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The metabolic flexibility of quiescent CSC: implications for
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Quiescence has been observed in stem cells (SCs), including adult SCs and cancer SCs (CSCs). Conventional chemotherapies mostly
target proliferating cancer cells, while the quiescent state favors CSCs escape to chemotherapeutic drugs, leaving risks for tumor
recurrence or metastasis. The tumor microenvironment (TME) provides various signals that maintain resident quiescent CSCs,
protect them from immune surveillance, and facilitates their recurrence potential. Since the TME has the potential to support and
initiate stem cell-like programs in cancer cells, targeting the TME components may prove to be a powerful modality for the
treatment of chemotherapy resistance. In addition, an increasing number of studies have discovered that CSCs exhibit the potential
of metabolic flexibility when metabolic substrates are limited, and display increased robustness in response to stress. Accompanied
by chemotherapy that targets proliferative cancer cells, treatments that modulate CSC quiescence through the regulation of
metabolic pathways also show promise. In this review, we focus on the roles of metabolic flexibility and the TME on CSCs
quiescence and further discuss potential treatments of targeting CSCs and the TME to limit chemotherapy resistance.
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FACTS

Cancer stem cells (CSCs) are identified in most types of liquid
and solid tumors and contribute to tumor onset, chemother-
apy resistance, recurrence, and metastasis.
When the bulk of the tumor cells are eliminated by adjuvant
treatments, CSCs may survive in a reversible quiescent state.
In both adult stem cells and CSCs, low ROS levels are
frequently associated with a protective intracellular environ-
ment and with the perseverance of stem cell quiescence/
dormancy.
CSCs can reprogram their metabolism to flexibly adapt to
environmental changes, which is considered critical for them
to enhance the antioxidant compensative capacity and
sustain their self-renewal ability.

OPEN QUESTIONS

What gives rise to the emergence of quiescent CSCs?
What kind of metabolic flexibility favors the maintenance of
quiescent CSCs?
Which are the therapeutic regimens that quiescent cancer cells
might be resistant to and in which manner?
Does the future lie in combining chemotherapies that target
proliferative cancer cells treatment that target quiescent CSCs?

INTRODUCTION
Many of the current chemotherapies are limited to merely
targeting proliferative cancer cells. The residual population of
chemotherapy-resistant tumor cells capable of regenerating the
cancer disease is thought to be enriched in CSCs [1]. CSCs have
the principal properties of self-renewal, clonal long-term repopu-
lation potential, and the capability of producing non-stem
daughter cells which make up the bulk of tumors [2]. Importantly,
CSCs can enter a quiescent state, a reversible cell cycle arrest that
is characterized by minimal basal metabolic activity. Recent
advances suggest that quiescence is an actively maintained state
in which signaling pathways are involved in maintaining a poised
state [3]. The entry of the quiescence withstands metabolic stress
and preserves its genomic integrity [3, 4]. A recent study tracing
glioma stem cells (GSCs) in a transgenic mouse model proved that
the quiescent CSCs can survive from temozolomide [5]. In
squamous cell carcinoma, TGF-β concentrating near tumor-
vasculature bestows slower-cycling properties to neighboring
CSCs, which show increased chemoresistance against cisplatin [6].
There is emerging evidence that the ability of CSCs to enter a
quiescent state is an important driver of chemoresistance, leaving
risks for tumor recurrence. For convenience, we summarize those
chemotherapeutic agents which are reported to induce quiescent
CSCs (Table 1).
Recent studies have shown that CSCs depend on different

metabolic pathways compared to differentiated tumor cells,
and the metabolic activities directly participate in the CSC
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quiescent/proliferative states transition or support tumor
progression [7]. CSCs can reprogram their metabolism to
flexibly adapt to environmental changes, which is considered
critical for them to enhance the antioxidant compensative
capacity and sustain their self-renewal ability [8]. Quiescence is
a mechanism whereby CSCs can be poised into a low metabolic
state. Exploring the role of CSC metabolism and the mechan-
isms underlying metabolic flexibility has become a major focus
in current cancer research. Changes in the environmental
supply of metabolic substrates, intrinsic metabolic pathway
disturbances by molecular mechanisms, altered reactive oxygen
species (ROS) levels, and depolarized mitochondrial membranes
of CSCs, may all contribute to quintessential metabolic
reprogramming [9].
The CSC quiescence is also associated with the tumor

