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Abstract

Background: As public microarray repositories are constantly growing, we are facing the challenge of designing strategies
to provide productive access to the available data.

Methodology: We used a modified version of the Markov clustering algorithm to systematically extract clusters of co-
regulated genes from hundreds of microarray datasets stored in the Gene Expression Omnibus database (n = 1,484). This
approach led to the definition of 18,250 transcriptional signatures (TS) that were tested for functional enrichment using the
DAVID knowledgebase. Over-representation of functional terms was found in a large proportion of these TS (84%). We
developed a JAVA application, TBrowser that comes with an open plug-in architecture and whose interface implements a
highly sophisticated search engine supporting several Boolean operators (http://tagc.univ-mrs.fr/tbrowser/). User can search
and analyze TS containing a list of identifiers (gene symbols or AffyIDs) or associated with a set of functional terms.

Conclusions/Significance: As proof of principle, TBrowser was used to define breast cancer cell specific genes and to detect
chromosomal abnormalities in tumors. Finally, taking advantage of our large collection of transcriptional signatures, we
constructed a comprehensive map that summarizes gene-gene co-regulations observed through all the experiments
performed on HGU133A Affymetrix platform. We provide evidences that this map can extend our knowledge of cellular
signaling pathways.
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Introduction

Microarray technology provides biologists with a powerful

approach for comprehensive analyzes of cells or tissues at the

transcriptional level. DNA chips are now widely used to assess the

expression levels from all genes of a given organism. These data,

most generally deposited in MIAME-compliant public databases,

constitute an unprecedented source of knowledge for biologists [1].

As an example, until now, the Gene Expression Omnibus

repository (GEO) host approximately 8,000 experiments encom-

passing about 200,000 biological samples analyzed using various

high through-put technologies [2]. Consequently, this represents

billions of measurements that reflect the biological states of cells or

tissues recorded in physiological or pathological conditions or in

response to various chemical compounds and/or natural mole-

cules. As public repositories are continually expanding, we are

facing the new challenge of designing new strategies to provide

efficient and productive access to the available data.

To date, at least two major solutions have emerged. The first

one applies a ‘‘gene-centered perspective’’, as developed in the ‘‘GEO

profile‘‘ or ‘‘SOURCE’’ web interfaces [3]. This approach allows

users to retrieve the expression profiles of a given gene in

numerous curated experiments. Once a profile is selected, a list of

similar profiles (i.e. neighbors) can be retrieved. Although GEO

proposes several tools to refine the queries, cross-analysis through

multiple experiments can not be performed. The second solution

involves an ‘‘experiment-centered perspective’’ as developed in the

‘‘GEO DataSets’’ and ‘‘ArrayExpress’’ web interfaces [4]. This

approach provides to biologists a set of classification tools to re-

analyze selected experiments. Depending on the interface,

supervised or unsupervised analysis (see below) can be pre-

calculated or computed on demand. Again, as no meta-analysis

tool is available, mining and compiling even few GEO Serie

Experiments (GSE) remains a difficult and time-consuming task.

We therefore lack efficient tools allowing productive data

mining of microarray databases. For example, querying whole
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public microarray data using a single gene identifier is an

ambiguous procedure to extract relevant co-regulated genes.

Indeed, depending of the biological context, genes can be involved

in different signaling pathways and may be associated with

different neighbors. As a consequence, combined queries should

be more appropriate to build relevant gene networks. Moreover,

numerous uninformative genes exist in microarray experiments.

They correspond most generally to those with low standard

deviation that are outside any natural gene cluster. These genes

should be discarded from analysis as they are inevitably associated

with false positive neighbors. These considerations motivated the

present work and the development of a new approach that follows

a ‘‘transcriptional signature centered perspective’’. The goal was to build

an application that would interact with a large database of

transcriptional signatures and would implement efficient tools to

analyze and visualize the results.

The first issue resided in the construction of a database containing

high quality transcriptional signatures obtained in an automated

fashion. Both supervised and unsupervised classification algorithms

can be used in microarray data analysis [5]. Supervised methods

aim at finding a set of genes whose expression profiles best correlate

with a known phenotype. They provide a way to select informative

genes by choosing the top k genes according to the results of a

statistical test (e.g. Student’s t-test, Significance Analysis of Micro-

arrays, Signal to Noise Ratio, ANOVA) and by controlling the false

discovery rate (FDR). In contrast, unsupervised classification

approaches, achieve clustering of genes based on their respective

expression profiles but are not intended to filter out uninformative

genes. Some popular approaches in microarray analysis use either

agglomerative methods (hierarchical clustering), partitioning meth-

ods (k-medoids, k-means, PAM, SOM, etc.) or methods aimed at

capturing informative dimensions (PCA). A filtering step is most

generally applied prior to unsupervised classification. One can select

genes with high standard deviations, those displaying a proportion

of values above a user-defined threshold or those having a given

maximum (or minimum) value. However this procedure is

extremely subjective and the number of selected genes may be

over or under estimated. Finally, another limit of classical

unsupervised methods also resides in their inability to accurately

identify the actual number of clusters if no further argument is

provided to the algorithm. As a consequence, additional algorithms

for unsupervised classification have been proposed such as Quality

Cluster algorithm (QT_Clust) [6], CHAMELEON [7] or Markov

CLustering (MCL) [8]. However, none of them address both the

filtering and partitioning issues. MCL is a graph partitioning

algorithm whose ability to solve complex classification problems has

been underlined in many applications including protein-protein

interaction networks [9], sequence analysis (TRIBE-MCL) [10] or

microarray analysis (geneMCL) [11]. In a graph representation of

microarray data, nodes stand for genes and edges represent profile

similarities between genes. As processing the full graph for

partitioning is time-consuming and computer-intensive the gen-

eMCL algorithm has to be run on a subset of genes that are selected

using classical filters (e.g. high standard deviation or fold-change). As

such a filtering procedure is not well suited for automated analysis of

numerous experiments; we developed an adaptive density-based

filter (DBF) whose goal is to isolate automatically informative genes

from a dataset. Selected genes are next used to construct a graph

that is subsequently partitioned using MCL. This modified version

of MCL algorithm was termed DBF-MCL for ‘‘Density Based

Filtering and Markov CLustering’’.

