon), and the rest of causal rare

variants with negative effects on AAO (negative direction). We compared our proposed meth-

ods FamBAC and FamKAC with RVFam [29] for three different postive/negative direction

setting: 0/100, 20/80, and 50/50. For all simulations of power, we generated 1, 000 replicates of

2, 000 trios, except when we compared different number of trios.

Results

Type I error

To estimate type I error rates, we simulated 10, 000 replicates of 2, 000 trios for three levels of

censoring rates: 0.1, 0.2, and 0.3). We investigated five rare variant weighting schemes for

Table 1. Parameters used in the simulations.

Size of Haplotype Pool 20,000

Size of Region 3 kb

Minor Allele Frequencies (MAF) to Consider Rare < 0.01

Number of Rare Variants within the 3 kb Region 69

Censoring Rate 0.1, 0.2, 0.3, 0.5

Total Variance of Age-at-Onset (AAO) (VAAO) and Age-at-Exam (AAE) (VAAE) 100

Variance of AAO Contributed by All Causal Rare Variants (Vg) 5, 10, 15, 20

Variance of AAO Contributed by Polygenes (Vp) 20, 15, 10, 5

Proportion of Rare Variants to be Causal (Pcv) 0.1, 0.3, 0.5, 0.7, 0.9, 1

Number of Parent-Offspring Trios 1,000, 2,000, 3,000, 4,000

Number of Replicates 1,000, 10,000

https://doi.org/10.1371/journal.pone.0210870.t001
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FamBAC and FamKAC, including (1) w0 = 1 no weight; (2) wp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
with popula-

tion MAF p from COSI; (3) wp̂ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ

p
with sample MAF p̂ estimated from Gb

(p̂ ¼
Pn

i¼1 Gbi=2n); (4) wB = Beta(p; 1, 25) the density function of Beta(1, 25) distribution at

population MAF p; and (5) wB ¼ Betaðp̂; 1; 25Þ the density function of Beta(1, 25 distribution

at sample MAF p̂. Davies’ approximation method was used to estimate p-values of FamKAC

for computational efficiency.

Table 2 summarizes the type I error rates of FamBAC and FamKAC for different combi-

nations of censoring rates and variant weighting schemes. The type I errors of FamBAC

were generally close to 0.05 for all censoring rates and weighting schemes. The variant

weights of w0, wB, and wB̂ led to better controlled type I errors (ranging 0.0469 − 0.0527)

than the variant weights of wp and wp̂ (ranging 0.0371 − 0.0465). On the other hand, Fam-

KAC generally had deflated type I errors (maximum at 0.0376), especially when Madsen and

Browning weight wp and wp̂ were used. To further examine the type I error of FamKAC, we

conducted one set of simulation based on permutation tests for the setting of censoring rate

at 30% with rare variants weighted by wB̂ . We performed 1, 000 permutations to obtain an

empirical p-value for each replicate, and computed type I error based on 1, 000 replicates,

a reduced number of replicates due to the computational burden. The type I error was

improved from 0.0330 to 0.0424, which was encouraging to re-assure the validity of Fam-

KAC. Finally, our simulation showed that population MAF p and sample MAF p̂ did not dif-

fer type I error much when the same variant weight function was used. Based on the above

observations on different variant weighting schemes, we only applied weights w0 and wB̂ to

simulate power.

Power

To evaluate statistical power, 1, 000 replicates were simulated for each parameter setting. The

parameters considered in the simulation studies included censoring rate, variance of AAO

contributed by all causal rare variants Vg, number of trios, proportion of rare variants to be

causal (Pcv) (Table 1). We chose 30% censoring rate, Vg = 5, n = 2, 000 trios, and Pcv = 30% as

the default parameter setting. For each simulation, we varied one parameter at a time and

fixed the other parameters at the default values. For example, to evaluate the effect of censoring

rate, we simulated censoring rates at 10%, 20%, 30%, and 50%, respectively, with other param-

eters fixed at Vg = 5, n = 2, 000, and Pcv = 30%.

Table 2. Type I error rates of FamKAC and FamBAC for different censoring rates.