microenvironment (TME), the environment around a tumor,
including the surrounding blood vessels, immune cells,
fibroblasts, signaling molecules, and the extracellular matrix
[10, 11]. The TME components stir the balance of quiescent/
proliferative CSCs, preserve their plasticity, and promote CSC
stemness, thereby protecting them from immune system attack
and resulting in chemotherapy failures [12, 13]. In this review,
we describe the roles of quiescent CSC and TME in chemore-
sistance, depict the metabolic flexibility of quiescent CSC, and
further discuss the therapeutic potential of metabolism/TME-
based strategies for overcoming chemoresistance.

MECHANISMS OF CSC CHEMORESISTANCE—THE MULTIPLE
LINES OF SELF-DEFENSE
Quiescence and chemoresistance
As early as the 1970s, work on the hematologic malignancies
predicted that slow-cycling leukemic stem cells cause tumor
relapse [14, 15]. Investigators then observed that leukemic stem
cells entered into the arrested cell cycle after chemotherapy, much
like normal stem cells. The notion that recurrence after standard
chemotherapy results from the persistence of quiescent CSCs has
been supported recently in several solid tumor types [5, 6, 16]. As
discussed below, CSCs trigger a set of complex intracellular
molecular and epigenetic programs to enter quiescence, in
response to chemotherapies [17].

Genetic and epigenetic modifications. Quiescent stem cells are
poised for activation by specific energetically favorable
mechanisms that are compatible with the low metabolic state
of quiescence and that allow for rapid and global responses
needed for activation [3]. The Notch, Wnt, and p38-MAPK
signaling pathways are the most commonly involved in CSCs
quiescence. Kobayashi et al. report that the active p38 mitogen-
activated protein kinase 1 (MAPK1) can induce a quiescent state
of CSC in prostate cancer [18]. Meanwhile, CSCs can quit the
quiescent state under certain circumstances [19]. The Notch
signaling and Wnt signaling pathways were reported to
regulate adult stem cells division and differentiation, and
recently they were proven to promote CSC reawakening
[20, 21]. Significantly, c-Myc, as a key element in Wnt canonical
pathway, can accelerate the CSC cell cycle progression and
promote CSC reawakening, while their inactivation was closely
associated with the entry into reversible quiescence [22–25].
Epigenetic modifications consist of heritable changes in gene

function without alteration of DNA sequence. Epigenetic
modifications include DNA methylation, chromatin remodeling,
and noncoding RNAs [26]. As cancers progress, epigenetic
modifications regulate transcriptional activation, affecting the
entry or exit of CSC into quiescence[27]. In fibroblasts,
quiescent cells exhibit tighter chromatin compaction and
increases of H4K20me2 and H4K20me3 (demethylation/tri-
methylation of histone H4 at lysine 20) [28]. Interestingly, Ye

et al. documented that SET domain-containing protein 4
(SETD4) epigenetically induced quiescent breast CSCs (BCSCs)
by facilitating tighter heterochromatin formation via H4K20me3
catalysis [29]. In melanoma, a small subset of slow-cycling cells
with a doubling time of >4 weeks, which showed over-
expression of the H3K4 demethylase JAR-ID1B, was reported
to correlate with tumor progression and metastasis relapses
[30]. In addition, Sharma et al. showed that growth arrest-
specific 5 (GAS5), a long non-coding RNA, regulated the
quiescent state (arrested cell-cycle) in the CD133+ pancreatic
CSC population [31]. Taken together, these genetic and
epigenetic modifications act as a switch for regulating
quiescence and growth arrest in CSCs, which correlate with
aggressive biology and chemoresistance of tumors.