In the present paper, we show that DBF-MCL provides very

good results both on simulated and real datasets. The algorithm

was run on 1,484 microarrays datasets (46,564 biological samples)

performed on various Affymetrix platforms (human, mouse and

rat). This led to the identification of 18,250 transcriptional

signatures (TS) whose corresponding gene lists were tested for an

enrichment in terms derived from numerous ontologies or curated

databases using the DAVID knowledgebase [12] (Gene Ontology,

KEGG, BioCarta, Swiss-Prot, BBID, SMART, NIH Genetic

Association DB, COG/KOG, etc.) (see Figure S1 for an overview

of the data processing pipeline). Informations related to biological

samples, experiments, TS composition, TS associated expression

values and TS keyword enrichment scores were stored in a

relational database. A Java application, TBrowser (Transcripto-

meBrowser), was developed and deployed using Java Web Start

technology. Combined queries that can be done with an extended

set of Boolean operators allow user to rapidly select sets of TS

containing (or not) a given list of gene symbols. Based on these TS,

a list of frequently observed neighbors can be created. As each TS

is linked to a set of biological keywords (derived from ontologies),

user can also search for those enriched in genes involved in specific

biological processes. We show that TBrowser can be used to mine

productively hundreds of experiments and to reveal underlying

gene networks. Furthermore, using this unprecedented collection

of TS we built the first synthetic transcriptional map of all human

microarray data performed on Affymetrix HG-U133A platform

and currently available in the GEO database.

Results

DBF-MCL algorithm
Conventional algorithms used for unsupervised classifications of

gene expression profiles suffer from two main limitations. First, they

do not filter out uninformative profiles and second, they are not able

to find out the actual number of natural clusters in a microarray

dataset. We can considerer genes as points located in a hyperspace

whose number of axes would be equal to the number of biological

samples. As it is difficult to perceive high-dimensional spaces, a

common way to illustrate classification methods is to use a 2D

representation. In Supplemental Figure S2, each point represents a

gene and we are interested in isolating dense regions as they are

populated with genes that display weak distances to their nearest

neighbors (i.e. strong profile similarities). To isolate these regions we

can compute, for each gene, the distance with its kth nearest

neighbor (DKNN). If k is relatively small, DKNN should be smaller

for all genes falling in a dense area. Thus, the filtering procedure

used in DBF-MCL starts by computing a gene-gene distance matrix

D. Then, for each gene, DBF-MCL computes its associated DKNN

value (with k being set typically to 100 for microarrays containing 10

to 50k elements). Distributions of DKNN values observed with both

an artificial and a real dataset (Complex9RN200 and GSE1456

respectively, see thereafter for a description) are shown in Figure

S3A and S3B (solid curve). The asymmetrical shape of the

distribution observed in Figure S3B suggests the presence of a

particular structure within the GSE1456 microarray dataset.

Indeed, the long tail that corresponds to low DKNN values could

indicate the existence of dense regions. The fact that regions of

heterogeneous densities exist in the Complex9RN200 artificial

dataset is even clearer as a bimodal distribution is observed. Next,

we would like to define a critical DKNN value below which a gene

can be considered as belonging to a dense area and that would

depend on the intrinsic structure of the dataset. To this end, DBF-

MCL computes simulated DKNN values by using an empirical

randomization procedure. Given a dataset containing n genes and p

samples, a simulated DKNN value is obtained by sampling n

distance values from the gene-gene distance matrix D and by

extracting the kth-smallest value. This procedure is repeated n times

GEO Datamining with TBrowser
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to obtain a set of simulated DKNN values Si. As shown in Figure S3

(dotted line), the variance of the simulated DKNN values is very low

compare to that observed using the real dataset. Indeed, we can

think of simulated DKNN values as the distances to the kth element

if no structure existed in the associated space. In this case, we would

expect elements to be uniformly spread throughout the space and

the variance of DKNN value to be low. In practice several sets S1..q

are computed and thus several distributions of simulated DKNN

values are obtained. For each observed DKNN value d, a false

discovery rate (FDR) value is estimated by dividing the mean

number of simulated DKNN below d by the number of observed

value below d. The critical value of DKNN is the one for which a

user-defined FDR value (typically 10%) is observed. Given a set of

selected genes, the next issue is to partition them into homogeneous

clusters. This step is achieved through a graph partitioning

procedure. In the created graph, edges are constructed between

two genes (nodes) if one of them belongs to the k nearest neighbor of

the other. Edges are weighted based on the respective coefficient of

correlation (i.e.; similarity) and the graph obtained is partitioned

using the Markov CLustering Algorithm (MCL).

Performances of DBF-MCL on Complex9RN200 dataset
To test the performances of DBF-MCL algorithm we used a

modified version of the complex9 dataset which was used earlier

by Karypis et al. [7]. Since DBF-MCL is designed to handle noisy

datasets, 200% of normally distributed random noise was added to

the original data. The resulting dataset (which will be referred as

Complex9RN200 thereafter, see Figure S4A and S4B) shows some

difficulties for partitioning since it is composed of a noisy

environment in which arbitrary geometric entities with various

spacing have been placed. The two main parameters of DBF-

MCL are k that controls the size of the neighborhood and the

inflation I (range 1.1 to 5) which controls the way the underlying

graph is partitioned. The effect of k on the selection of informative

elements is shown in Figure S5A (Euclidean distance was used for

this dataset). A steep ascending phase and a slow increasing phase

(starting from a k values close to 40) were observed. This confirms

the existence of areas with heterogeneous densities. In fact, the

transition between the two phases reflects the transition from

dense to sparse regions. Indeed, datasets produced with k values

above 40 contain noisy elements (Fig S4C). In contrast, choosing k

values in the ascending phase ensure the achievement of noise-free

datasets. In the case of artificial data, satisfying partitioning results

were obtained with inflation values close to 1.2 (Fig S4D–G)

although in some cases some of the shapes were merged in a

manner that appears to be meaningful (Fig S4E and S4G). We

then compared DBF-MCL to several algorithms commonly used

in microarray analysis. All of them were run multiple times with

various parameters and the best solution was kept. In all cases, the

Euclidean distance was used as a distance measure between

elements. As these algorithms are not well-suited for noisy data,

they were run on the 3,108 points extracted using DBF-MCL

(k = 20). Also it is difficult to compare those algorithms to one

another, some of them obviously failed to identify the shapes.

