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Abstract: Oxidative stress is characterized by excessive production of reactive oxygen species together
with exhausted antioxidant defenses. This constitutes a main pathophysiologic process that is
implicated in cardiovascular and renal diseases. In particular, enhanced oxidative stress may lead to
low-density lipoprotein accumulation and oxidation, endothelial cell activation, adhesion molecule
overexpression, macrophage activation, and foam cell formation, promoting the development and
progression of atherosclerosis. The deleterious kidney effects of oxidative stress are numerous,
including podocytopathy, mesangial enlargement, renal hypertrophy, tubulointerstitial fibrosis,
and glomerulosclerosis. The prominent role of oxidative mechanisms in cardiorenal diseases may
be counteracted by recently developed pharmacotherapies such as novel antidiabetic agents and
finerenone. These agents have demonstrated significant antioxidant activity in preclinical and
clinical studies. Moreover, the use of melatonin as a treatment in this field has been experimentally
investigated, with large-scale clinical studies being awaited. Finally, clinical implications and future
directions in this field are presented.

Keywords: oxidative stress; cardiovascular disease; chronic kidney disease; sglt2 inhibitors; glp1
receptor agonists; finerenone; melatonin

1. Introduction

Cardiovascular and renal diseases are leading causes of morbidity and mortality
worldwide. The epidemiological trends of these non-communicable diseases are worri-
some, with an increasing incidence and prevalence, especially in developing countries [1–3].
Moreover, owing to shared risk factors, these entities frequently coexist. Their patho-
physiology is complex, comprising multiple pathways. Among them, oxidative stress
is crucial in the development of atherosclerotic diseases, heart failure (HF), and chronic
kidney disease (CKD) (Figure 1). Pharmacotherapies with pleiotropic effects, such as
sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor ago-
nists (GLP1-RA), and finerenone have recently been found to reduce the burden associated
with these pathologic states. In this narrative review, we discuss the role of oxidative stress
in cardiovascular diseases and CKD. Moreover, we present the available preclinical and
clinical evidence regarding the antioxidant potential of agents with pleiotropic effects, such
as SGLT2 inhibitors, GLP1-RA, and finerenone in cardiac and renal pathologies. Finally, we
discuss the importance of melatonin (MT), an endogenous hormone acting mainly through
antioxidant mechanisms to ameliorate cardiorenal diseases, according to a plethora of
preclinical evidence.
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Figure 1. Agents with antioxidant effects, such as sodium-glucose cotransporter-2 (SGLT2) inhibitors,
glucagon-like peptide-1 receptor agonists (GLP1-RA), finerenone, and melatonin may induce re-
ductions in reactive oxygen species (ROS) and reinforce antioxidant system activity. Ultimately,
the burden of diseases associated with oxidative stress such as heart failure (HF), atherosclerosis,
and chronic kidney disease (CKD) is diminished. SOD: superoxide dismutase, GPx: glutathione
peroxidase, NAD+: nicotinamide adenine dinucleotide, POX: paraoxonases, Nox: NADPH oxidase,
XO: xanthine oxidase, MDA: malondialdehyde.

2. Oxidative Stress in Cardiorenal Diseases

In live cells, during regular metabolic activities, reactive chemicals such as reactive
oxygen species (ROS) and reactive nitrogen species are constantly produced by oxidation re-
actions, being either enzymatic or nonenzymatic. Free or primary radicals are independent
chemical entities containing one or more unpaired electrons. These radicals are extremely
reactive while looking for another unpaired electron. A new nonradical molecule is created
when two unpaired electrons interact to form a covalent link; but more frequently, when
free radicals interact with nonradical molecules, they produce new (secondary) radical
molecules that start the chain reaction. Multiple tissues and organs eventually sustain
oxidative damage as a result of this main and secondary radical chain reaction.

Numerous ROS-generating systems exist and are associated with the development
and progression of cardiorenal diseases. To begin with, NADPH oxidases are among the
main representatives. Being present in infiltrating macrophages and vascular wall cells,
they comprise two membrane-bound subunits (p22phox and a Nox homolog) and a few
cytosolic regulatory subunits [4]. They act by producing superoxide (or hydrogen peroxide
in the case of Nox4) from molecular oxygen using NADPH as the electron donor. Experi-
mental evidence in mice suggests the presence of three Nox isoforms in vascular smooth
muscle cells (Nox1, Nox4) and endothelial cells (Nox2, Nox4) [5–8]. The role of Nox in
atherosclerosis is diverse, with Nox1 and Nox2 being proatherogenic [9–11], while Nox4
is antiatherogenic [12–14]. NAPDH may be considered an orchestrator of oxidative stress
as it can promote endothelial nitric oxide synthase (eNOS) uncoupling, xanthine oxidase
(XO) activity, and mitochondrial ROS production. Moving to XO, its prooxidant effect is
based on the generation of superoxide and hydrogen peroxide by using molecular oxygen
as an electron acceptor. Among the known triggers of XO production are angiotensin II
and oscillatory shear stress [15,16]. XO ultimately adheres to endothelial cells through
endothelial glycosaminoglycans [17]. The XO-formed superoxide may be responsible for
endothelial cell dysfunction, the initial step of atherosclerosis [17]. Next, mitochondria
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are responsible for generating physiological levels of superoxide through oxidative phos-
phorylation. This is subsequently converted to hydrogen peroxide and, ultimately, to
water. However, mitochondrial oxidative stress may occur due to the upregulated ROS
production and impaired ROS degradation [18]. Finally, eNOS uncoupling is prevalent
in cases of oxidative stress, leading to superoxide and peroxynitrite production instead
of NO [19]. Those oxidative substances may further augment eNOS uncoupling through
tetrahydrobiopterin inactivation, which is a known eNOS cofactor [19]. NO is a crucial
mediator of cellular homeostasis as it can regulate vascular tone, prevent platelet activation
and aggregation, attenuate leukocyte migration and adhesion, and inhibit vascular smooth
muscle cell proliferation [19].