Immune escape. Clinical evidence on the existence of the
quiescent state of tumor cells came from the transmission of
cancer from transplant organ donors to immunosuppressed
recipients [32, 33]. Under this condition, the immune system
contains but not fully extinguishes cancer cell growth. Such
cancer cells in immune escape can give rise to tumor recurrence
or metastasis, once meeting permissive TME [34].
How do quiescent CSCs acquire immune tolerance? It has

been proved that dormant cancer cells could evade immune
surveillance by reducing antigenicity in lymphoma, fibrosar-
coma, and T-lymphoma [35–37]. In addition, the expression of
the immune checkpoints, such as programmed cell death
ligand 1 (PD-L1), can protect cancer cells from T cell killing
activity [38]. In addition, the TME can help quiescent cells to
escape immune surveillance. Vascular endothelial growth factor
A (VEGFA) and angiopoietin-2 (ANGPT2; also known as ANG2)
and IL-6 secreted into the TME, concurrently upregulated the
expression of the immune checkpoint ligand PD-L1 in tumors
[39–41]. Apart from the T cells, natural killer cells may also be
fooled by cunning quiescent CSCs. Massague lab showed that
upon treatment with the WNT inhibitor DKK1, CSCs are forced
into quiescence with the sharp decrease of ULBP (ligands for
receptors expressed on NK cells, and NK1.1(+) T cells) and
acquire the capability of evasion of NK-cell-mediated attack
[42].

The tumor microenvironment
Hypoxic tumor microenvironment. Hypoxia has been identified as
a hallmark of cancer [43]. Hypoxia within tumor occurs when the
rate of rapidly dividing cancer cells in solid tumors quickly
surpasses the rate of neovascularization within tumors. In these
nutrient-depleted and oxygen-depleted areas, a hypoxic transcrip-
tional response is orchestrated by hypoxia-inducible factors (HIFs)
to make cancer cells adaptive to the hypoxic TME [44]. An
increasing number of studies have attempted to unveil the
complex but inseparable relationships between hypoxia and CSC
phenotypes.
As demonstrated in many studies, a hypoxic environment

induces the accumulation of HIF subunits in mesenchymal and
cancer cells [45] that bind to hypoxia-responsive elements (HREs)
in the promoters of hypoxia target genes [46, 47]. Among these
subunits, HIF1α is the most studied and widely appreciated for its
functions of supporting neovascularization, preventing cellular
differentiation, controlling cellular apoptosis, and activating DNA
repairment [48], all of which are associated with chemotherapy
resistance. Recently, our laboratory unveiled that ubiquitin-specific
protease 22 (USP22) can enhance the stability and transcriptional
activity of HIF1α, and HIF1α only promoted USP22 transcription
when TP53 was inactivated. Through the HIF1α/USP22 positive
feedback loop of TP53 inactivation, hypoxic TME promotes
stemness features (CD44+ and CD24+) and glycolysis in HCC
cells, ultimately resulting in sorafenib resistance [49]. In colorectal
cancer cells, CSN8 overexpression induces cell-cycle arrest,

K. Chen et al.

3

Cell Death and Disease          (2021) 12:835 



upregulates quiescence markers and hypoxia response genes (e.g.,
GLUT1), and enhances survival against 5-fluorouracil treatment
[50]. In addition, hypoxia increases the expression of adenosine
receptor 2B (A2BR) in human breast cancer cells through the
transcriptional activity of HIF1. The binding of adenosine to A2BR
promotes breast CSC (BCSC) enrichment by activating protein
kinase C-δ, leading to increased expression of interleukin 6 and
NANOG [51]. In addition, HIF1α also plays key roles in promoting
CSC phenotypes through ITGA6 forkhead box protein M1
(FOXM1), miR-215, and signal transducer and activator of
transcription 3 (STAT3) activation in breast cancer, pancreatic
cancer, colon cancer, and glioma, respectively [52–55].
Driven by these mechanisms, a hypoxic TME is frequently

associated with a more aggressive tumor phenotype. In addition,
understanding the mechanism by which the hypoxic TME affects
the quiescence of cancers may provide effective therapeutic
opportunities.