Censoring Rate w0 = 1 wp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
† wp̂ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ

p
‡ wB = Beta(p; 1, 25) wB̂ ¼ Betaðp̂; 1; 25Þ

FamBAC 0.1 0.0498 0.0428 0.0432 0.0483 0.0482

0.2 0.0485 0.0414 0.0431 0.0469 0.0471

0.3 0.0477 0.0432 0.0465 0.0479 0.0480

0.5 0.0524 0.0371 0.0437 0.0527 0.0527

FamKAC 0.1 0.0376 0.0062 0.0103 0.0359 0.0358

0.2 0.0367 0.0042 0.0084 0.0354 0.0359

0.3 0.0353 0.0048 0.0091 0.0338 0.0330

0.5 0.0367 0.0039 0.0065 0.036 0.0359

† p is the population minor allele frequencies (MAF) from COSI;
‡ p̂ is the sample MAF estimated from the between-family component Gb; All p-values were estimated based on 10, 000 replicates of 2, 000 trios.

https://doi.org/10.1371/journal.pone.0210870.t002
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First, we simulated the scenario in which all causal rare variants had the same direction of

negative effects on AAO. Fig 2 depicts the statistical power of FamBAC and FamKAC under

various parameter settings. As expected, both burden and kernel tests had decreased power

when censoring rates increased (Fig 2A), and increased power when Vg or number of trios

increased (Fig 2B and 2C). When all causal rare variants had negative effects on AAO, the

burden tests consistently outperformed the kernel tests. Interestingly, there is less consistent

power pattern under different Pcv, proportions of causal rare variants. Under fixed Vg, the 10%

causal rare variant scenario shows the lowest statistical power (24.2%) for FamBAC while

other proportions (Pcv = 30% − 100%) have similar power, ranging from 71.1% to 80.8% (Fig

2D). On the contrary, for kernel test FamKAC, Pcv has a negative effect on the power, that is,

FamKAC tends to have decreased power as Pcv increased. This may be due to the fact that

under fixed Vg, the AAO variance contributed by each causal rare variant (Vcv ¼
Vg
kcv

) decreased

as the number of causal rare variants kcv increased. Therefore, we conducted another set of

simulations where Vcv was fixed for all causal rare variants in the region for all different Pcv sce-

narios. We set the Vcv at the measure derived from the scenario of Vg = 5 and Pcv = 50%. This

Fig 2. Power comparison for FamBAC and FamKAC when causal variants are in the same direction of effects on age-at-onset (AAO) trait. Power

was estimated based on 1,000 replicates under the following parameter settings: (A) censoring rate: 0.1, 0.2, 0.3, and 0.5; (B) Vg: 5, 10, 15, and 20; (C)

number of trios: 1, 000, 2, 000, 3, 000, and 4, 000; (D) Pcv: 9.1, 0.3, 0.5, 0.7, and 1 under Vg fixed at 5; (E) Pcv: 0.1, 0.3, 0.5, 0.7, and 1 under fixed Vcv for all

causal variants, where Vcv is derived based on Vg = 5 and 50% of rare variants being causal. The default parameter setting for all simulations is 30%

censoring rate, Vg = 5, 2, 000 trios, and Pcv = 30%. Method notations are the following: FamBAC: FamBAC with no variant weight w0 = 1; FamBACB:

FamBAC with variant weight wB̂ ¼ Betaðp̂; 1; 25Þ where p̂ is the sample minor allele frequency (MAF) estimated from the between-family component

Gb; FamKAC: FamKAC with w0; FamKACB: FamKAC with variant weight wB̂ .

https://doi.org/10.1371/journal.pone.0210870.g002
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set of simulations showed that both FamBAC and FamKAC had the lowest power when 10%

of rare variants are causal. However, under the scenarios of Pcv� 30%, FamBAC showed

increasing power as Pcv increased, but FamKAC showed similar power across different Pcv

(Fig 2E).

Next, we simulated the scenario in which the causal rare variants had effects in mixed direc-

tions on AAO. We set three different proportions of causal rare variants in positive/negative

effects on AAO as 0/100, 20/80, and 50/50. For instance, 20/80 means that 20% of causal rare

variants have positive effects on AAO while 80% of causal rare variants have negative effects

on AAO. In addition to FamBAC and FamKAC, we added RVFam test [29] for comparison.