This protective mechanism functions by repeatedly preventing the initial formation
of scavenging oxidants and free radicals. Through this, oxidants are changed into less
hazardous chemicals, and the secondary generation of harmful metabolites is prevented.
The defense system then seeks to fix the molecular damage or strengthen the body’s natural
antioxidant defenses, which are made up of nonenzymatic and enzymatic antioxidants. The
presence of exhausted antioxidant mechanisms is another point of concern when discussing
the effect of oxidative stress on the cardiovascular and renal systems. Among the well-
studied antioxidants are superoxide dismutase (SOD), catalase, glutathione peroxidase
(GPx), nicotinamide adenine dinucleotide (NAD+), glutathione (GSH), paraoxonases (POX),
and thioredoxins. It should be noted that although their upregulated expression induces
anti-atherosclerotic effects, extreme overexpression of these antioxidant molecules may
lead to proatherogenic effects, as in the case of SOD [20]. Certain polymorphisms in the
genes encoding SOD1 (rs9974610, rs10432782, rs1041740) [21], SOD2 (rs4880) [22–24], SOD3
(rs1799895, rs7655372) [25–27], and GPx1 (rs1050450) [26,28–30] may also be responsible for
atherosclerotic manifestations. Polymorphisms in the genes encoding antioxidant enzymes
have been implicated in the development of nephropathy such as with SOD1 (rs17880135,
rs202446, rs9974610, rs204732, rs17880135, rs17881180, rs1041740) [31,32], SOD2 (rs4880,
rs2758329, rs8031) [33–35], and GPx1 (rs1050450) [33].

Cardiovascular and renal risk factors, namely, diabetes mellitus, arterial hypertension,
smoking, and dyslipidemia, are known inducers of augmented oxidative stress. As a result,
a series of deleterious sequelae that are associated with atherosclerosis, cardiac and renal
dysfunction occur. Starting with atherosclerosis, oxidative stress may initially promote
LDL uptake in the vessel wall, possibly due to impaired NO bioavailability [36]. Moving to
oxidized LDL (oxLDL), oxidized phospholipids play a major role in mediating many of
its proatherogenic traits. Lipid peroxidation can happen by enzymatic or nonenzymatic
processes, such as ROS produced by NADPH oxidase or uncoupled eNOS, or by myeloper-
oxidases, lipoxygenases, cyclooxygenases, and cytochrome P450 [37]. Malondialdehyde,
4-hydroxynonenal, phosphocholine of oxidized phospholipid, and 2-(-carboxyethyl) pyr-
role are among the extremely reactive byproducts of lipid peroxidation. They promote the
production of structural neoepitopes known as oxidation-specific epitopes (OSEs) [38]. On
the surface of apoptotic cells and oxLDL molecules, OSEs have been identified, including
oxidized phospholipids and amino groups changed by malondialdehyde. OSEs are rec-
ognized by receptors (toll-like receptors (TLRs), scavenger receptors) on endothelial cells
and macrophages [38]. This is important for human physiology since tissue homeostasis is
maintained by removing dying cells, cellular debris, and damaged molecules [38]. How-
ever, when produced in excess, chronic inflammation through proinflammatory molecule
secretion is promoted. Sensing of OSEs by endothelial cells leads to oxLDL uptake by
lectin-like oxidized LDL receptor-1 (LOX1), TLR2, and TLR4 [38]. As a result, a reduced
NO biosynthesis, smooth muscle cell proliferation, and upregulation of adhesion and pro-
thrombotic molecules are noted. Other than OSE overexpression, ROS may mediate shear
stress-induced adhesion molecule overexpression [39]. ROS also contribute to macrophage
activation and foam cell formation through OSE generation and binding to scavenger
receptors or LOX1 [38,40].
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In the context of CKD, cellular oxidative stress is an important contributing factor by
causing apoptosis, senescence, decreased cell regeneration, and fibrosis in the kidney cells.
Extracellular matrix protein buildup, podocyte destruction, mesangial enlargement, renal
hypertrophy, endothelial dysfunction, tubulointerstitial fibrosis, and glomerulosclerosis
are all effects of oxidative stress [41]. Thus, the decline in renal function and the course
of the disease are both further impacted by oxidative stress. Moreover, mitochondrial
dysregulation in CKD patients leads to excessive ROS production as a result of abnormal
oxidative phosphorylation, and intensifies oxidative stress. Patients with CKD have been
discovered to have elevated levels of many oxidative phosphorylation-related genes [42].
Other enzymes that start the creation of ROS, such as Nox, XO, and lipoxygenases, are
increased in CKD [43]. XO activity is also higher in CKD, while NO bioavailability is
diminished [44,45]. As a result, the increased vascular resistance in renal arteries may
promote hypertensive nephropathy [45]. Furthermore, CKD-induced vitamin D deficiency
may also promote oxidative stress and aid the progression of CKD [46].

