

open 👌 access

Crystal structure of 1-benzylsulfonyl-1,2,3,4-tetrahydroquinoline

S. Jeyaseelan,^a B. R. Sowmya,^b G. Venkateshappa,^c P. Raghavendra Kumar^d and B. S. Palakshamurthy^b*

^aDepartment of Physics, St Philomena's College (Autonomous), Mysore, Karnataka 570 015, India, ^bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ^cDepartment of Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, and ^dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur University, Tumkur, Karnataka 572 103, India. *Correspondence e-mail: palaksha.bspm@gmail.com

Received 5 March 2015; accepted 7 March 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound, $C_{16}H_{17}NO_2S$, the heterocyclic ring adopts a half-chair conformation and the bond-angle sum at the N atom is 354.6°. The dihedral angle between the planes of the aromatic rings is 74.15 (10)°. In the crystal, molecules are linked by weak $C-H\cdots O$ hydrogen bonds, generating C(8)and C(4) chains propagating along [100] and [010], respectively, which together generate (001) sheets.

Keywords: crystal structure; 1,2,3,4-tetrahydroquinoline; weak C—H···O interactions.

CCDC reference: 1052632

1. Related literature

For the biological properties of 1,2,3,4-tetrahydroquinoline derivatives, see: Bendale *et al.* (2007); Singer *et al.* (2005). For related structures, see: Jeyaseelan *et al.* (2014, 2015).

V = 1438.44 (9) Å³

Mo Ka radiation

 $0.24 \times 0.20 \times 0.18 \text{ mm}$

19601 measured reflections

2529 independent reflections

2264 reflections with $I > 2\sigma(I)$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.051$

Z = 4

2. Experimental

2.1. Crystal data

 $C_{16}H_{17}NO_2S$ $M_r = 287.36$ Monoclinic, $P2_1/n$ a = 13.5690 (5) Å b = 6.7128 (2) Å c = 16.8317 (6) Å $\beta = 110.243$ (1)°

2.2. Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{min} = 0.947, T_{max} = 0.960$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	181 parameters
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
2529 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14\cdotsO1^{i}$ $C10-H10A\cdotsO2^{ii}$	0.93	2.69	3.573 (2)	158
	0.97	2.68	3.575 (2)	153

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2014*.

Acknowledgements

SJ thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISE scheme (reference No. VGST/CISE/GRD-192/2013-14). BSPM thanks Rajegowda, Department of Studies and Research in Chemistry, UCS, Tumkur University, Karnataka 572 103, India, for his support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7377).

References

- Bendale, P., et al. (2007). J. Med. Chem. 50, 4585-4605.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176.
- Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o20.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singer, J. M., Barr, B. M., Coughenour, L. L., Gregory, T. F. & Walters, M. A. (2005). *Bioorg. Med. Chem. Lett.* 15, 4560–4563.

supporting information

Acta Cryst. (2015). E71, o249-o250 [doi:10.1107/S2056989015004727]

Crystal structure of 1-benzylsulfonyl-1,2,3,4-tetrahydroquinoline

S. Jeyaseelan, B. R. Sowmya, G. Venkateshappa, P. Raghavendra Kumar and B. S. Palakshamurthy

S1. Introduction

Heterocyclic compounds of 1,2,3,4-tetrahydroquinoline derivatives play important role in synthesize antimalarial (Bendale *et al.*, 2007), antipsychotic (Singer *et al.*, 2005) drugs. Keeping this in mind we have synthised a series of 1,2,3,4-tetrahydroquinoline with derivatives of Sulfonyl chlorides they exhibit a few pharmacological activities (our unpublished data). As a part of our study we have undertaken crystal structure determination of the title compound(I) and the results are compared with crystal structure of 1- tosyl-1,2,3,4-tetrahydroquinoline(II) and 1-methanesulfonyl-1,2,3,4-tetrahydroquinoline(III) (Jeyaseelan *et al.*, 2014a & 2014b).

S2. Structural commentary

The molecular structure of the title compound (I) is shown in Fig. 1. In all the compounds (I),(II) and (III), the C1/C6–C9/N1 rings are in a half-chair conformation, but the bond-angle sum at the N atom in the compound (I), (II) and (III) are 354.61° , 347.9° and 350.2° , respectively.