Fig 3 depicts the statistical power for these three tests under different positive/negative direc-

tion effects for four Vg settings (5, 10, and two combinations). Similarly, the other parameters

were fixed at the default values of 30% censoring rate, n = 2,000 trios, and 30% of causal rare

variants. We showed that FamBAC has decreasing power as the ratio of causal rare variants

with different directions of effects increases (e.g. 20/80 and 50/50) for all Vg settings. FamKAC

Fig 3. Power comparison for FamBAC, FamKAC, and RVFam for effects of causal rare variants in mixed directions. Simulations were based on

1, 000 replicates with causal rare variants having effects in mixed directions (+/-: 0/100, 20/80, and 50/50) on age-at-onset (AAO) for different Vg: (A)

Vg = 5; (B) Vg = 10; (C) Vg+ = 10 for causal rare variants with positive effects and Vg− = 5 for causal rare variants with negative effects; and (D) Vg+ = 5

for causal rare variants with positive effects and Vg− = 10 for causal rare variants with negative effects. The other parameters were fixed at 30%

censoring rate, 2, 000 trios, and 30% causal rare variants. Method notations are as the following: FamBAC: FamBAC with no variant weight w0 = 1;

FamBACB: FamBAC with variant weight wB̂ ¼ Betaðp̂; 1; 25Þ where p̂ is the sample minor allele frequency (MAF) estimated from the between-family

component Gb; FamKAC: FamKAC with w0; FamKACB: FamKAC with variant weight wB̂ ; and RVFamB: RVFam with variant weight wB̂ .

https://doi.org/10.1371/journal.pone.0210870.g003
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has fairly constant power across different positive/negative direction settings under a fixed

Vg = 5 or Vg = 10 (Fig 3A and 3B) but showing decreasing or increasing pattern when different

Vg was given for a specific direction, for instance, Vg+ = 10 for causal rare variants with positive

effects on AAO and Vg− = 5 for causal rare variants with negative effects on AAO, or vise versa

(Fig 3C and 3D). RVFam showed slightly higher power than FamKAC when all variants are in

the same direction (0/100 scenario) even though its power is still lower than FamBAC. Under

the mixed direction effect scenarios (20/80 and 50/50), FamKAC had slightly higher power

than RVFam across all Vg settings. This power difference between FamKAC and RVFam is

more apparent under the scenario of 50/50 mixed direction of effects on AAO (e.g. 0.67 vs.

0.50 for 50/50 in Fig 3C and 3D).

Two variant weighting schemes were used in the simulation studies to assess the statistical

power of FamBAC and FamKAC. While the power difference between Beta variant weight

(wB̂ ) and no given weight (w0) is small for all simulation studies (Figs 2 and 3), Beta variant

weight tends to have slightly higher power than those with w0, particularly for FamKAC.

Discussion

We propose a set of family-based burden and kernel tests, referring to as FamBAC and Fam-

KAC, for identifying association between rare variants and time-to-event outcomes. Both

methods were built upon the efficient scores of parameter for the within-family genotype com-

ponent derived from the frailty model. Our proposed methods utilized several known statisti-

cal properties. First, the orthogonal decomposition of offspring genotype scores into between-

and within-family components is applicable to nuclear families of any sizes with and without

parental genotype data. It is known that testing the effect of within-family component on the

trait is robust to the potential population stratification [19]. Second, the frailty model is one of

the survival models that can incorporate random effects. Therefore, this model will allow us to

account for the random polygenic effects on the censored traits. Third, since the score statistics

is derived under the null hypothesis (γw = 0), it is known to be more stable and computational

efficient than the likelihood ratio test. Moreover, using efficient score statistics instead of score

statistics has the advantage of removing the effects of nuisance parameters. Finally, our pro-

posed tests have the flexibility to use different variant weighting schemes of one’s choice. Like

other burden and kernel tests, p-values can be obtained analytically based on the correspond-

ing distribution of the test statistics, w2
ð1Þ distribution for FamBAC and a mixture of χ2 distribu-

tions for FamKAC. Alternatively, permutation tests can be employed to increase the accuracy

of p-values, particularly for FamKAC.

The simulation studies under the null hypothesis showed that type I error was well con-

trolled for FamBAC but deflated for FamKAC under different simulation settings. However,

the validity of FamKAC is still supported by permutation tests. This deflation is likely due to

the fact that we used Davies’ approximation method [34] to generate p-values for a mixture of

χ2 distributions for FamKAC. This deflated type I error may also explain why FamKAC had

lower power than we would expect in simulation studies. Since Davies’ approximation method

can compute p-values efficiently, one may want to screen all genes using Davies’ method for

FamKAC first, and then conduct permutation tests on selected genes meeting a conservative

threshold (e.g. Davies p� 0.1) for confirmation.