Importantly, chronic inflammation in CKD is mostly attributed to oxidative stress. It
has been suggested that chronic low-grade inflammation contributes to the pathogenesis
of CKD. Inflammation induced by kidney damage attracts leucocytes and macrophages,
resulting in ROS overproduction. Accumulation of ROS engages macrophages and releases
cytokines, chemokines, and eicosanoids, which in turn sets off a series of inflammatory
responses. The modulation of glomerular filtration rate, renal blood flow, and sodium
excretion by cytokines and inflammatory mediators like tumor necrosis factor (TNF),
transforming growth factor, and interleukins (ILs) represents a downstream effect [47].
Nuclear factor (NF)-κB, a transcription factor that controls the expression of genes for
inflammatory mediators, is also activated by oxidative stress [48]. I-κB, an inhibitory
protein that keeps NF-κB in an inactive state, is phosphorylated and degraded by oxidative
stress, which causes NF-κB to become active. Antioxidants prevent ROS from activating
the NF-κB pathway [49]. The relationship between inflammation and oxidative stress in
disease pathogenesis is supported by the high levels of inflammatory markers present in
patients with advanced-stage CKD, including C-reactive protein, TNF-α, and IL-6, as well
as oxidative stress markers, such as plasma protein carbonyls and F2-isoprostanes [50,51].

3. Antioxidant Pharmacotherapies in Cardiorenal Diseases

Many agents have been found with putative antioxidant effects in cardiorenal dis-
eases. However, in this review, we will summarize the evidence on recently established,
efficacious cardiorenal pharmacotherapies such as SGLT2 inhibitors, GLP1 receptor ago-
nists, and finerenone. At the same time, we touch upon MT, a well-known endogenous
substance which is recently being investigated preclinically in cardiorenal disease. Due to
its antioxidant potential, it may end up being a useful addition against cardiorenal diseases’
pathophysiology. Crucially, although these agents act through different pathways, they
have all been found to decrease ROS formation and NOX, while enhancing the antioxidant
defenses, as discussed below.

3.1. SGLT2 Inhibitors

SGLT2 inhibitors have been initially introduced for the treatment of type 2 diabetes
mellitus, by inhibiting the reabsorption of glucose in the proximal convoluted tubule. In
the trials aimed to establish their cardiovascular safety, these agents were proven cardio-
protective by significantly reducing HF hospitalizations, among others. Subsequent trials
such as CREDENCE [52], DAPA-CKD [53], and SCORED [54] have documented their effi-
cacy in CKD. Importantly, those findings were also validated in individuals without type
2 diabetes mellitus. Their evaluation in HF populations in the EMPEROR-REDUCED [55]
and DAPA-HF [56] trials led to the inclusion of this drug category as a main therapy in
the treatment of HF with a reduced left ventricular ejection fraction [57]. As we have
shown, SGLT2 inhibitors can lead to the improvement of imaging indices of both systolic
and diastolic cardiac function [58]. Lately, the results of SOLOIST-WHF [59], EMPEROR-



Life 2022, 12, 1663 5 of 19

PRESERVED [60], and DELIVER trials [61] made them the only drug class with positive
results in HF with mildly reduced or preserved ejection fraction. Other than cardiorenal
protection, these agents may improve fatty liver disease [62].

It is obvious that their mechanism of action is pleiotropic and is independent of
the modest glucose-lowering effect. Among the putative mechanisms of action is the
restoration of autophagy, the reduction of inflammation, the prevention of endothelial
dysfunction, and the downregulation of fibrotic and apoptotic pathways [63,64]. At the
level of the kidney, specifically, SGLT2 inhibitors may induce a lowering of intraglomerular
pressure, prevent podocytopathy, interact with the sympathetic nervous system, and lower
arterial blood pressure. Several reports of recent experimental studies have presented an
antioxidant effect of these agents in vitro and in vivo. A reduction of renal ROS, together
with upregulation of renal antioxidant mechanisms, have been noted in experimental
models of diabetes mellitus, H2O2-induced renal injury, ischemia-reperfusion injury, and
inflammation (Table 1). These observations further support the notion that the effect of
SGLT2 inhibitors is not based on glucose lowering. Moreover, cardiac ROS production and
antioxidant systems may be modulated through the use of SGLT2 inhibitors. Again, these
effects were irrespective of the experimental disease model, being present in diabetic car-
diomyopathy, doxorubicin-induced cardiac injury, isoproterenol-induced cardiomyopathy,
cardiac ischemia-reperfusion injury, and models of HF (Table 2). An antioxidant effect has
also been detected in human umbilical vein endothelial cells and human coronary artery
endothelial cells that were stimulated by tumor necrosis factor-α [65].