The crystal structure of (I) features C14–H14 \cdots O1 weak hydrogen bonds generating C(8) chain along [100] and C10–H10A \cdots O2 weak hydrogen bonds generating C(4) along [010]: together these generate (001) sheets.

S3. Experimental

To a stirred solution of 1,2,3,4-tetrahydroquinoline (10 mmol) in 30 ml dry methylene dichloride, triethylamine (15 mmol) was added at $0-5^{\circ}$ C. To this reaction mixture phenylmethanesulfonyl chloride (12 mmol) in 10 ml dry dichloromethane was added drop wise. After 2h of stirring at 15–20°C, the reaction mixture was washed with 5% Na₂CO₃ and brine. The organic phase was dried over Na₂SO₄ and then it was concentrated on vacuum to yield titled compound as colourless solid. The crude product was recrystallized from a solvent mixture of ethyl acetate and hexane (1:2) to yield colourless prisms of (I).

S3.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.97 Å. All H-atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

The molecular packing of the title compound, dashed lines indicates the C—H…O weak hydrogen bonds in the *ab* plane.

1-Benzylsulfonyl-1,2,3,4-tetrahydroquinoline

Crystal data

C₁₆H₁₇NO₂S $M_r = 287.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.5690 (5) Å b = 6.7128 (2) Å c = 16.8317 (6) Å $\beta = 110.243$ (1)° V = 1438.44 (9) Å³ Z = 4F(000) = 608

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 1.90 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2013) $T_{\min} = 0.947, T_{\max} = 0.960$ Prism $D_x = 1.327 \text{ Mg m}^{-3}$ Melting point: 514 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2529 reflections $\theta = 1.7-25^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 295 KPrism, colourless $0.24 \times 0.20 \times 0.18 \text{ mm}$

19601 measured reflections 2529 independent reflections 2264 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.7^\circ$ $h = -16 \rightarrow 16$ $k = -7 \rightarrow 7$ $l = -19 \rightarrow 20$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
2529 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.3073P]$
181 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
0 constraints	$\Delta ho_{ m max} = 0.15 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.36706 (3)	0.52581 (6)	0.20696 (2)	0.04077 (16)
N1	0.47088 (9)	0.40403 (18)	0.20485 (8)	0.0377 (3)
01	0.37882 (9)	0.73063 (17)	0.18920 (8)	0.0515 (3)
C11	0.47391 (11)	0.5739 (2)	0.37732 (10)	0.0395 (4)
C1	0.60202 (12)	0.6674 (2)	0.22242 (10)	0.0419 (4)
H1	0.5827	0.7225	0.2656	0.050*
O2	0.27373 (9)	0.4236 (2)	0.15618 (8)	0.0634 (4)
C6	0.55139 (11)	0.4980 (2)	0.18039 (9)	0.0334 (3)
C12	0.55291 (13)	0.4389 (3)	0.41491 (11)	0.0488 (4)
H12	0.5430	0.3051	0.3999	0.059*
C5	0.58183 (13)	0.4084 (2)	0.11812 (10)	0.0448 (4)
C10	0.37241 (13)	0.5045 (3)	0.31416 (11)	0.0477 (4)
H10A	0.3155	0.5818	0.3211	0.057*
H10B	0.3615	0.3662	0.3257	0.057*
C9	0.46039 (15)	0.1865 (2)	0.19022 (11)	0.0516 (4)
H9A	0.4017	0.1368	0.2047	0.062*
H9B	0.5236	0.1200	0.2260	0.062*
C16	0.49091 (15)	0.7733 (3)	0.40037 (12)	0.0547 (4)
H16	0.4387	0.8669	0.3758	0.066*
C2	0.68073 (13)	0.7538 (3)	0.20020 (13)	0.0555 (5)
H2	0.7137	0.8689	0.2275	0.067*
C3	0.71051 (15)	0.6695 (3)	0.13749 (14)	0.0679 (6)
H3	0.7633	0.7280	0.1221	0.081*
C13	0.64626 (15)	0.4993 (3)	0.47439 (12)	0.0632 (5)
H13	0.6984	0.4061	0.4996	0.076*
C14	0.66280 (15)	0.6951 (4)	0.49666 (12)	0.0646 (6)
H14	0.7262	0.7354	0.5366	0.078*
C7	0.53441 (17)	0.2149 (3)	0.07532 (12)	0.0625 (5)