For the performance of FamBAC and FamKAC, their statistical power is generally aligned

with what we anticipated for burden and kernel types of methods. That is, FamBAC performed

better than FamKAC when majority of causal rare variants have same direction of effects, and

conversely FamKAC outperformed FamBAC when causal rare variants have effects in mixed

directions. This is anticipated as the burden tests directly collapse all rare variants without
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distinguishing the sign of their effect. On the other hand, since FamKAC is a variance compo-

nent test using the second central moment statistics, it captures the absolute effects of all rare

variants. Therefore, FamKAC is robust to the scenario of variants with mixed direction effects

to the trait. Considering rare variants are most likely new mutations, it is not realistic to

assume that all of causal rare variants affect the trait in the same direction. Since the direction

of the variant effect is unknown and can be varied by genes, in practice, both tests should be

performed. With the complementary property of both tests, it is also possible to implement a

combined test of FamBAC and FamKAC using the similar strategy proposed in SKAT-O [6]

in the future, but more evaluations are needed.

The genetic variance contributed by all causal rare variants (Vg) and individual causal rare

variant (Vcv) are correlated with the proportion of causal rare variants (Pcv) in the gene. Under

fixed Vg, the Vcv decreases as Pcv increases, while under fixed Vcv for all causal rare variants, Vg

increases as Pcv increases. In practice, these three parameters are unknown for a given gene.

However, it is probably reasonable to assume that Pcv is lower in the full gene sequence from

whole genome sequencing but larger in the exome of the gene [5]. For this reason, we evalu-

ated the power of our methods for the full spectrum of Pcv from 10% to 100% in related to Vg

and Vcv. Under the 10% causal variant scenario, the power of both tests were generally lower

than other proportions regardless of fixing Vg or Vcv (Fig 2D and 2E). This may be caused by

the fact that majority of rare variants included in the test (90% of them in the gene) were non-

informative, which may override the signals from causal variants in the test statistics. For Pcv�

30%, when Vg is fixed, FamBAC (burden test) maintained similar power across different Pcv,

while FamKAC (kernel test) showed decreasing power as Pcv increased (Fig 2D). Although one

may argue that the power of FamBAC seems to peak at 30% causal rare variant scenario (Fig

2D), the difference is actually small (e.g. 80.09% power for Pcv = 30% vs. 79.9% for Pcv = 90%).

The above power pattern for the scenarios with Pcv� 30% may be explained by how burden

and kernel tests handle the effects of rare variants. When Vg is fixed, the higher Pcv will result

in lower Vcv. Since burden tests collapse the effects of all rare variants, Vg is preserved within

each subject regardless of the different quantity of Vcv. On the other hand, kernel tests compute

variance components for each variant prior to summing over variants. Therefore, the smaller

Vcv may lead to smaller test statistics and then lower power. In contrast, when Vcv is fixed for

all causal rare variants, the increase of Pcv is equivalent to the increase of Vg. As expected, bur-

den test (FamBAC) shows increasing power as Pcv increased. Conversely, under fixed Vcv for

all rare variants, the variance component that capture the variation among rare variants is

likely small between different Pcv, which may explain the relatively consistent power observed

in FamKAC. While the proportion of causal rare variants (Pcv) is a key factor to influence the

power of both tests, we conclude that FamBAC is more sensitive to the total genetic variance

(Vg), and FamKAC is more sensitive to the effect size of individual variant (Vcv).

Similar to FamKAC, the existing method RVFam had lower power than FamBAC when all

causal rare variants have the same direction of effect to the trait, but higher power than Fam-

BAC under the mixed direction of the effect (Fig 3). This is somewhat anticipated as RVFam is

based on sum of square statistics that also capture the absolute effect size of each rare variant.

However, minor performance differences were still observed between FamKAC and RVFam.

We found that RVFam performed better than FamKAC when all causal rare variants have the

same direction of effects on the trait. However, in all scenarios of mixed direction effects, Fam-

KAC showed consistent higher power than RVFam, particularly when it is under 50/50 mixed

direction of effects on the trait. While both methods are generally comparable, FamKAC

should have more chances to outperform RVFam. Although both methods utilized the frailty

model, the derivation process is different between them, specifically, on how the genotype

scores were treated in the model and how the test statistics were constructed. Further, since
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FamKAC incorporates the orthogonal decomposition of genotype scores, it should be more

robust than RVFam for data with population stratification.