Indeed, although k-means was run 10 times with random initial

starts (and the right number of centers) it led to a very poor

partitioning result (Fig S4J). Cluster Affinity Search Technique

(CAST, Fig S4K) and Quality Cluster algorithm QT_CLUST (Fig

S4I), gave also poor results as did the Self-Organizing Map (SOM)

(data not shown). Hierarchical clustering was run with single

linkage as arguments and the obtained dendrogram was then split

into 9 clusters (Fig S4H). Patterns were well recognized using this

method but prior knowledge of the number of clusters is a

prerequisite. Thus both DBF-MCL and hierarchical clustering are

able to properly identify complex shapes in a 2D space. The main

benefit of using DBF-MCL resides in its ability to extract relevant

informations from a noisy environment. However, a range of

optimal values for inflation parameter needs to be defined to get

the best results.

Performances of DBF-MCL on GSE1456 dataset
Next, DBF-MCL was tested with microarray data to explore its

effectiveness in finding clusters of co-regulated genes. To this end,

we used the microarray data from Pawitan et al. [13], who studied

gene expression profiles in a large cohort of Swedish patients

affected by breast cancer. This experiment is recorded as GSE1456

in the GEO database. All sample (n = 159) have been hybridized

onto the GPL96 platform (Affymetrix GeneChip Human Genome

U133 Array Set, HG-U133A). The complete dataset (22,283 genes)

was used for analysis. Figure S5B, shows the number of informative

genes obtained with various k values. Again, two phases were

observed suggesting that regions with heterogeneous densities exist

in the GSE1456 dataset. As expected, the transition from dense to

sparse regions was less marked than in the artificial dataset. A k

value of 100 was chosen to allow the extraction of a large part of

data that can be considered as noise-free. This value led to the

selection of 4,470 elements out of the whole dataset (Fig. 1A–B). The

graph partitioning procedure, using default MCL parameters

(I = 2), generated 11 highly homogeneous clusters (Fig. 1C–F). As

with the Complex9RN200 dataset, the results were very consistent

with those obtained using hierarchical clustering although for some

genes the clustering results differed (Fig. 1E). Importantly, partition

results were not very sensitive to inflation values. Indeed, 10 and 12

clusters were observed with I set to 1.5 and 2.5 respectively (data not

shown). All signatures were then submitted to functional enrichment

analysis. A summary of the results is given in Figure 1G. As expected

for a breast cancer dataset, TS were found to be related to (i)

immune response (T-lymphocyte activation, B-lymphocyte activa-

tion and interferon alpha), (ii) primary metabolism (cell cycle,

ribosome biogenesis, nuclear phosphorylation and transcription)

which is probably reminiscent of tumor aggressiveness (iii),

modification of local environment (extracellular matrix and cell

adhesion) which could sign metastasis potential of each sample, (iv)

and estrogen receptor status of breast tumors (estrogen response

pathway). Altogether, these results underline the ability of DBF-

MCL algorithm to find natural gene clusters within a randomly

selected dataset. Indeed, for numerous additional microarray

datasets hierarchical clustering results and DBF-MCL results were

compared. As illustrated in Figure S5B for a representative set of

experiments, setting k to 100 allows in all cases to delete noisy

elements and to select only informative genes in a microarray

dataset. Interestingly, in all cases meaningful partitioning results

were obtained using inflation parameter set to 2.

Systematic extraction of TS
We next applied DBF-MCL algorithm to all experiments

performed on human, mouse and rat Affymetrix microarrays and

available in the GEO database (33 platforms, Supplementary

Table S1 and S2). Only experiments containing more than 10

biological samples were kept for analysis. Overall, this dataset

includes 46,564 biological samples hybridized in the context of

1,484 experiments. Each experiment was analyzed independently

and subjected to TS discovery process (k = 100, FDR = 10%, S1..3,

Inflation = 2). As mentioned in the Material and Methods section,

we rank-transformed data from each biological sample to get a

common input for DBF-MCL algorithm and to allow analysis of a

large broad of experiments whose normalization status is

frequently unknown. Furthermore, a distance based on Spear-

GEO Datamining with TBrowser
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man’s rank correlation coefficient was used for kth-nearest

neighbor computation. This rank-based distance is known to be

clearly more resistant to outlying data points than Pearson-based

distance and thus ensured the selection of genes belonging to

unmistakable clusters. The full pipeline was run on a server

equipped with 6 CPUs and took about 4 days to complete. For the

sake of clarity, only results obtained with GPL96 which is the most

widely used Affymetrix microarray platform will be presented in

this section (311 experiments related to GPL96 were analyzed,

12,752 hybridized samples). On average, 4,341 probes (min = 832,

max = 5,849) per expression matrix were declared as informative

by DBF-MCL suggesting that routinely 20% of the 22,283 probes

measured on the HG-U133A array belong to a natural cluster.

Graph partitioning generated on average 10.8 clusters (min = 2,

max = 29) for each experiment and each cluster contained

approximately 400 probes corresponding in average to 370

distinct gene symbols. Figure 2 shows a summary of these results.

As expected no clear correlation was observed between the

number of selected genes and the number of samples in the

experiments which demonstrates the robustness of the filtering

process. In contrast, a trend to produce more clusters in

experiments containing few samples was observed. This was

notably marked in experiments containing 10 to 15 samples. Such

a bias is classical in data analysis. Indeed, if numerous values (i.e.

samples) are used to estimate the expression profile of a given gene,

outliers will have weak impact on distance calculation and the

gene will be assign to the expected cluster. In contrast, when only

few values are available, each of them has a greater impact on

distance calculation. This results in producing more clusters with

some of them having centers close to one another. This bias is also

presumably amplified by the fact that small sample sets contain

most generally a greater biological diversity compared to large

sample sets as they contain fewer replicates. Overall, our analysis

of GPL96 related experiments gave rise to 3,377 TS. The full

analysis on the 33 Affymetrix platforms produced 18,250 TS

which correspond to 220 millions of expression values. Partitioning

results where manually checked for a large panel of experiments.