H7A	0.5113	0.2333	0.0145	0.075*	
H7B	0.5885	0.1131	0.0903	0.075*	
C4	0.66236 (16)	0.4995 (3)	0.09785 (14)	0.0634 (5)	
H4	0.6840	0.4431	0.0562	0.076*	
C8	0.44285 (18)	0.1420 (3)	0.09850 (13)	0.0667 (6)	
H8A	0.4346	-0.0005	0.0888	0.080*	
H8B	0.3789	0.2067	0.0629	0.080*	
C15	0.58539 (18)	0.8325 (3)	0.45973 (13)	0.0654 (5)	
H15	0.5966	0.9662	0.4747	0.079*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0284 (2)	0.0475 (3)	0.0419 (3)	-0.00260 (14)	0.00645 (17)	0.00823 (16)
N1	0.0394 (7)	0.0304 (6)	0.0437 (7)	-0.0068 (5)	0.0147 (5)	-0.0008(5)
01	0.0455 (7)	0.0438 (7)	0.0627 (7)	0.0085 (5)	0.0155 (6)	0.0154 (5)
C11	0.0358 (8)	0.0506 (9)	0.0373 (8)	0.0036 (7)	0.0193 (6)	0.0022 (7)
C1	0.0376 (8)	0.0386 (8)	0.0478 (9)	-0.0041 (6)	0.0127 (7)	-0.0021 (7)
O2	0.0352 (6)	0.0850 (9)	0.0578 (8)	-0.0170 (6)	0.0004 (5)	0.0074 (7)
C6	0.0308 (7)	0.0326 (7)	0.0349 (8)	-0.0002 (5)	0.0088 (6)	0.0035 (6)
C12	0.0503 (10)	0.0531 (10)	0.0431 (9)	0.0111 (8)	0.0165 (8)	-0.0011 (7)
C5	0.0502 (9)	0.0451 (9)	0.0392 (8)	0.0065 (7)	0.0157 (7)	0.0047 (7)
C10	0.0347 (8)	0.0621 (10)	0.0496 (10)	0.0006 (7)	0.0187 (7)	0.0069 (8)
C9	0.0659 (11)	0.0311 (8)	0.0573 (10)	-0.0103 (7)	0.0205 (9)	0.0010 (7)
C16	0.0605 (11)	0.0515 (10)	0.0575 (11)	0.0093 (8)	0.0272 (9)	0.0028 (8)
C2	0.0405 (9)	0.0500 (10)	0.0697 (12)	-0.0115 (7)	0.0108 (8)	0.0085 (9)
C3	0.0477 (10)	0.0809 (14)	0.0836 (14)	-0.0053 (10)	0.0336 (10)	0.0238 (12)
C13	0.0463 (10)	0.0953 (16)	0.0442 (10)	0.0197 (10)	0.0107 (8)	0.0000 (10)
C14	0.0509 (10)	0.1025 (17)	0.0424 (10)	-0.0162 (11)	0.0185 (8)	-0.0123 (10)
C7	0.0889 (14)	0.0505 (10)	0.0481 (10)	0.0043 (10)	0.0236 (10)	-0.0111 (8)
C4	0.0630 (12)	0.0794 (14)	0.0605 (12)	0.0072 (10)	0.0375 (10)	0.0079 (10)
C8	0.0895 (15)	0.0432 (10)	0.0611 (12)	-0.0192 (10)	0.0180 (10)	-0.0149 (9)
C15	0.0842 (14)	0.0607 (12)	0.0607 (12)	-0.0209 (11)	0.0368 (11)	-0.0156 (10)

Geometric parameters (Å, °)