CSC-specific stroma and quiescent CSCs
Extracellular matrix: As an indispensable factor in the TME, the
ECM contributes to the induction of CSCs and the initiation of
tumors. Interestingly, Wang et al. observed that the resistance to
EGFR tyrosine kinase inhibitors (TKIs) was conferred to lung cancer
cells that were originally sensitive to TKIs after culturing them on
decellularized ECM or coculturing them with ECM donor cells [56].
Azzariti et al. also reported that the development of HCC in a
microenvironment enriched with ECM proteins, including laminin-
332, ultimately led to sorafenib-resistant HCC, dependent on the
α3β1/Ln-332 axis [57]. Among the many components of the ECM
that are putatively regarded as initiating factors of chemoresis-
tance, laminin has recently received special attention.
Laminin is a glycoprotein ECM component of the connective

tissue basement membrane that promotes cell adhesion. Rohn
et al. isolated rat hepatic stellate cells and then seeded them onto
uncoated polystyrene (PS) or PS coated with either laminin-521
(PS/LN-521) or laminin-211 (PS/LN-211). PS/LN-521 improved
hepatic stellate cells adhesion and better-preserved retinoid
stores, as well as quiescence-associated and stem cell-associated
phenotypes than PS alone [58]. Moreover, laminin-332 was also
observed in the ECM surrounding hepatic CSC-like cells which
exhibited a low proliferation rate. Upon mTORC1 inhibition
through sorafenib treatment, elevated laminin-332 expression
was observed to broadly decrease CSCs mitosis, indicating a
quiescent state in CSCs [59]. Taken together, the above results
demonstrate that the quiescent state of CSCs is closely linked to
the ECM and its components.

Cancer-associated fibroblast: Given the important role of the
ECM on cancer stemness, cancer-associated fibroblasts (CAFs), as
the primary source of ECM production in tumors, are also worthy
of our comprehensive discussion. CAFs affect tumor progression
and resistance via many mechanisms, including morbid secretion
of collagens, fibronectins, and ECM-degrading proteases, produc-
tion of angiogenic factors, and various proinflammatory cytokines
and chemokines [60, 61]. Here, we will emphasize the role of CAFs
in promoting cancer stemness.
Su et al. showed that co-injection of CD10+GPR77+CAFs and

breast cancer cells effectively improved the engraftment forma-
tion in patient-derived xenograft models. Most importantly, the
CAF subset specifically defined by CD10 and GPR77 expression
was observed to be correlated with chemoresistance and poor
survival in multiple cohorts of breast and lung cancer patients [62].
Liu et al. concluded that CAF-induced lysine demethylase 1 (LSD1,
a histone-modifying enzyme) activation in hepatic CSCs can
enable their self-renewal ability in HCC. The authors inoculated a
mixture of liver CSCs (Cherry+-GFP+) and primary CAFs into NOD/
SCID mice, and as expected, CAFs enhanced the oncogenicity of
CSCs by activating Notch3-LSD1 signaling in vivo [63]. Similar

carcinogenic effects of CAFs have been reported in colorectal
cancer, cholangiocarcinoma, oral squamous cell carcinoma, and
osteosarcoma cancer [64–67].

Matrix stiffness. Tissue formation and development originating
from stem cells are orchestrated by a complex network of both
chemical and physical properties, but recently researchers have
started to focus on the effects of matrix stiffness on CSC and
chemoresistance.
Matrix stiffness (rigidity of extracellular matrix) is mainly

depending on the composition and organization of ECM [68].
Huang’s laboratory proved that cancer cells effectively form
spheroid-like morphologic shapes resembling stem-like cells in
90 Pa fibrinogen gels (the stiffness of most mammalian tissues
ranges from approximately 100 to 3000 Pa), while their growth
was retarded in 450 Pa and almost entirely halted in 1050 Pa [10].
In addition, Liu et al. showed that the CSC dormancy induced by
450 and 1050 Pa was initiated by the translocation from the
cytoplasm to the nucleus of Cdc42, a regulatory protein capable of
mechanotransduction [69]. Meanwhile, Shin et al. confirmed the
pathological correlation of matrix stiffness and drug sensitivity
against standard chemotherapies of myeloid leukemias in vivo,
such as everolimus [70].
Traditional views of the TME solely based on cell–cell or

cell–ECM interactions may not thoroughly explain the induction,
selection, or preferential maintenance of CSC stemness. Thus,
gaining a comprehensive understanding of the interplay between
CSCs and their microenvironments may be essential for advancing
CSC research and applications (summarized in Fig. 1).