Although, results seemed perfectible in few cases, they always

appeared to be rational.

The TBrowser interface
Comprehensive information on samples, experiments, probes

and genes were stored in a mySQL relational database. A flat file

indexed on TS IDs was used to store TS expression data. This

solution was preferred because it turned out to be an excellent

alternative to database for retrieving rapidly expression values for

the selected TS. We next developed TBrowser, a Multitier

architecture system composed of (i) a ‘‘heavy client’’ written in

JAVA (presentation Tier), (ii) a servlet container (logic tier) and (iii)

a back-end database (data tier). The client application allows user

Figure 1. Results obtained with the GSE1456 dataset. DBF-MCL was run with GSE1456 as input (k = 100, FDR = 10%, S1..3, Inflation = 2). (A)
Hierarchical clustering of the GSE1456 dataset. (B) Same as (A) but only informative genes are displayed. (C) The graph constructed with the 4,470
selected genes. (D) The graph after MCL partitioning. Each point is colored according to its associated class. (E) Correspondence between
hierarchical clustering and DBF-MCL results. (F) TS obtained for GSE1456 (G) Functional enrichment associated with these TS.
doi:10.1371/journal.pone.0004001.g001
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to query TBrowser database using six methods: by gene symbols,

by probe IDs, by experiments, by microarray platform, by

ontology terms (annotation) or by TS. Three of them (gene

symbols, probe IDs, and annotation methods) accept a list of

operators that control the way a query is to be processed. One may

take advantage of these operators to create complex queries using

the AND operator (&), the OR operator (|), the NOT operator (!)

or using additional characters such as the quote or parenthesis

(reader may refer to the user guide for additional explanations and

informations). The main window of TBrowser is made of five

panels (Fig. 3). The search panel is the main entry as it is used (i) to

define the search method, (ii) to write the queries, (iii) to launch

database interrogation and (iv) eventually to filter out some of the

TS. Filters can be applied to select species of interest and to

control the sizes (number of samples and number of genes) of the

TS that one wants to analyze. The results area can display two

panels: the list of queries the user launched during his session and

the list of TS that correspond to the currently selected query.

Double-clicking on one (or several) TS send it (them) to the

selected plugin. The information area is used to display various

informations about the selected TS whereas the plugin area is used

to select one of the currently installed plugins. Finally, the plugin

display panel manages the display of the currently selected plugin.

To date, eight plugins have been developed (three of them are

presented in this article). The Heatmap plugin is composed of two

main panels: the heatmap on the left and the annotation panel on

the right (Fig. 3). The Heatmap panel displays a color-coded

image of TS expression values. In this representation, each row

corresponds to a probe and each column to a sample. Additional

informations, such as external links, can be retrieved by single-

click on genes or samples. Functional enrichment informations are

available on the right. The TBCommonGenes plugin was

developed to compare gene composition of several TS and will

be presented in the next section. Finally the TBMap plugin that

can be used to visualize a summary of transcriptional regulation

events observed in a given microarray platform will be presented

in the last paragraph of the results section.

Meta-analysis of public microarray data using TBrowser: a
case study

TBrowser can be used in many biological contexts to point out

relevant experiments and construct robust gene networks. Several

peer-reviewed publications have highlighted the joint regulation of

the estrogen receptor-a (ESR1/ER-a), GATA3 and FOXA1 in

breast cancer cells [14]. Although some of these reports have

associated entry in the GEO database, retrieving neighbors of

GATA3, FOXA1 and ESR1 remains a time consuming and

difficult task using existing tools. As a consequence, these

informations are reserved to those with strong bioinformatics skills

although they are of primary interest to the biologist. Using the

TBrowser search engine, this task can be translated into a very

simple Boolean query, ‘‘ESR1 & GATA3 & FOXA1’’, which will

Figure 2. Large scale TS extraction from GPL96 experiments. DBF-MCL was run with default parameters (k = 100, FDR = 10%, S1..3,
Inflation = 2). X axis corresponds to the number of samples in the experiment and Y axis to the number of informative genes. For each experiment,
the number of associated TS is represented by the size of the dot. For clarity purpose only experiments with less than 100 samples are represented.
Furthermore, the name of only some of them is displayed.
doi:10.1371/journal.pone.0004001.g002
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be almost instantaneously proceeded by the server. With the

current database release, this produces a list of 16 TS (see Table 1)

containing on average 508 probes (range: 82–1,572) and which

were obtained using various microarray platforms (GPL96,

GPL570, GPL91). Interestingly, all these TS are related to

experiments performed on breast cancer cells underlying the high

specificity of this gene list (Table 1). The TBCommonGenes plugin

indicates that in addition to ESR1, GATA3 and FOXA1 two

genes (ANXA9 and ERBB4) are found in all 16 TS. Importantly,

63 genes are found in at least 10 out of the 16 selected TS (63%).

As expected, this list contains numerous markers of breast cancer

cells whose expression specificity was previously reported by other

(notably ERBB3, XBP1, KRT18, IL6ST, CREB1, TFF1, TFF3;

see Supplementary Table S3). Thus TBrowser can be used to

perform meta-analysis of microarray data in a platform-indepen-

dent manner providing high confidence gene lists. However, one

can also focus the analysis on a unique platform. Indeed, the

transcriptional signatures 3DE64836D, B79B1C0B9 and

E2E620F40 that were derived from the GPL570 platform (which

measures over 47,000 transcripts) share a list of 68 genes. Many of

them correspond to poorly characterized genes (for example,

C17orf28 C1orf64, KIAA1370, KIAA1467, LOC143381,

LOC400451, LOC92497 and ZNF703). This example clearly

demonstrates the superiority of TBrowser over conventional

approaches as it can be used, easily and productively, to create

robust sets of transcriptionally related genes whose subsequent

analysis may be crucial in defining new therapeutic targets.