S1—01	1.4277 (12)	С9—Н9А	0.9700
S1—O2	1.4341 (12)	С9—Н9В	0.9700
S1—N1	1.6397 (13)	C16—C15	1.383 (3)
S1—C10	1.7863 (18)	C16—H16	0.9300
N1—C6	1.4397 (18)	C2—C3	1.376 (3)
N1—C9	1.4794 (19)	С2—Н2	0.9300
C11—C12	1.379 (2)	C3—C4	1.368 (3)
C11—C16	1.390 (2)	С3—Н3	0.9300
C11—C10	1.494 (2)	C13—C14	1.364 (3)
C1—C2	1.376 (2)	C13—H13	0.9300
C1—C6	1.389 (2)	C14—C15	1.374 (3)
C1—H1	0.9300	C14—H14	0.9300

supporting information

C6—C5	1.389 (2)	C7—C8	1.507 (3)
C12—C13	1.376 (3)	C7—H7A	0.9700
C12—H12	0.9300	С7—Н7В	0.9700
C5—C4	1.394 (3)	C4—H4	0.9300
С5—С7	1.517 (2)	C8—H8A	0.9700
C10—H10A	0.9700	C8—H8B	0.9700
C10—H10B	0.9700	C15—H15	0.9300
С9—С8	1.508 (3)		
01 - 1 - 02	118 41 (8)	H9A_C9_H9B	108.2
01N1	108.44(7)	C15-C16-C11	120.08 (18)
02	100.11(7) 109.67(8)	C15 - C16 - H16	120.00 (10)
$O_1 = S_1 = C_1 O_1$	109.67 (8)	C_{11} C_{16} H_{16}	120.0
02 S1 C10	106.08(8) 106.42(8)	C1 - C2 - C3	120.0 110.78(17)
N1 S1 C10	100.42(8) 104.20(7)	C1 = C2 = C3	119.76 (17)
NI = SI = CIU	104.30(7)	C1 - C2 - H2	120.1
C6-N1-C9	115.08 (12)	$C_3 - C_2 - H_2$	120.1
C6—NI—SI	122.03 (10)	C4 - C3 - C2	119.99 (17)
C9—NI—SI	117.50 (10)	C4—C3—H3	120.0
C12—C11—C16	118.48 (16)	С2—С3—Н3	120.0
C12—C11—C10	120.05 (15)	C14—C13—C12	120.44 (18)
C16—C11—C10	121.46 (15)	C14—C13—H13	119.8
C2—C1—C6	120.02 (16)	C12—C13—H13	119.8
C2—C1—H1	120.0	C13—C14—C15	119.68 (18)
C6—C1—H1	120.0	C13—C14—H14	120.2
C1—C6—C5	120.99 (14)	C15—C14—H14	120.2
C1C6N1	120.25 (13)	C8—C7—C5	114.05 (15)
C5—C6—N1	118.62 (13)	С8—С7—Н7А	108.7
C13—C12—C11	120.92 (17)	С5—С7—Н7А	108.7
C13—C12—H12	119.5	C8—C7—H7B	108.7
C11—C12—H12	119.5	С5—С7—Н7В	108.7
C6—C5—C4	117.24 (16)	H7A—C7—H7B	107.6
C6—C5—C7	122.76 (15)	C3—C4—C5	121.93 (18)
C4—C5—C7	119.95 (16)	C3—C4—H4	119.0
C11—C10—S1	113.53 (11)	C5—C4—H4	119.0
C11-C10-H10A	108.9	С7—С8—С9	110.39 (15)
S1-C10-H10A	108.9	С7—С8—Н8А	109.6
C11—C10—H10B	108.9	С9—С8—Н8А	109.6
S1—C10—H10B	108.9	С7—С8—Н8В	109.6
H10A—C10—H10B	107.7	С9—С8—Н8В	109.6
N1—C9—C8	109.76 (14)	H8A—C8—H8B	108.1
N1—C9—H9A	109.7	C14—C15—C16	120.39 (19)
C8—C9—H9A	109.7	C14—C15—H15	119.8
N1—C9—H9B	109.7	C16—C15—H15	119.8
С8—С9—Н9В	109.7	-	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C14—H14…O1 ⁱ	0.93	2.69	3.573 (2)	158
C10—H10A····O2 ⁱⁱ	0.97	2.68	3.575 (2)	153

Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.