Other mechanisms of chemoresistance
Other defense lines of CSCs include avoiding cellular and
molecular exposure to the drugs, avoiding conditions needed
for the drugs to act, damage repair, anti-apoptosis, and
regeneration [71]. But their relationships with cancer quiescence
remain unveiled, so they are not discussed further in this article.

METABOLIC FLEXIBILITY
CSCs can reprogram their metabolism to flexibly adapt to
environmental changes, which is considered crucial for them to
enhance the antioxidant compensative capacity and sustain their
self-renewal ability [8, 72]. For example, activation of the glycolytic
program in CSCs can enhance their antioxidative capacity, where
the pentose phosphate pathway (PPP) is the most relevant and
produces reduced intermediates, such as NADPH [72, 73].
Proliferative CSC needs massive biosynthetic materials and an

oxidation state to remain growing, while quiescent CSC retains a
reduction state for prevention from cell death and injury. It was
documented by Anderson et al. that ovarian CSCs were highly
flexible/plastic in metabolic phenotypes [74]. Ovarian CSCs were
able to accelerate the rate of glycolysis to overcome the ATP
inhibition by oligomycin treatment, but conversely, they could
also increase the oxygen consumption rate to maintain the proton
motive force [74]. Indeed, the metabolic flexibility is not confined
to mutual shift between glycolysis and OXPHOS, but also between
glycolysis and glutamine metabolism. In colorectal cancer, the
metformin-sensitive HT29 cell line showed higher OXPHOS levels,
while SW620 cells were metformin-resistant and had lower
OXPHOS levels. When glutamine was removed from the culture
medium, SW620 cells surprisingly became sensitive to metformin,
with decreased expression of stemness biomarkers [75].
Crucially, quiescence is a mechanism by which CSCs can be

maintained in a low metabolic state, and such a low metabolic
state of quiescence is always accompanied by enhanced
antioxidant defenses. Oxidative stress was observed to trigger
the transition from ROS-low quiescent mesenchymal-like BCSCs
(M-BCSCs) to ROS-high proliferative epithelial-like ones (E-BCSCs)
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[76]. Moreover, increasing evidence demonstrates that glutamine
(Gln), as the substrate of reduced glutathione (GSH), also plays a
key role in the antioxidant system and serves as an energy source
for CSCs [77]. Taken together, lower levels of ROS or enhanced
GSH are closely related to the quiescent states of CSC, and even
chemoresistance [78, 79]. Reviews of primary metabolic pathways
of various CSCs (summarized in Fig. 2) may help to identify
quiescent CSCs genes and pathways that maintain the quiescent
stem cell state, rendering those cells poised for activation.

CSC quiescence: balance of excessive ROS and glycolysis
Many studies have revealed that CSCs are prone to exhibiting a
glycolytic phenotype compared with their descendants. Indeed,
aerobic or anaerobic glycolysis contributes to maintaining CSC
phenotypes under specific conditions, such as hypoxia and
nutrient limitation [80–82]. As we mentioned above, the quiescent
M-BCSCs exhibit higher glycolytic rates in glucose-rich culturing
conditions [76]. Theoretically, activation of the glycolytic program
can enhance antioxidative capacity, with the PPP being the most
relevant and capable of rapidly providing NADPH to meet the
massive biosynthetic demand of GSH, which counteracts excessive
ROS [83]. Indeed, the quiescent state of CSC is reported to be
closely related to lower levels of ROS or enhanced GSH in various
cancers [76, 84, 85].
As for the impact of glycolysis on CSC quiescence, glycolysis is

considered crucial for CSCs to sustain their antioxidant compen-
sative capacity, enhance stemness, and improve self-renewal
ability [9, 49, 76, 86–92]. As shown in Table 2, abnormally
increased levels of glycolytic intermediates or products from
glycolysis, such as lactate, serine/glycine, and glutamine, have
been identified as markers of enhanced CSC stemness and
chemotherapy resistance. Given that CSC quiescence ties up with
drug sensitivity, it is reasonable to presume that abnormal
glycolysis of CSC possibly functions as an initiating factor of
chemoresistance. Those metabolic enzymes that initiate the
metabolic flexibility to glycolysis are regarded as potential targets
to inhibit CSC stemness.