Using annotation terms to mine public microarray data
Based on the systematic functional enrichment analysis, the vast

majority of TS (84%) have a set of associated biological terms (only

functional enrichment with q-value,0.01 are stored in the

database). One can search for TS related to functional terms of

the DAVID knowledgebase (e.g. ‘‘nervous system development’’).

More interestingly, multiple terms can be combined with Boolean

operators. Searching for TS which contain genes located in the

6p21.3 and 14q32.33 chromosomal regions (major histocompat-

ibility complex and human immunoglobulin heavy-chain locus

respectively) and which contain T-cell specific genes, can be

translated as: 6p21.3[4] & 14q32.33[4] & ‘‘T CELL ACTIVA-

TION’’[5,12] ([4] = cytoband term, [5] = GO term, [12] = Pan-

ther pathways term). As chromosomal aberrations do occur

frequently in cancer our approach can also be used to perform

systematic cytogenetic analysis. Indeed, throughout our analysis,

2,208 functional enrichments related to 360 human cytobands

were observed and stored in the database. As an example, TS with

very strong enrichment (q-value,1.10220) for any of the human

cytobands stored in the database are presented in Table 2. The

first one is related to atopic dermatis analysis (skin biopsies) and

contained 24% of genes located in 17q12-q21. They correspond to

genes encoding for the keratin and keratin-associated protein

families (KRT17, KRT27, KRTAP1-5, KRTAP17-1, KRTAP3-

1, KRTAP3-3, KRTAP4-10, KRTAP4-12, KRTAP4-13,

KRTAP4-15, KRTAP4-2, KRTAP4-3, KRTAP4-5, KRTAP4-

8, KRTAP4-9, KRTAP9-2, KRTAP9-3, KRTAP9-4 and

Figure 3. The TBrowser 2.0 interface. The main window of TBrowser is made of five panels (highlighted in red): the search panel (1), the results
panel (2), the information panel (3), the plugins panel (4) and the plugin display panel (5). This example shows the expression profiles of genes
contained in the TS CBE3881EB derived from GSE469 (‘‘Temporal profiling in muscle regeneration’’). Annotation panel shows that this TS is highly
enriched in genes related to ATP synthesis.
doi:10.1371/journal.pone.0004001.g003
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KRTAP9-8). This signature is notably annotated as being

enriched in genes related to PMID 11279113 (‘‘Characterization

of a cluster of human high/ultrahigh sulfur keratin-associated

protein genes embedded in the type I keratin gene domain on

chromosome 17q12-21’’) [15] and in genes related to the PIR

keyword ‘‘multigene family’’. Furthermore, several signatures, of

Table 2 are related to melanoma and six of them were observed in

the GSE7127 experiment [16]. Although data from Table 2 would

deserve further analysis they are most likely related to gain or loss

of genetic material in tumors. Indeed, gain of 8q is frequently

observed in a number of tumor types (including melanoma and

ovarian tumors) and this region is known to contain the c-myc

oncogene at 8q24.21. Interestingly, in several cases, contiguous

cytobands were significantly enriched suggesting a large deletion

or amplification of genetic material in these tumors (TS

60E29DA83 is enriched in genes from 8q13, 8q21.11, 8q22.1,

8q22.3, 8q24.13 and 8q24.3 cytobands). In the same way, loss of

genetic material of the long arm of chromosome 11 occurs in

primary melanoma but is even more frequent in metastatic tumors

(TS A93ED7519 is enriched in genes from 11q21, 11q23.3 and

11q24.2 cytobands). Altogether, these results underline the

versatility of TBrowser and its ability to extract hidden and

meaningful informations from published or unpublished micro-

array data. Indeed, the cytogenetic results presented in Table 2

were not discussed by the authors in the corresponding articles.

A synthetic view of all GPL96 related experiments
The paradigm that genes from a TS share functional

relationships is now widely accepted and constitutes the basis of

transcriptome analysis [17]. However, each of these TS is rather

Table 1. Transcriptional signatures containing Affymetrix probes for ESR1, GATA3 and FOXA1.

TS ID1 Genes2 Probes2 Samples2 Sample type GSE ID GPL ID Author PubMed IDs

0F2635383 1190 1572 23 Cell lines GSE6569 GPL96 Huang F et al 2007 17332353

3DE64836D 102 143 62 Tissue GSE7904 GPL570 unpublished 2007 -

59A18E225 690 893 121 Both GSE2603 GPL96 Minn AJ et al 2005 16049480

6C975B20B 88 96 26 Tissue GSE6772 GPL96 Klein A et al 2007 17410534

6C975B290 88 96 26 Tissue GSE6596 GPL96 Klein A et al 2007 17410534

7150E17F6 868 1032 34 Cell lines GSE4668 GPL96 Coser KR et al 2003 14610279

8059848B4 200 250 251 Tissue GSE3494 GPL96 Miller LD et al 2005 16141321

84E5E1077 694 883 198 Tissue GSE7390 GPL96 Desmedt C et al 2007 17545524

8F69864F9 68 82 95 Tissue GSE5847 GPL96 Boersma BJ et al 2007 17999412

A151D5695 297 361 58 Tissue GSE5327 GPL96 Minn AJ et al 2007 17420468

B79B1C0B9 270 380 47 Tissue GSE3744 GPL570 Richardson AL et al 2006 16473279

BDB6D8700 550 679 104 Tissue GSE3726 GPL96 Chowdary D et al 2006 16436632

D8F0B528C 125 152 159 Tissue GSE1456 GPL96 Pawitan Y et al 2005 16280042

E2E620F40 448 616 129 Tissue GSE5460 GPL570 unpublished 2007 -

EA9669A21 219 251 158 Tissue GSE3143 GPL91 Bild AH et al 2006 16273092

F310ACC36 519 646 49 Tissue GSE1561 GPL96 Farmer P et al 2005 15897907

1Transcriptional signature ID.
2Total number.
doi:10.1371/journal.pone.0004001.t001

Table 2. Transcriptionnal signatures displaying high enrichment (q value,1.10220 ) for any of the human cytoband tested.