Table 1. Preclinical evidence of renal antioxidant effects of sodium-glucose cotransporter-2 (SGLT2) in-
hibitors.

Study Experimental
Model Disease Type SGLT2 Inhibitor SGLT2 Inhibitor

Effect

Ashrafi Jigheh et al.
[66] Wistar rats DM Empagliflozin ↓ renal MDA

↑ renal SOD and GPx

Kimura et al. [67] OLETF rats DM Canagliflozin ↓ renal MDA, 4HNE,
Nox2, and Nox4

Das et al. [68] Proximal tubular
epithelial cells High glucose Empagliflozin ↓ O− 2 and H2O2

generation

Zaibi et al. [69] Human proximal
tubular cells

H2O2-induced
injury Dapagliflozin ↓ cytosolic ROS

production

Ahmed et al. [70] Wistar rats DM post-MI Empagliflozin ↓ renal Nox2 and Nox4
mRNA

Hudkins et al. [71] BTBR ob/ob mice DN Empagliflozin

↓ urinary markers of
RNA/DNA damage
↓ carbonyl oxidation in
situ

Ala et al. [72] Wistar rats Renal IR injury Empagliflozin ↓ renal MDA

Malinska et al. [73] Spontaneously
hypertensive rats Inflammation Empagliflozin ↑ renal GPx, CAT, GSH

↓ renal CD, TBARS
Ye et al. [74] C57BL/6J mice Obesity Empagliflozin ↑ heme oxygenase-1

DM: diabetes mellitus, MDA: malondialdehyde, SOD: superoxide dismutase, GPx: glutathione peroxidase,
OLETF: Otsuka Long-Evans Tokushima Fatty, 4HNE: 4-hydroxynonenal, Nox: nicotinamide adenine dinu-
cleotide phosphate oxidase, ROS: reactive oxygen species, MI: myocardial infarction, DN: diabetic nephropathy,
IR: ischemia-reperfusion, CAT: catalase, GSH: glutathione, CD: conjugated dienes, TBARS: thiobarbituric acid
reactive substances. ↑ indicates an increase, ↓ indicates a decrease.
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Table 2. Preclinical evidence of antioxidant effects of sodium-glucose cotransporter-2 (SGLT2) in-
hibitors on the cardiovascular system.

Study Experimental
Model Disease Type SGLT2 Inhibitor SGLT2 Inhibitor

Effect

Xing et al. [75]

Sprague-Dawley
rats

Cardiac myoblasts
H9C2

DM Dapagliflozin

↓myocardial MDA,
Cu/Zn SOD
↓ cardiomyoblast
H2O2,
↑ cardiomyoblast
Cu/Zn-SOD
expression and total
SOD activity

Hsieh et al. [76] Cardiac myoblast
H9C2

Doxorubicin-
induced
injury

Dapagliflozin

↑ heme oxygenase-1
and NADPH quinone
oxidoreductase
↑ SOD activity

Bugga et al. [77] Sprague-Dawley
rats DM Empagliflozin ↓ total cellular and

mitochondrial ROS

Li et al. [78] C57Bl/6J

Pressure
Overload-
Induced

HF

Empagliflozin
↑ heme oxygenase-1,
NRF-2, catalase
↓ O2-, H2O2

Tsai et al. [79]

Cardiac myoblasts
H9C2

Primary
cardiomyocytes

Cardiac IR
injury Dapagliflozin ↓ NADPH activity

↓ ROS formation

Rosa et al. [80] Wistar rats DM Dapagliflozin ↓ lipid hydroperoxide
↑ SOD, GPx

Wang et al. [81]
db/db mice

Cardiac myoblasts
H9C2

DM Empagliflozin

↓ cardiac 4HNE and
3-nitrotyrosine
↓ cardiac total cellular
and mitochondrial
ROS
↓ cardiomyoblast total
cellular and
mitochondrial ROS

Kolijn et al. [82]
Human

cardiomyocytes
ZDF rats

HFpEF Empagliflozin ↓ H2O2, 3-nitrotyrosine
↑ glutathione

El-Shafey et al. [83] Sprague-Dawley
rats DM Dapagliflozin

↓myocardial MDA
↑myocardial
glutathione, catalase

Li et al. [84] KK-Ay mice DM Empagliflozin

↓myocardial lipid
hydroperoxide, MDA,
Nox4
↑myocardial GPx,
SOD

Wang et al. [85] Sprague-Dawley
rats

Isoproterenol-
induced

cardiomyopa-
thy

Dapagliflozin

↓myocardial Nox2,
MDA, ROS, NADPH
activity,

Yurista et al. [86] Sprague-Dawley
rats Post-MI HF Empagliflozin ↓ AOPP, Nox2

Uthman et al. [65] HUVECs
HCAECs

TNFα-
induced

endothelial
dysfunction

Empagliflozin ↓ HUVEC and HCAEC
ROS production

Rahadian et al. [87] ApoE−/− mice DM Canagliflozin
↓ aortic Nox2, p22phox
↓ urinary 8-
hydroxydeoxyguanosine