Oxidative phosphorylation “addiction”
Although many studies have reported that CSCs tend to shift
from OXPHOS to glycolysis when facing a nutritional or oxygen
supply shortage, OXPHOS is also reported to equip certain CSCs
with increased survival from metabolic austerity [81]. OXPHOS
can be the primary source of energy and biosynthesis in specific
cases as well [74, 93–96]. Here, we review five articles that
propose OXPHOS to be the dominant energy resource to
maintain CSCs’ self-renewal and tumourigenesis (summarized in
Table 3).
Vlashi et al. first observed that GSCs and their progenitor cells

are less glycolytic than differentiated glioma cells. Their laboratory
previously reported that GSCs have lower 26S proteasome activity
than nontumorigenic cells [97], and they took advantage of this
feature to monitor GSCs in real-time using the fluorescent protein
ZsGreen. The GSCs were observed to consume less glucose and
produce less lactate while maintaining higher ATP levels than their
differentiated progeny [93]. A similar story in gliomaspheres and
lung CSCs soon followed this study by Janiszewska et al. [94] and
Lin et al. [95]. In addition, Sancho et al. also demonstrated that
while pancreatic non-CSCs are heavily dependent on glycolytic
substrates, pancreatic CSCs strictly depend on OXPHOS to sustain
their vitality. When the CSCs were confronted with mitochondrial
respiration inhibition (e.g., metformin administration), they rapidly
underwent an energy crisis and apoptosis induced by inhibition of
MYC [96].
Indeed, OXPHOS acts as a far more efficient source of ATP

production than glycolysis. These OXPHOS-dependent CSCs make
efficient use of specific limited nutrients, allowing them to obtain
a selective advantage in certain TMEs.

Potential role of glutamine in CSCs
Overall, most CSC primarily relies on either glycolysis or OXPHOS
[98]. However, with the development of tracer techniques,
increasing evidence demonstrates that Gln is also an important
metabolic substrate and energy source for CSCs [99]. Here, we
review articles with results indicating that glutamine and/or

Fig. 1 Quiescent CSCs are responsible for refractoriness to chemotherapies via crosstalk of chemical and mechanical signals from TME
components, including hypoxia, ECM, CAFs, and matrix stiffness. Through the utilization of antioxidants and available metabolic substrates,
CSCs “equips” themselves with metabolic flexibility to maintain themselves quiescent in response to stress and different metabolic austerity.
Crucially, inhibition of the morbidly-activated metabolic pathways on which quiescent CSCs are dependent, show promises on chemotherapy
sensitization.
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glutamate play a significant role in maintaining the stemness
of CSCs.
Liao et al. introduced L-asparaginase, an enzyme that catalyses

the conversion of glutamine to glutamate, into the culture
medium of human non-small-cell lung carcinoma (NSCLC)and
pancreatic cancer cells to mimic the effect of decreasing
glutamine. Mechanistically, glutamine exhaustion results in an
enhancement of intracellular ROS levels through attenuation of
the cellular levels of reduced GSH (a derivative of glutamine),
ultimately leading to a decreased proportion of CSCs in the tumor
in vivo [99]. In addition, there were two indirect lines of evidence.
First, knockdown of glutaminase (GLS) 1 significantly suppressed
the expression of stemness-related genes, such as CD13 and
CD133, and inhibited CSC pool expansion in vitro and tumor-
igenicity in vivo [100]. Second, a similar result was that GLS1
functioned in accordance with ALDH to maintain cancer stemness
in head and neck squamous cell carcinoma [101]. The authors did
not deplete or augment the concentration of glutamine in the
culture medium in vitro or tissue in vivo; however, given that the
function of GLS to hydrolyze glutamine to glutamate was well
acknowledged, the role of glutamine in the maintenance of
stemness was not negligible.

‘WAKING UP’ QUIESCENT CSCS TO OVERCOME
CHEMORESISTANCE
Therapies targeting CSCs
Resident quiescent CSCs made the prognosis of patients
treacherous after chemotherapeutic treatment [102–112]. Even

though preventing the activation of quiescent cells has been
successful in experimental models [113–116], keeping CSCs long-
term dormant may not be feasible in patients. Direct therapeutic
elimination of quiescent CSCs awaits a better understanding of
their vulnerabilities. Another strategy of overcoming chemoresis-
tance consists of ‘waking up’ this cell population into a
differentiated state, making them susceptive to chemotherapies.