TS ID1 Enrich.2 Cytoband q.value Sample type GSE ID GPL ID Authors PubMed ID

3DA3C8345 24% 17q12-q21 1.7.10239 Skin GSE5667 GPL97 Plager DA et al 2007 17181634

43CC3EF57 9% 8q24.3 7.0.10232 Melanoma GSE7153 GPL570 Unpublished 2007 -

60E29DA83 16% 8q24.3 6.8.10224 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

60E581184 26% 17q25.1 5.5.10223 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

60E6B4129 35% 20p13 1.6.10226 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

60E96FF1E 28% 6p21.3 1.2.10228 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

60EC95F6A 17% 7q22.1 6.3.10231 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

60EEBD669 32% 11q23.3 1.4.10226 Melanoma GSE7127 GPL570 Johansson P et al 2007 17516929

B4C95CF18 42% 8q24.3 1.1.10236 Ovary GSE6008 GPL96 Hendrix ND et al 2006 16452189

A93ED6519 16% 11q23.3 6.9.10223 Melanoma GSE7152 GPL570 Packer LM et al 2007 17450523

A93DB01ED 11% 7q22.1 9.5.10230 Melanoma GSE7152 GPL570 Packer LM et al 2007 17450523

1Transcriptional signature ID.
2Enrichment: Proportion of non redondant genes from the TS that are located in the corresponding cytoband.
doi:10.1371/journal.pone.0004001.t002
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associated to multiple underlying pathways whose components

and limits are unclear. Our difficulty in depicting comprehensive

maps for pathways is illustrated by existing discrepancies, for

instance, between those proposed by BioCarta, KEGG and

GeneMAPP. We reasoned that the more frequently two genes fall

in the same TS, the more likely these genes belong to the same

core functional network. To test this hypothesis, we produced a

Boolean matrix with 22,215 probes from GPL96 platform as rows

and 3,114 GPL96 specific TS as columns (only TS containing 30

to 1500 probes were included). This matrix was filled with zero

and elements were set to 1 if a given gene was observed in the

corresponding TS. Hierarchical clustering with uncentered

Pearson’s correlation coefficient was used to reveal genes

frequently associated to the same TS. Given the order of the

resulting matrix, it could not be visualized on a desktop computer

using conventional software (i.e.; Treeview, MeV). We thus

developed the TBMap plugin which allows one to visualize the

map but also to superimpose a user-defined or a KEGG-related

gene list. As expected, most of the clusters where obviously

enriched in genes involved in similar biological processes (Protein

biosynthesis/Ribosome function, oxidative phosphorylation, cell

cycle, fatty acid metabolism, valine leucine and isoleucine

degradation, extracellular matrix, breast cancer cells, structural

constituent of muscles, neuronal processes, etc.). This was

particularly clear when KEGG pathway informations were

superimposed (see Figure S6). The Figure 4 presents some of the

clusters that were identified as related to immune system functions.

We could find a signature defining T cells that contained

numerous cell-surface markers (e.g. TCA@, CD2, CD3G, CD6,

IL2RB, IL2RG, IL7R, IL21R and ICOS), signaling genes

(ZAP70, LAT, LCK, ITK) and cytotoxicity-related genes (GZMA,

GZMB, GZMH, GZMK and PRF1). Concerning B-cells, three

clusters were observed. A large signature contains mature B-cell

markers (CD19, CD22, CD72 and CD79B) and transcription

factors important in B-cell development such as PAX5 and

TCL1A. A second signature contains POU2AF1/OBF-1, together

with its described targets: genes coding for immunoglobulin

(IGHG1, IGHG3, IGHA1, IGHM, IGJ, IGKC and IGL) and the

B-cell maturation factor, TNFRSF17/BCMA [18,19]. The third

B-cell signature contains cell surface markers found in immature

B-cells (CD24, VPREB1, IGLL1/CD179B and CR2/CD21) in

addition to transcription factors known to play a crucial role

during early B-cell development (TCF3, SPIB and CUTL1). The

NK signature contains eight genes of the Killer cell immunoglob-

ulin-like receptors (KIR) family, 3 genes of the killer cell lectin-like

receptor family in addition to other markers whose expression has

Figure 4. The transcriptional MAP associated with GPL96 related experiments. (A) A low resolution image made of 22,215 probes from
GPL96 platform as rows and 3,114 GPL96 specific TS as columns. Red color indicates the presence of a gene in the corresponding TS (default to black).
(B) Zooms of the corresponding areas showing some immune system related meta-signatures. (C) Representative genes that fall into these clusters.
doi:10.1371/journal.pone.0004001.g004
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been reported on the surface of NK cells (CD160, CD244/2B4

and CD226) [20,21,22]. It also contains TBX21/T-bet together

with IL18R1, IL18RAP, IL12RB2 and IFNG. Importantly, the

IL12/IL18 combination has been shown to be potent inducers of

both TBX21/T-bet and IFNG in NK cells[23,24]. In addition to

MHC-Class I, MHC-Class II and macrophage related signatures,

two pathways related to immune function are presented in

Figure 4. The AP1 pathway is made of the prototypical immediate

early genes and contains numerous transcription factors (EGR1,

EGR2, FOS, FOSB, IER2, JUN, JUNB, KLF6, KLF4, KLF10,

ATF3, BTG2 and BTG3) whose complex interplay has been

reported earlier. Finally, a NFKB signature was also observed

which, again, contains prototypical regulators (NFKIA, NFKIE,

RELB, BCL-3 and MAP3K8/TPL2) and known targets (CCL20,

CXCL3, IL1B, IL8 and SOD2). Altogether, these results

underline the high relevance of the signatures obtained using this

compilation of TS derived from GPL96 related GEO experiments.

Discussion

In the present paper, we present the construction of a unique

collection of TS that summarize almost all human, mouse and rat

Affymetrix microarray data stored in the GEO database.

TBrowser constitutes a highly powerful search engine that makes

it possible to perform easily platform independent meta-analysis of

microarray data. This can be considered as a real improvement

over classical approaches and softwares as it provides easy and

productive access to data without the need of any programming

skills. Indeed the simple use of an extended set of operators proved

to be sufficient to construct robust gene networks and assign poorly

characterized genes to relevant biological pathways. As a

consequence, it is particularly well suited to compare results

obtained through microarray, ChIP-on-chip, ChIP-seq, CGH or

protein-protein interaction experiments to those previously stored

in the GEO database.