Cox proportional hazard (PH) model is the most commonly used method for analyzing

survival outcomes. In this study, we chose to use the frailty model instead of Cox PH model

due to the consideration of the random polygenic effects shared within families. It is important

to include the ploygenic effects as a random effect in the model because a complex disease is

mostly affected by multiple genes rather than a single gene. For this reason, the frailty model, a

generalization of the Cox PH model, fits better than Cox PH for family-based design. Regard-

ing the applications of our proposed FamBAC and FamKAC, it is worthwhile to note the dif-

ferences between our proposed methods for censored traits and commonly used methods for

quantitative traits. Using AAO of a disease as an example, when AAO is treated as a quantita-

tive trait, it is equivalent to a case-only design where only affected subjects with AAO are

included. With the biased sampling on affected only, the distribution of AAO is likely to be

skewed, and large sample size from affected subjects will be required to achieve sufficient

power. The quantitative trait methods focus more on the amount of AAO changes if one car-

ries the minor alleles of rare variants in the gene. On the other hand, our proposed tests that

treat AAO as a censored trait can include the observed event time (AAO) from affected sub-

jects and censoring time (AAE) from unaffected subjects. Our results focus on the relative risk

(hazard ratio) of developing the disease at any age between the risk allele carriers and the non-

carriers for the gene of interest.

Some limitations are existed in this study. First, we used an arbitrary sequence length in

our simulation studies. Our intention was to mimic the exonic region of a gene by generating

10 exons made up from 10 equal sequence length (300 bp). In reality, the number of exons

and exon length may vary in/between genes. However, these arbitrary settings should not

impact the pattern of simulation results much because the proposed method are gene-based

test that aggregate all rare variant effects in the gene. The total genetic variance (Vg) and the

proportion of causal rare variants (Pcv) in the region have more impact on the statistical

power, which have been captured in our simulation studies. Since the full 30 kb haplotype

sequences were simulated based on the European genome, they should have captured the

similar LD structure and allele frequencies in the European genome. Similarly, the exonic

region we assembled should still capture the LD structure within each exon as well as across

exons. Overall, our simulated sequence data should have sufficient representation of the

sequence structure in the European genome for method evaluation. Second, we assume that

all causal rare variants have equal effect size, which is unlikely in the real data. If Vcv varies

across rare variants in the gene, this should not affect the performance of FamBAC since the

Vg (sum of Vcv effects in the gene) is more relevant to FamBAC. Based on our simulation

results shown in Fig 2D and 2E, under a fixed Vg, we would anticipate FamKAC shown

higher power for the scenario of higher proportion of variants with higher Vcv than the sce-

nario of higher proportion of variants with lower Vcv. Third, our proposed methods focus on

testing rare variants within the region of interest, not including common variants. Common

disease common variants (CDCV) and common disease rare variants (CDRV) [36] are two

well-known hypotheses for genetic contributions to human complex diseases. CDCV argues

that the common variants contribute to disease susceptibility with low disease penetrance,

while CDRV argues that rare variants have relatively high penetrance. Clearly, identifying

common and rare variants are equally important to explain the genetic heritability of the dis-

ease. In general, single variant tests are applied to common variants while gene-based meth-

ods are used for rare variants. There are also gene-based methods proposed to test common

and rare variants together by using different variant weights [37] but have not been used

widely in the NGS data analysis. Our methods can contribute to the area of identifying rare
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variants for trait with censoring. Finally, we are still in the process of developing an R pack-

age for the proposed methods for data analysis. The simulation programs were developed in

R and ran under the UNIX system for all replicates. We will release our R package to public

once it is ready.

We have proposed two rare variant association tests, FamBAC and FamKAC, for censored

traits under family-design. Although we used parent-offspring trios throughout most part of

this paper to describe our methods, as shown in the supporting information section, both

methods can be applied to nuclear families of any sizes with and without parental genotypes.

We have also shown the complementary property of FamBAC and FamKAC through simula-

tion studies. In conclusion, as the genetic basis of AAO for human complex diseases remains

an important area of research, our proposed methods can facilitate the analysis of family-based

next generation sequencing data to identify gene associated with disease AAO.
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