All-trans retinoic acid. The idea of ‘waking up’ CSCs into a
susceptive state to therapies arose from the observation that
chemo-resistant leukemic cells became susceptive when they
were induced from an undifferentiated state into a differentiated
one by the use of all-trans retinoic acid (ATRA) [117]. The success
of ATRA therapy inspired other therapies that were based on
inducing CSC differentiation in other leukemic malignancies
(reviewed by Stahl et al. [118]). However, it was first studied in
solid tumors with a well-explored mechanism by Moro et al. [111].
Pretreatment with ATRA, which causes CSCs to differentiate,
counteracts cisplatin resistance originating from quiescent NSCLC
CD133+/CXCR4+ cells both in vivo and in vitro. ATRA alone slightly
decreases the percentage of CD133+ cells without affecting
tumor growth, further demonstrating that ATRA only sensitizes
CSCs rather than killing them directly.

2-Deoxy-D-glucose. As mentioned above, quiescence is a
mechanism whereby CSCs can be poised into a low metabolic
state, therefore, interference with intracellular metabolism shows
good practical value and application prospect. 2-deoxy-D-glucose
(2-DG) is a glucose molecule that has the 2-hydroxyl group

Fig. 2 Chemotherapy drugs are taken up by cancer cells, causing stress and nutrient starvation. Through the pentose phosphate pathway,
glucose can indirectly produce NADPH, which confronts excessive intracellular ROS to maintain CSC in the quiescent state. Second, when
nutrients in the TME are in short, nutrients excluding glucose are decomposed and go through OXPHOS to effectively produce ATP to sustain
basic biological demand. Third, glutathione also can be synthesized from glutamine (an important and rich non-essential amino acid) and
participate in the self-defense mechanism in response to excessive ROS and reduce its related adverse outcomes. Meanwhile, the
intermediates in glycolysis, pyruvate, and lactate further can abnormally activate ALDH, initiating or strengthening CSC stemness.
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replaced by hydrogen, and it interferes with d-glucose metabo-
lism. There is an increasing focus on using 2-DG to ameliorate
resistance to cytotoxic therapies. For example, in triple-negative
breast cancer, the more aggressive Hs578Ts(i)8 variant with a
significantly increased proportion of CSC phenotype showed an
enhanced ability to resist anoikis than its parental cells [92].
Furthermore, Hs578Ts(i)8 exhibited a significantly increased
glycolysis flux rather than mitochondrial OXPHOS. After 2-DG
was introduced, Hs578Ts(i)8 significantly decreased its ability to
resist anoikis. A similar story was reported in Gemcitabine-resistant
(GR) pancreatic CSCs. The cytotoxicity of gemcitabine towards GR
cells was significantly enhanced when combined with the 2‐DG,
manifested by the inhibition of the CSC stemness and the EMT
phenotypes both in vitro and in vivo [88].
Previous studies have proved that CSCs possess relatively low

intracellular ROS levels, especially in those quiescent ones. To be
more specific, the increase of ROS by glycolysis disruption may
lead to the differentiation into non-CSCs and the loss of stemness
markers [119–121]. Therefore, disrupting ROS equilibrium within
quiescent CSCs by 2-DG may be a potential adjuvant to reverse
chemoresistance.

Oligomycin and rotenone. Oligomycin and rotenone are both
mitochondrial OXPHOS Complex inhibitors. Gale et al. reported
that combining ATP synthase inhibitor oligomycin A with
trastuzumab led to regression of trastuzumab-resistant breast
HER2+ tumors in vivo [122]. Matassa et al. also demonstrated that
in ovarian cancer, TRAP1 silencing induced resistance to cisplatin,
and chemoresistant cells showed over-activated OXPHOS com-
pared with the sensitive counterpart. More strikingly, cisplatin
resistance was reversible upon inhibition by metformin/oligomy-
cin [123]. In doxorubicin(DOX)-resistant breast cancer cells,
mitochondrial accumulation of DOX in tumor cells was increased
by treatment with oligomycin, that is, chemoresistance to DOX
was partially reversed at least.
Besides oligomycin A, rotenone also drew some focuses. Cruz-

Bermúdez et al. demonstrated that metabolic flexibility from
glycolysis to OXPHOS was responsible for cisplatin resistance in
NSCLC, and strikingly, the chemoresistance could be reversed by
OXPHOS inhibition using metformin or rotenone [124].