In all tested experiments, we found that DBF-MCL gives very

good results both on simulated datasets and real microarray

datasets. Although Lattimore et al proposed another MCL-based

algorithm (geneMCL) we were unable to compare our results with

their implementation as the software is no longer available nor

maintained. However, DBF-MCL was run on the full van’t Veer

DataSet [25] (117 biological samples) that was used by Lattimore

and collaborators in the original paper. In their report, the authors

used a subset of genes (5,730 out of 24,482) that were selected

based on their associated variance. Our procedure run on the full

dataset led to the selection of 5,932 genes that fall into 22 clusters

(in contrast to 154 clusters using geneMCL). This discrepancy is

likely to be due to the filtering step applied to the dataset. Indeed,

a strong associated variance can also be reminiscent of punctual

random artifacts. Thus, selecting those genes will generate small or

singleton clusters. In this context, the MDNN statistic better

handle these artifacts as its purpose is to conserve genes that

belong to dense region in the hyperspace.

To date, TBrowser provides user with only one partitioning

solution for a dataset. However as density is heterogeneous inside a

dataset, several partitioning solutions exist. For instance, if one

observes a cluster containing cells of the immune system this will

also frequently contain several sub-clusters that will be reminiscent

of cell types (B- or T-cells for example) or activation status.

Increasing MCL granularity (‘‘Inflation’’ parameter) will most

generally split the parent clusters and provided user with another

partitioning result. However, both results can be considered as

optimal and we should consider all of them. To this end we plan to

propose multiple partitioning solutions for each dataset to provide

a more exhaustive view of underlying biological pathways.

Although, such an approach could appear computer-intensive it

should be practicable, taking into account that DBF-MCL is much

faster than hierarchical clustering or MCL run on a whole dataset.

In addition, although we routinely obtained very relevant results

with DBF-MCL, we expect that even more accurate methods will

be proposed in the future.

The present work focus on human, mouse and rat Affymetrix

microarray data but TBrowser can handle any type of microarrays

and organism. The current release of the database already

contains data obtained using other commercial (e.g. Agilent,

Illumina Inc., GE Healthcare, Applied Biosystems, Panomics,

CapitalBio Corporation, TeleChem ArrayIt, Mergen-LTD, Ep-

pendorf Array Technologies) and non commercial platforms (e.g.

National Cancer Institute, Vanderbilt Microarray Shared Re-

source, Genome Institute of Singapore), several of them being

related to the MicroArray Quality Control (MAQC) project

(GSE5350) [26]. However, to date, systematic analysis of all

experiments performed on these platforms has not been done. The

flexibility of our approach also makes it possible to integrate and

compare data obtained through any kind of large scale analysis

technologies providing that the experiment can be represented by

a single numerical matrix (ChIP-on-chip, Protein array, large scale

Real-time PCR, ChIP-seq, etc.). Three plugins (Heatmap,

TBCommonGenes and TBMap) have been presented in this

article but seven new plugins have been recently developed

(manuscript in preparation). In the near future, the ease of plugin

development will makes it possible to look for TS enriched in

genes sharing transcription factor and miRNA specific motifs in

their non-coding regions.

As raw data are only available for some of the microarray

datasets, we used the ‘‘normalized’’ data provided by submitters.

These data were subsequently rank-transformed and used for

classification. This procedure allowed us to re-analyze a very large

number of datasets. However, the drawback is that quality status

of individual samples or experiments could not be determined

(computing the so-called ‘‘39/59 ratio’’ requires raw data). We plan

to provide extensive quality control informations through a

dedicated plugin. However, we think that scientists should comply

better with the MIAME guidelines and that they should provide

systematically raw data when submitting a new experiment.

Finally, we would like to acknowledge the GEO database team

whose efforts in providing high quality repository service made this

work possible.

Materials and Methods

Microarray data retrieval
Human mouse and rat microarray data derived from 30

Affymetrix microarray platforms (Supplementary Table S1) were

downloaded from the GEO ftp site and retrieved in seriesMatrix file

format (ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/).

SeriesMatrix are summary text files related to a GEO series

Experiment (GSE) that include sample and experiment metadata

together with a tab-delimited matrix that corresponds to normalized

expression data. Each file (n = 2,869) was parsed using a Perl script

to extract gene expression matrix and metadata. Probes with

missing expression values were excluded from analysis. Only

expression matrix with at least ten columns/samples were kept for

subsequent analysis (n = 1,484, Supplementary Table S2).

DBF-MCL algorithm
The filtering step of DBF-MCL was implemented in C. The

latest Markov Clustering algorithm version (1.006, 06-058) was
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obtained from http://micans.org/mcl/src/. The full pipeline of

DBF-MCL (that integrates normalization, filtering and partition-

ing) was implemented in Bash Shell Scripting language. This script

supports different metrics for distance calculation (Euclidean

distance, Pearson’s correlation coefficient-based distance, Spear-

man’s rank correlation-based distance).

Data normalization and processing
Given the huge amount of data processed by GEO curators it is

impractical to determine the quality and efficiency of the

normalization methods used [27]. Although seriesMatrix files

should ideally contain log-transformed data, expression matrices in

linear scale were also observed in several cases. To circumvent this

problem each column of the expression matrix was rank-transform

(using R software). This normalization procedure is insensitive to

data distribution and provided us with a standard input for the

DBF-MCL algorithm. In the case of microarray data, DBF-MCL

was run using Spearman’s rank correlation-based distance (1-r).

However, although rank-based methods are well suited for

normalization and distance calculation purposes they are not

appropriate to display gene expression profiles. To this end, a

normal score transformation was applied to each column of the

datasets after DBF-MCL classification. The transformation

ensures that whatever the data a standard format is available for

heatmap visualization. Finally, for each experiment, this dataset

was used (1) to classify samples using hierarchical clustering (2) to

build the expression matrix for the corresponding TS.