MDA: malondialdehyde, SOD: superoxide dismutase, NADPH: nicotinamide adenine dinucleotide phosphate,
ROS: reactive oxygen species, HF: heart failure, NRF-2: nuclear factor erythroid 2–related factor 2, GPx: glutathione
peroxidase, 4HNE: 4-hydroxynonenal, HFpEF: HF with preserved ejection fraction, MI: myocardial infarction,
Nox2: NADPH oxidase-2, HUVEC: human umbilical vein endothelial cell, HCAEC: human coronary artery
endothelial cell, TNFα: tumor necrosis factor-α. ↑ indicates an increase, ↓ indicates a decrease.

Scarce clinical evidence exists regarding the antioxidant potential of SGLT2 inhibitors.
Lambadiari et al. were the first to report the effect of SGLT2 inhibitors on markers of
oxidative stress (thiobarbituric acid reactive substances, malondialdehyde, reducing power,
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2,2¢-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) radical, and total antioxidant ca-
pacity) in 160 participants randomized to SGLT2 inhibitors, GLP1-RA, their combination,
or insulin [88]. Individuals on SGLT2 inhibitors alone exhibited only decreases in 2,2¢-
azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) radical after 12 months of follow-up,
with no major differences being noted in the rest of the examined markers [88]. In another
pilot study, SGLT2 inhibitors induced a reduction in urinary SOD and MnSOD activity,
as well as in total antioxidant capacity, in individuals with type 2 diabetes mellitus [89].
The addition of SGLT2 inhibitors to angiotensin-converting enzyme inhibitor ramipril
resulted in the lowering of urinary 8-isoprostane concentration compared to the addition
of placebo to ramipril in the randomized, double-blind, placebo-controlled, crossover trial
of Lytvyn et al. [90]. Moving to a study of 14 non-albuminuric patients with diabetes
mellitus, no differences in the urinary oxidative stress marker, 8-hydroxydeoxyguanosine,
were noted during the 1-, 3-, and 6-month follow-up [91]. Last but not least, in a circu-
lating proteomics analysis of 1134 patients included in the EMPEROR-PRESERVED and
EMPEROR-REDUCED trials, a differential expression of proteins associated with oxidative
stress (angiopoietin-related protein 4, insulin-like growth factor-binding protein 4) was
documented [92].

3.2. GLP1 Receptor Agonists

GLP1-RA constitute an antidiabetic drug category which has been extensively studied
in cardiorenal medicine. Their efficacy is mostly centered around atherosclerotic com-
plications prevention, namely, ischemic stroke, as documented in a recent meta-analysis
of 6 double-blind, randomized placebo-control trials with 52821 type 2 diabetes mellitus
patients [93]. When compared with SGLT2 inhibitors, GLP1-RA were also associated with
a lower risk of major adverse limb events within the first two years after initiation [94].
However, there was no difference between those two drug classes in major adverse cardio-
vascular events in the study of Fu et al. [95], with the exception of a lower risk of ischemic
stroke. GLP1-RA may additionally offer renal protection according to meta-analytic ev-
idence [96]. However, their ability to lower the rates of HF hospitalizations is of lesser
magnitude compared to SGLT2 inhibitors [97].

Although being solely used in patients with diabetes mellitus, these agents possess
several pleiotropic properties. Focusing on their antioxidant effect (Table 3), liraglutide ad-
ministration in male 129SV mice with streptozocin-induced diabetes promoted an increase
in antioxidant molecules (catalase, GPx) in kidney specimens [98]. Low-dose lixisenatide
reduced renal malondialdehyde and total Nox, paired with an increase in total antioxidant
capacity [99]. This ultimately prevented early diabetic nephropathy development in dia-
betic Wistar rats [99]. GLP1-RA could also prevent podocyte apoptosis partially through a
reduction in oxidative stress [100,101]. Moving to cardiac antioxidant effects, a recent study
has shown that liraglutide administration in diabetic Sprague–Dawley rats attenuated
the expression of Nox2 in atrial and ventricular tissue compared to placebo [102]. The
antioxidant effect of liraglutide in a similar experimental model has been replicated on
top of an anti-inflammatory action, leading to diminished cardiac injury [83]. Liraglu-
tide also prevented high glucose-induced neonatal cardiomyocyte apoptosis through the
downregulation of malondialdehyde and upregulation of antioxidant SOD [103]. In vitro
evidence from H9C2 cardiomyoblasts treated with H2O2 suggests an increase in antioxidant
potential (GPx, catalase, heme oxygenase-1) after administration of a GLP1 analog [104].
Antioxidant effects have been observed in endothelial cells cultured under high glucose
and inflammatory settings that were treated with GLP1 analogs or GLP1-RA [105–107].
Dual glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide receptor ago-
nists deserve an honorable mention due to their astonishing results in the management
of hyperglycemia and obesity, as recently shown [108–111]. These agents may also act via
pleiotropic mechanisms, including attenuation of oxidative stress and inflammation, thus
improving diabetes-induced cardiac dysfunction [112].
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Table 3. Selected preclinical evidence of cardiac and renal antioxidant effects of GLP1 receptor
agonists, finerenone, and melatonin.