Other drugs sensitizing CSCs to chemotherapies. Yang et al. used
disulfiram (DSF), an inhibitor of ALDH enzyme activity, to induce
quiescent-dominated CSCs into proliferative-dominated states
and enhance the cytotoxic effect of cisplatin in breast cancer
[125]. Similar tactics have been manifested by Jamieson’s
laboratory using PF-04449913, also named glasdegib, to sensitize
blast crisis LSCs to TKI in vivo at doses that do not affect normal
hematopoietic stem cells [106]. Helgason’s laboratory observed
that lys05, a highly potent lysosomotropic agent, could promote
autophagy inhibition, reverse leukemic stem cell quiescence and
drive myeloid cell expansion [107].

Therapies targeting CSC-specific stroma
Since the TME has the potential to support and initiate stem cell-
like programs in cancer cells, targeting the TME components may
prove to be a powerful modality for the prevention of
chemotherapy resistance. CAFs remodel the tumor ECM and
architecture of the TME, leading to poor infiltration of traditional
chemotherapies and increased drug resistance. There is an
innovative method of preventing chemoresistance by forcing
activated CAFs back into quiescence. Sherman et al. documented
that vitamin D receptor was over-activated in pancreatic CAFs that
could drive tumorigenesis. Importantly, reversion to the quiescent
state of CAFs using calcipotriol (a vitamin D analog) witnessed
induced stromal remodeling, increased intratumoral gemcitabine
infiltration, reduced pancreatic tumor volume, and a 57% sharp
increase in survival compared to chemotherapy alone [126]. AsideTa
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from calcipotriol, similar findings were reported with ATRA as well.
In 3D models and genetic mouse models of PDAC, the use of ATRC
to restore the quiescence of CAFs in TME increased vascularity
within tumors, improving response to gemcitabine and reducing
tumor growth [127].
Considering the presence of CSCs after traditional chemother-

apy, treatments for CAFs may have better outcomes when they
are combined with traditional chemotherapy.

CONCLUSION AND PERSPECTIVES
There is now solid evidence to support the hypothesis that
quiescent CSCs give rise to the refractoriness of chemotherapies in
many cancer types. New insights into CSC biology suggest that
strategies merely inhibiting CSC stemness characteristics might
not suffice to counteract tumor recurrence. The TME maintains the
principle properties of CSCs, protects them from immune
surveillance, and facilitates their relapse potential. The TME does
not only provide various signals that maintain resident quiescent
CSCs but also instructs progenitor cells to revert into a stem cell
state when the originals are lost [128]. Thus, targeting the TME
components may be a more effective strategy for the treatment of
chemoresistance than inhibiting the CSCs stemness directly. In
addition, through the utilization of antioxidants and metabolic
fuels, CSCs “equips” themselves with the metabolic flexibility to
maintain themselves quiescent in response to stress and different
metabolic austerity [74]. Significantly, primary metabolic pathways
of various CSCs are reprogrammed for maintenance in CSCs
quiescence, the poised state, but also can be utilized as an
effective target of eliminating quiescent CSCs and attenuating
resistance to chemotherapies (Fig. 3).
Recently, via molecular imaging methods, such as F-18-fluoro-2-

deoxy-D-glucose (F-18-FDG) positron emission tomography, mag-
netic resonance imaging, and optical imaging based on the
fluorescent protein and principal properties of CSCs, the
peritumoral microenvironment can be monitored in real-time
and serve as a reflection of the metabolic phenotype of CSCs [97].
With the development of such techniques and methodologies in
metabolic research, the measurement of metabolites in the TME

can be used to unveil the metabolic phenotype and quiescent/
proliferative state of CSCs, providing timely warning of potential
chemoresistance and suggestions for the application of anti-
tumor treatments.
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