Data storage
Expression matrix for each TS were stored in an indexed flat file

with a TS ID as a key. This flat file is used by the TBrowser client

to retrieve expression data for the requested TS. Experiment

metadata, corresponding to sample and experiment informations

were stored in a mySQL relational database. Probe meta-

information (gene symbol, gene name, GenBank accession ID,

chromosomal location, Entrez ID) were obtained from Biocon-

ductor [28] annotation packages and stored in the database. In

some cases, as no annotation packages were available (especially

for GeneChipH CustomExpressH Array) a script was used to

obtain gene symbols and gene names from GenBank files based on

the provided GenBank accession ID. Both flat file and database

information will be periodically updated to give access to novel

experiments stored in GEO repository.

Complex9 dataset
The complexe9 dataset was obtained from the UH Data Mining

and Machine Learning Group (UH-DMML, http://www2.cs.uh.

edu/,ml_kdd/). Cluster Affinity Search Technique (CAST) was

run using the TMEV software. QT_CLUST and k-means were

run using the flexclust and fpc R package. For k-means, the

algorithm was run 10 times with random initial centers.

Hierarchical clustering was performed using the amap library

from the R/Bioconductor project. The Euclidean distance was

used in all cases.

Functional enrichment analysis
We used the DAVID knowledgebase [12] for functional

enrichment analysis as it provided a practical mean to gain access

to a wide range of heterogeneous sources of gene annotation

(152,543 annotation terms were used for human, 105,207 for

mouse and 39,787 for rat). DAVID ID mapping was obtained for

218,727 AffyID. A Perl script that integrates call to the R software

was run to load probe list and calculate iteratively Fisher’s exact

test p-values on 262 contingency tables. Bonferroni adjusted p-

values were calculated using the multtest Bioconductor library for

all TS. Overall, 5.106 Fisher’s exact test were performed.

User interface
TBrowser is accessible through a web browser at TAGC web

site (http://tagc.univ-mrs.fr/tbrowser/). Of note, the TBrowser

client is extensible through a plug-in architecture that allows rapid

development of additional features. A developer’s guide will be

available soon on our website.

Supporting Information

Figure S1 A schematic overview of the pipeline used in

TBrowser.

Found at: doi:10.1371/journal.pone.0004001.s001 (10.16 MB

TIF)

Figure S2 An illustration in two dimensions of the motivation

behind DBF-MCL filtering step. Arrows point out the 20th nearest

neighbor for selected points. Length of each segment corresponds

to a given DKNN value.

Found at: doi:10.1371/journal.pone.0004001.s002 (8.22 MB TIF)

Figure S3 Distributions of DKNN values. Observed DKNN

values (solid line) and of a set of simulated DKNN values S (dotted

line) are shown for (A) the Complex9RN200 artificial dataset and

(B) the GSE1456 microarray dataset.

Found at: doi:10.1371/journal.pone.0004001.s003 (9.01 MB TIF)

Figure S4 Colors correspond to the clusters found using the

corresponding algorithm (A) The whole dataset (9,112 points). (B)

A zoom-in of Complex9RN200 dataset that displays the various

shapes to be found. (C) DBF filtering step without partitioning.

With k set to 60, noisy elements remain around the shapes. (D–G)

The filtering and partitioning results obtained using DBF-MCL

run with a range of k values and I values. Other arguments are

unchanged (FDR = 10%, S1..3). The set of points (n = 3,108)

obtained using DBF-MCL (k = 20) was used to test the other

algorithms (H) Results obtained with hierarchical clustering (single

linkage). The obtained dendrogram was cut to produce 9 clusters.

(I) Results obtained with the QT_CLUST algorithm (radius = 0.8).

(J) Results obtained for k-means (9 centers, 100 initializations). (K)

Results obtained with cst(threshold = 0.81).

Found at: doi:10.1371/journal.pone.0004001.s004 (9.41 MB TIF)

Figure S5 Impact of various k values on DBF-MCL results. The

x-axis correspond to k values. The y-axis correspond to the

number of elements considered as informative. (A) DBF-MCL was

run with the Complex9RN200 as input using a range of k values

(FDR = 10%, S1..3, Inflation = 1.2). (B) DBF-MCL was run with

several microarray datasets as input (including GSE1456) using a

range of k values (FDR = 10%, S1..3, Inflation = 2).

Found at: doi:10.1371/journal.pone.0004001.s005 (8.72 MB TIF)

Figure S6 The TBMap plugin. These pictures are derived from

the GPL96 map (22,215 probes as rows and 3,114 GPL96 specific

TS as columns). Red indicates the presence of a gene in the

corresponding TS (default to black). Only small parts of the map

are displayed. (A) A cluster enriched in genes from the

‘‘Aminoacyl-tRNA biosynthesis’’ KEGG pathway (hsa00970).

Genes (rows) from this KEGG pathway are displayed as blue

lines (CARS, SARS, AARS, GARS, MARS, IARS, YARS).

Genes from a manually entered gene list are shown in yellow

(TRIB3, MOCOS, MPZL1, CBS, PPCDC). (B) A cluster enriched

in genes related to oxydative phosphorylation (KEGG pathway

hsa00190, ‘‘Oxidative phosphorylation’’). (C) A cluster containing
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genes related to ribosome biogenesis (KEGG pathway hsa03010

‘‘Ribosome’’). (D) A cluster enriched in genes involved in cell

proliferation (KEGG pathway hsa04110 ‘‘Cell cycle’’).

Found at: doi:10.1371/journal.pone.0004001.s006 (9.66 MB TIF)

Table S1 Informations related to Affymetrix platforms (n = 33)

used in the present work.

Found at: doi:10.1371/journal.pone.0004001.s007 (0.12 MB

XLS)

Table S2 Informations related to experiments (n = 1,484) that

were analyzed using the DBF-MCL algorithm. All Informations

were obtained from the GEO website.

Found at: doi:10.1371/journal.pone.0004001.s008 (1.38 MB

XLS)

Table S3 This matrix summarizes the results obtained using the

‘‘ESR1 & GATA3 & FOXA1’’ query. Rows correspond to genes

and columns to TS. The presence of a given gene in a given TS is

indicated by 1 (default 0).

Found at: doi:10.1371/journal.pone.0004001.s009 (0.66 MB

XLS)
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