Study Experimental
Model Disease Type Agent Antioxidant Effect

Liljedahl et al. [98] 129SV mice DM Liraglutide ↑ renal catalase, GPx

Abdel-Latif et al. [99] Wistar rats DM Lixisenatide

↓ renal MDA and total
Nox
↑ total antioxidant
capacity

Baylan et al. [102] Sprague-Dawley
rats DM Liraglutide ↓ atrial and ventricular

Nox2

Nuamnaichati et al. [104] H9C2 cells H2O2
GLP1

analogue
↑ GPx, catalase, heme
oxygenase-1

Zhang et al. [103] Neonatal
cardiomyocyte

DM +
inflammation Liraglutide ↓MDA

↑ SOD activity

Lachaux et al. [113] Zucker fa/fa rats Metabolic
syndrome Finerenone ↓myocardial ROS

↑ NO bioavailability

González-Blázquez et al.
[114]

Munich Wistar
Frömter rats CKD Finerenone

↑ aortic Mn-SOD and
Cu/Zn-SOD
↑ renal total SOD
activity

Han et al. [115]
Human renal

proximal tubule
epithelial cells

DM Melatonin ↑ catalase and SOD
activity

Ebaid et al. [116] Albino rats DN Melatonin ↓ renal MDA
↑ GSH, SOD, catalase

Li et al. [117] H9C2 cells H2O2 toxicity Melatonin ↑ GSH, GPx, SOD

Kandemir et al. [118] Wistar rats DM Melatonin ↑ cardiac SOD,
catalase, GPx

DM: diabetes mellitus, GPx: glutathione peroxidase, MDA: malondialdehyde, Nox: NADPH oxidase, SOD:
superoxide dismutase, ROS: reactive oxygen species, NO: nitric oxide CKD: chronic kidney disease, DN: diabetic
nephropathy, GSH: glutathione. ↑ indicates an increase, ↓ indicates a decrease.

Although limited data are available from human studies, an antioxidant effect of
GLP1-based therapeutics can be suggested. To begin with, Ceriello et al. showed that
in both hypoglycemia and hyperglycemia, GLP1 infusion could prevent the increase in
the oxidative plasma biomarkers nitrotyrosine and 8-iso prostaglandin F2alpha [119].
Lambadiari et al. showed that 12-month liraglutide administration led to a decrease in
malondialdehyde and thiobarbituric acid reactive substances [88]. Liraglutide treatment
for 12 weeks in patients with diabetic nephropathy was further associated with a drop in
malondialdehyde and an increase in the antioxidant GPx [120]. The antioxidant potential
of GLP1-RA, through changes in respective biomarkers, was additionally confirmed in a
recently reported systematic review and meta-analysis [121].

3.3. Finerenone

Finerenone is a novel, selective, nonsteroidal mineralocorticoid receptor antagonist
that has been recently introduced in the treatment of cardiorenal diseases. Landmark trials
on patients with diabetic kidney disease have shown an 18% reduction in the incidence
of the primary outcome (kidney failure, sustained decrease ≥ 40% in the eGFR, or death
from renal causes), 14% reduction in the incidence of the secondary outcome (death from
cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization
for HF), and 31% reduction in albuminuria, compared to placebo [122,123]. In patients with
HF, finerenone was as efficacious as eplerenone, and may be associated with lesser a lesser
increase in potassium levels [124].

Regarding its antioxidant potential (Table 3), an early experimental study by Gueret
et al. in mice with coronary artery ligation-induced myocardial infarction initially doc-
umented such an effect. Specifically, finerenone abrogated oxidative stress in coronary
arteries from noninfarcted mice incubated with low-dose angiotensin-II [125]. At the level of
the kidney, finerenone prevented the increase in oxidative stress parameters (malondialde-
hyde, 8-hydroxy-guanosine) induced by acute bilateral renal ischemia/reperfusion [126].
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This was later accompanied by prevention of CKD development (reduced albuminuria,
renal vascular resistance, and tubular injury markers) [126]. Finerenone was also found
to decrease myocardial ROS production and increase NO bioavailability after short-term
administration in Zucker fa/fa rats [113]. This finding may have been responsible for the
improvement in diastolic cardiac dysfunction, proteinuria, and tubular injury in the long
term [113]. Finally, in Munich Wistar Frömter rats treated with finerenone, aortic ring
protein expression of Mn-SOD and Cu/Zn-SOD was enhanced [114]. Total SOD activity
was also augmented in the kidneys of those rats treated with finerenone [114]. Collectively,
these findings suggest that finerenone’s antioxidant properties may be partly responsible
for the cardiorenal benefits seen in randomized clinical trials.

3.4. Melatonin

MT is an amphiphilic tryptophan-derived indoleamine that is stimulated in response
to darkness. Other than circadian rhythm regulation, MT has potent antioxidant properties,
which are exerted either directly or indirectly through binding to its receptors (MT1 and
MT2) [127]. Despite being a well-known molecule for decades, its therapeutic potential
in the context of cardiorenal diseases is now beginning to be unveiled. Since its receptors
are distributed across many organ systems, its beneficial actions may extend to various
pathologies. MT has the potential to be an effective therapy for arterial hypertension
through modulating endothelial function, oxidative stress, the autonomic nervous system,
and the renin-angiotensin system [127]. Additionally, MT may improve beta-cell and
insulin sensitivity [127].

By ameliorating those crucial cardiorenal risk factors, along with potent antioxidant
properties, MT could emerge as a safe and effective treatment approach in this regard.
Numerous preclinical research has been done in this area to investigate the role of an-
tioxidant pathways in mediating the nephroprotective and cardioprotective effects of MT
(Table 3). In human renal proximal tubule epithelial cell lines cultured under high glucose
conditions, MT improved their antioxidant capacity, evidenced by upregulated catalase
and total SOD activity [115]. Transforming growth factor-β1-treated NRK-49F cells treated
with MT exhibited lower levels of intracellular ROS and malondialdehyde, as well as
ameliorated reductions of the glutathione/oxidized glutathione ratio [128]. Moreover,
the addition of MT treatment in diabetic Wistar rats receiving insulin resulted in down-
regulated expression of GSH, GSH reductase, glucose-6-phosphate dehydrogenase, and
GSH-S-transferase in the renal cortex [129]. MT also improved DN in albino rats by sup-
pressing renal malondialdehyde and stimulating antioxidant systems such as GSH, SOD,
and catalase [116].

Several studies have also been performed in various experimental models of cardiovas-
cular disease, assessing the antioxidant properties of MT. In rats with doxorubicin- or carbon
tetrachloride-induced cardiotoxicity, MT decreased cardiac malondialdehyde [130–132]. In
hypercholesterolemic mice with air pollution-provoked cardiac dysfunction, MT allevi-
ated mitochondrial oxidative stress by regulating sirtuin 3-mediated SOD2 deacetyla-
tion [133]. Moving to H2O2-induced injury in H9C2 cells, MT abrogated the increases
in ROS production by increasing the activity of antioxidant systems (GSH, GPx, SOD),
through the mitogen-activated protein kinase/extracellular signal-regulated kinase path-
way [117]. Antioxidant effects were reported in Sprague–Dawley rats with myocardial
ischemia/reperfusion injury, where MT decreased cardiac malondialdehyde while increas-
ing cardiac SOD and GPx by activating the JAK2/STAT3 signaling pathway [134]. Similar
results have been documented in other preclinical studies of cardiac ischemia/reperfusion
injury [135–138]. Activation of cardiac MT2, but not MT1 receptors, may be responsible
for this effect [139]. Next, diabetic cardiomyopathy was ameliorated in diabetic Wistar rats
treated with MT through an antioxidant response, as shown by Kandemir et al. [118]. Such
an effect may be mediated by the 5′ AMP-activated protein kinase/sirtuin 1 pathway [140].
The antioxidant properties of MT have also been observed in experimental models of
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angiotensin-II-induced cardiac hypertrophy [141], exhaustive exercise-induced cardiac
injury [142], and myocardial infarction [143].

Although contemporary research on the cardiorenal benefits of MT is extensive at
the preclinical level, strong evidence is limited from clinical studies. Beginning with the
renal effects, nocturnal MT 10 mg resulted in a better glycemic profile and oxidative stress
indicators in a recently published randomized controlled study of 60 patients with diabetic
kidney disease [144]. Similar results were shown in diabetic patients on maintenance
hemodialysis, who also had an improvement in inflammatory markers [145]. In a recently
published randomized controlled study, kidney transplant recipients were given either MT
or a placebo; the MT group showed decreased neutrophil gelatinase-associated lipocalin
levels as well as lower levels of inflammatory and oxidative stress indicators [146]. However,
no research has been done to determine how MT affects the course of CKD and significant
cardiorenal consequences in CKD patients. Examining the function of MT throughout the
various CKD phases would be intriguing because CKD is a disorder that causes premature
aging. Moving to cardiac effects, in a small scale, placebo-controlled double-blinded
randomized clinical trial of 92 patients with HF and a reduced ejection fraction, nighttime
MT at a dose of 10 mg decreased the concentration of natriuretic peptides and improved
the quality of life of the patients, compared to placebo [147]. Moreover, in recently reported
systematic reviews and meta-analyses, MT conferred cardiac protection and improved
cardiac function [148,149]. At the same time, it reduced the level of cardiac injury markers,
inflammatory cytokines, and oxidative markers while it increased the concentration of
antioxidant factors [148]. As with renal studies, evidence is lacking regarding the prevention
or prognosis of cardiovascular disease, and future studies are needed in this regard.

4. Clinical Implications and Future Directions

Regarding clinical implications, SGLT2 inhibitors have been established in the treat-
ment of cardiorenal diseases due to their overwhelming clinical benefit. However, the
burden of side effects, physician inertia, and insurance issues may lead to higher than
expected discontinuation rates [150], which should be further assessed in future real-world
clinical practice studies. Moreover, the importance of SGLT2 receptor selectivity or dual
SGLT1:SGLT2 inhibition deserves further validation, both in its antioxidant potential and
its potentially incremental clinical benefit. Head-to-head trials could provide additional
evidence in this direction.

Moving to GLP1-RA, another class with proven cardiorenal benefits used solely in
patients with type 2 diabetes mellitus, we should state that there may be significant within
class variations regarding efficacy, weight loss, and tolerability [151]. While semaglutide
may provide the greatest benefit in glycemia management and weight loss, it is accompa-
nied by a high burden of gastrointestinal adverse events, which could result in discontinua-
tion. A lower risk of adverse events could be attributed to exenatide, and lixisenatide, at
the loss of efficacy, however. Finally, liraglutide may possess the greatest balance between
efficacy and safety. Patient satisfaction should also be taken into account, being higher in
cases of once weekly injections compared to twice daily. Although discontinuation rates
have been below 10% in clinical trials, this number is believed to be significantly higher
in real-life clinical practice. Therefore, selection of the most appropriate agent should be
individualized to accommodate cardiorenal benefit (seen with dulaglutide, liraglutide, and
injectable semaglutide), glycemia management, weight loss, and tolerability in the most
optimal way.

Finerenone, although beneficial in the completed clinical trials, has been examined only
in the setting of diabetic CKD. The clinical spectrum of its efficacy may extend to non-diabetic
CKD and HF should the ongoing randomized clinical trials (FIND-CKD/NCT05047263 and
FINEARTS-HF/NCT04435626) provide positive results. In addition, further preclinical and
clinical evidence is needed to determine whether the antioxidant effect is the driving force of
its clinical benefit. Finally, despite being a promising therapeutic tool with minimal adverse
effects according to the evidence mentioned above, MT’s optimal timing and dosage have
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not been clarified and represent an existing gap in evidence. Going forward, MT should be
tested in adequately designed trials of individuals at high risk for developing cardiorenal
diseases such as the elderly (NCT04631341), as well as those with established atherosclerotic
disease, HF, and CKD.

Concerning future directions, several agents are in experimental phase. To begin with,
activators of endogenous antioxidant systems may be an interesting option, namely, Nrf2
activators. Dimethyl fumarate, an example of this category, led to reduction in myocardial
infarct size in animal models of myocardial ischemia/reperfusion injury and to prevention
of atherosclerosis in apoE−/− mice [152,153]. This agent may ameliorate nephrotoxicity
due to various causes in in vivo animal models [154–157]. Moving to Nox inhibition, the
dual Nox1/4 inhibitor setanaxib (GKT137831) has been investigated in the experimental
setting of doxorubicin-, angiotensin II-, and hypertension-induced cardiac remodeling,
displaying cardioprotective effects based on antioxidant and antifibrotic action [158–160].
At the level of the kidney setanaxib rescued diabetic nephropathy by abrogating glomerular
hypertrophy, mesangial matrix expansion, albuminuria, and podocytopathy [161–164].
Anti-atherosclerotic effects have also been reported [161,165].

Finally, the role of nanoparticles deserves an honorable mention. Loading of nanopar-
ticles with antioxidants that can directly target the area of excessive ROS production is
significant, as shown experimentally. H2O2-responsive nanoparticles have demonstrated
efficacy in the preclinical setting of renal and myocardial ischemia/reperfusion injury, by
releasing vanillyl alcohol [166,167]. Other antioxidants may also be loaded, such as SOD1,
promoting cardioprotective actions [168,169]. Recently, Choi et al. developed nanomicelles
able to sense ROS and loaded them with catalase-mimicking 1-dodecanethiol stabilized
Mn3O4. Ultimately, the authors noted that inflammation and apoptosis were attenuated in
the renal ischemia/reperfusion injury mouse model [170].

While the reduction of oxidative stress may be beneficial in the setting of cardiorenal
pathology, it should be stressed that the non-specific suppression of ROS may account
for the lack of benefit observed in clinical studies, since it could disrupt important ROS-
mediated cellular signaling. Accordingly, targeted therapies such as nanoparticles may
pave the way for selective antioxidant treatment at sites of ROS overexpression, such as the
failing heart and kidneys.

5. Conclusions

Oxidative stress is a deleterious process that is involved in the pathophysiology of
cardiorenal diseases, promoting their development and progression. Recently established
pharmacotherapies possess pleiotropic effects that include antioxidant mechanisms, which
may partly contribute to the positive effects seen in trials of populations with cardiovas-
cular or renal disease. Research in this field is continuous, and future adequately-sized,
randomized studies should further define the importance of these antioxidant effects in the
management of cardiorenal diseases.
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